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ON THE LENGTHS OF PAIRS OF COMPLEX MATRICES OF
SIZE AT MOST FIVE

W.E. LONGSTAFF, A.C. NIEMEYER AND ORESTE PANAIA

The length of every pair {4, B} of n x n complex matrices is at most 2n— 2, if n < 5.
That is, for n < 5, the (possibly empty) words in A, B of length at most 2n — 2
span the unital algebra A generated by A, B. For every positive integer m there exist
m x m complex matrices C, D such that the length of the pair {C, D} is 2m — 2.

1. INTRODUCTION AND PRELIMINARIES

Let F be a field and let M,(F) denote the set of all n x n matrices over F. Let S
be a finite subset of M,(F). Let the identity matrix be defined to be the unique word
in the alphabet S of length zero and also call it the empty word. For every positive
integer k, define a word in the alphabet S to be of length & if it has k factors, counting
multiplicities, so that, for example, the word A2BAC?A? has length 9 (assuming that
A,B,C € S). For every natural number k let S; be the set of words in the alphabet
S of length at most & (including the empty word) and let V; be the subspace of M, (F)
spanned by Si. Clearly

FI=VoCWVCVC--CV;CVi  ©--CA,

where A is the unital algebra generated by S. Since A is finite-dimensional, there is an
integer ! such that V, = Vi;;. Then V, =V, for every k > [, since

Sk € Sk—1-18141 € Sk—im1Vi € Vi,

$0 Vi = Vi, for such k. Since A = |J Vi we then have A = V). Following [3], we define
k=0
the length I(S) of S to be the smallest integer I for which V, = A. Then

IFI:VvalCvzC---CV,~CV.-+1C---CV,=A,

where ‘C’ denotes strict inclusion. From this we get the trivial upper bound [(S)
< d -1 where d is the dimension of 4. (Similar types of upper bounds were observed in
(1, 2, 3, 4, 5].) In [4] Paz conjectures that {(S) < 2n — 2, and shows this to be the case
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for n < 4, by proving that I(S) < [(n? +2)/3], whenever n > 2.(Here ‘[-]’ denotes the
least integer function.) Examples exhibited or referred to in [4], attributed to J. W. Car-
lyle, show that the inequality [(S) < 2n - 2 is sharp for n = 2,3 or 4, and that {(S) = 8
can occur when n = 5. Then [1, Example 2.9] shows that {(S) > 2n — 2 for infinitely
many values of n. Additionally, [3, Theorem 4.1 (b)] shows that I(S) < 2n -2 if S is
a finite set of matrices which generates M,(FF) as a unital algebra, and which contains a
matrix with distinct eigenvalues. In [3] it is shown that [(S) < v/2n%? + 3n for every n,
for every finite set of matrices & which generates M, (F) as a unital algebra.

Here we shall be concerned with the case when F = C and the alphabet S = {4, B}
where A and B are n x n matrices. We show that {(A, B) < 2n — 2 for n < 5 and that
the inequality is sharp for such n.

Let S be a finite set of n x n matrices over a field F which generates M, (F) as an
algebra. Following [2] we define the minimum spanning length of S, denoted msl(S),
to be the smallest positive integer m such that the set of nonempty words of length at
most m, in the alphabet S, span M,(F). It is obvious that I(S) < msl(S). Almost as
obvious is the fact that msl(S) < I(S) +1. (Note that if the nonempty words of length
! — 1 do not span M, (F) then their span is strictly included in the span of the nonempty
words of length [.) We can have {(S) # msl(S). Indeed, as is remarked in [2], if B is
the 3 x 3 complex strictly upper triangular elementary Jordan matrix and A = B*, then
I(A, B) = 3 and msl(A, B) =4.

OTHER COMMENTS CONCERNING THE RESULTS OF [2].

The manuscript for [2] was written in ignorance of [1, 3, 4, 5]. The first author
thanks Thomas J. Laffey for bringing these articles to his attention. In [2] only matrices
over the complex field were considered, but some of the results apply to more general
fields. Also, most of the results in [2] concerning ‘minimum spanning length’ yield results
on ‘length’.

1. Consideration of the proof of {2, Theorem 2] leads to the following theorem.

THEOREM 1. Let F be a field with characteristic zero. Let n > 2 and let
B € M, (F) be the strictly upper triangular elementary Jordan matrix. For any matrix
A € M,(F) such that { A, B} generates M,(F) as an algebra, we have msl(A, B) < 2n-2.

2. With obvious modifications |2, Example 2], shows that, if n > 3 and F is a field
with characteristic zero, then msl(A, B) = 2n — 2 where B € M,(F) is the strictly upper
triangular elementary Jordan matrix and A = (B*)*~!(where B! denotes the transpose of
B). In fact, since it shows that every word W = (w;;) in A and B, including the empty
word, of length at most 2n — 3 satisfies wy n_1 = wa,n it follows that I(A, B) = 2n - 2.
The latter is true even when n = 2.

3. The proofs of [2, Propositions 3 and 4] hold when the underlying field has
characteristic zero, not just when it is C. Thus we have the following proposition.

PROPOSITION 1. LetF be a field with characteristic zero. Let n > 2,n # 3, let
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B € M,(F) be the strictly upper triangular elementary Jordan matrix and let A = B*.
Then l(A, B) = msl(A, B) = n.

2. MAIN RESULTS

In the remainder of this paper the underlying field will be C, the complex field. Let
n 2 2 and let A, B be n xn complex matrices. Let V be the set of all words, including the
empty word, in A and B. f U,V € V and U and V are the same word we write U = V.
(So U =V is strictly stronger than U = V where the latter means equality as matrices.)
For each integer k > 1, totally order the words in A and B of length k using dictionary
order. (So, if W) and W, are words of equal nonzero length, we say that W, < W, if
W, = XAV, and W, = XBV,, where each of X, V}, V; is a word in A, B, possibly empty.)
Extend these orders to a total order on V by additionally defining W; < W, if the length
of Wy is strictly less than the length of Wj.

In the totally ordered set V, define B to be the set of elements which do not belong
to the span of their strict predecessors. Then B is a linearly independent set of words,
hence finite. Clearly I € B. Note that, if W is a word in B of length at least 2, then
every proper subword of W belongs to B. For if a word U belongs to the span of words
strictly less than it so do the words UV and VU, for any word V.

Now the length of the pair {A, B} is at most 2n — 2 if and only if V,,_, is the unital
algebra generated by A and B if and only if B does not contain a word of length 2n - 1.
If B did contain a word of length 2n — 1, we could let W be the smallest word (in the
sense of the total order <) of length 2n — 1 in B. Then

(i) W has length 2n — 1,
(i) W has no factors of the form A™ or B",
(iii) the number of subwords of W (including the empty subword) is at most

n2.

We shall describe, for 2 < n < 5 the forms that W can have, given the constraints (i),
(i) and (iii) immediately above, and show that W having any one of these forms leads
to a contradiction. The pertinent question here is:
QUESTION. Let n € Z*,n 2 2. Which words of length 2n — 1 in the symbols a and b
with no factor of a™ or b" have at most n? subwords, including the empty subword?
PROPOSITION 2. Let n =2,3 or 4 and let w be a word of length 2n — 1 in the
symbols a and b with no factor of a™ or b®. If n = 2 or 3, w has more than n? subwords.
If n = 4, w has more than n? subwords unless it is (ab)3a or (ba)®b in which case it has
14 subwords.
PRoOF:
Casen =2. If n =2, w must be aba or bab. Consequently, w has 6 > 22 subwords
(These are aba, ab, ba, a, b, e, where e is the empty subword, if w is aba.)
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CAsE n=3. If n =3, w has length 5. The words of length 5 with no factors of a3 or
b® are a?ba?, a’bab, a’b?a, aba®b, ababa together with those 11 words that can be obtained
from these 5 words by using symmetry, that is, by interchanging a and b or by reading
them backwards or by combining the two. Now ababa has 10 subwords and a?b?a has 13;
each of a?ba?, a%bab, aba®b has 12.

Casen =4. Ifn =4, whaslength 7. Ifw is either (ab)3a or (ba)3b it has 14 subwords.
If it is neither of these words it has at least 17 > 4 subwords. Indeed, the numbers of
different subwords satisfy the following table.

length 71615 4 3 2 1110
#subwords {112 ([3|>3|1>2[>23]2]1

Note that if w was wyw, . .. wy where w; € {a,b},7=1,2,...,7 and it had only 2 subwords
of length 4, then wywwsws and wiwswsws would be the same, and so would wewzwws
and wswswswy be. Consequently, w would have the form (pg)®p. It would also have this
form if it had no factor of a? or ¥?. 1|

COROLLARY 1. Letn € Z. Ifn =2 or 3 there are no words of length 2n — 1 in a
and b containing no factors of a® or b" with at most n? subwords. If n = 4 the only words
of length 2n — 1 containing no factor of a™ or b with at most n? subwords (including the
empty word) are (ab)3a and (ba)3b. Each of the latter has 14 subwords.

Analysis of the case n = 5 is a little more difficult.
PROPOSITION 3. Let w be a word of length 9 in the letters a and b satisfying
(i) w has no factor of the form a® or b°,
(i) w is not of the form (pq)*r, p(gr)* or (pqr)3, where {p,q,7} C {a, b}.
Then w has at least 26 subwords, including the empty subword.
Proor: If words f and g, in a and b, are the same word we write f = g.

Let w = wiw,...wy where {wy,ws,...,we} C {a,b}. We shall show that the
numbers of different subwords satisfy the following table. '

length 918(7(6]| 5 4 3 2 1
#subwords {123 (4 |24|>4 (222321

The sum of the numbers in the last row is at least 26, so this will prove the theorem.

Consider the 4 subwords of length 6. Call them V] = wyw, ... we, Vo = wows ... wy,
Vs = waws ... wy, Vg = waws ... wy. By condition (i), Vi Z Vo Z Va3 Z V. If V3 = V] then
w has the form (pg)*r. If V; = V, then w has the form p(gr)*. If V; = V; then w has
the form (pgr)3. Each of these contradicts condition (ii), so Vi, V,, V3, Vj are distinct. It
follows that all of the subwords of lengths 6,7, 8 or 9 are distinct.
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Consider the 5 subwords of length 5. We shall abuse notation and call them
Vi, Va, ..., Vs, where

Vl = wwa...Ws, %Ew2’w3...w5, ‘/;;EIU3QU4...‘U)7, ‘/45’!1)4'11)5.4.’(1)5, ‘/5_=.w51.U5...‘UJ9.

Again, by condition (i), V] Z V, 2 V3 2 V; # V5. If at most 3 of these 5 subwords were
distinct, there are only 7 possibilities, namely,
(5-3i) =Vsand V=V,
(5-3ii) Vl Viand V3 = V5,
(6-3iil) Vi = V3 and V, =V,
(5:3iv) i=V;=V;,
(5-3v) K= VS and V; =V,
(5-3vi) Va=Viand V3 = an
(5-3vii) Vi=Viand Vo =
If case (5-3i) or (5-3ii) held, w would be of the form p®. If either of (5-3iii), (5-3iv) or
(5-3v) held, w would be of the form (pg)*r. If (5-3vi) held, w would be of the form p(qr)*
and if (5-3vii) held it would be of the form (pgr)®. Each of these contradicts condition
(5-3i) or (5-3ii). Thus w has at least 4 distinct subwords of length 5.
Consider the 6 subwords of length 4, namely,

Vizw...wg,Vo=ws.. . w5, Va=ws... we, Va=wy... wy, Vs = ws...ws, Vg = wg...ws.

Again, by condition (i), Vi # Vo £ Va3 # Vy # V; # V5. If at most 3 of these 6 subwords
were distinct, there are only 15 possibilities, namely,

43) Vi=Vi=Viand ; =V,
(4-3i) Vi=Vs=V;and Vp =V,
(4-3iii) Vl =V, Va=V; and V, = V4,
(4-3iv) Vi=Vi=V;and V3 =V,

(4-3v) Vl Vi=Vsand V3= V5,
(4-3vi) =V, Vo =Vsand V3= V5,
(4-3vi) =V, Va=Vyand V3 = V4,

(4-3vil)) Vi=Vs, Vo=V, and V3 = V5,

(4-3ix) Vi=Vz=Vand V2 =V,

(4-3x) i=Vzand V=V, =14,
(4-3xi) V1 Vi=V4 and V3 = 4,
(4-3xii) =V;=V; and V4 |73

(4-3xiii) V1 Vsand V, =V, = V4,
(4-3xiv) Vi =Vy=V; and V3 = Vs,
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(4-3xv) =V, Vo =V;, and V3= V4.

If either of cases (4-3i) to (4-3viii) held, w would be of the form p°. If either of (4-3ix)
to (4-3xiii) held, w would be of the form (pg)*r. If (4-3xiv) held, w would be of the form
p(gr)* and if (4-3xv) held it would be of the form (pgr)3. But each of these contradicts
condition (i) or (ii). Thus w has at least 4 distinct subwords of length 4.

The subwords wwows, wawswy, wswsws of w of length 3 cannot be the same, other-
wise w would be of the form p3grst which contradicts condition (i). Thus w has at least
two subwords of length 3.

With regard to subwords of w of length 2, note that both ab and ba must be subwords
by condition (i). Also, either a? or b? must be a subword, by condition (ii). Thus w has
at least 3 subwords of length 2.

The above analysis shows that the subwords of w occur as in the table given at the
beginning of the proof. As remarked earlier, this completes the proof. ]

COROLLARY 2. Let w be a word in a and b of length 9. If w has no factors of a®
or b® and has 25 or fewer subwords (including the empty word) it must be one of

(ab)'a; (ba)*b
(a®b)3; (b%a)®; a(ab)?; b(ba)?*; (aba)®; (bab)®; (ab)®d; (ba)a; (ab?)3; (ba?)3.

The words in the first row above each have 18 subwords; those in the last row have 24.
PROOF: By Proposition 3, w must be of one of the forms (pg)*r, p(gr)* or (pgr)?,
where {p,q,7} C {a,b}. Bearing in mind the fact that w has no factor of a5 or b° gives
that it must be one of the 12 words listed. To verify that the actual number of subwords
is as claimed, one need only consider, by symmetry, (ab)%a; (a%b)%;a(ab)*; (aba)3. 0
PROPOSITION 4. Letn > 2. Forall complex n xn matrices A and B, the matrix
(AB)""' A belongs to Van_3.

PRrROOF: First, assume that B is invertible. Let W = (AB)"~'A. Then, using the
Cayley—Hamilton Theorem,

n-1
WB = (AB)" = Mol + Y M(4B),
k=1
for some scalars Ag, A1, ..., An_1. Hence
n-1
W =XB""+) M(AB)*'A.
k=1

Since B! can be written as a polynomial in B of degree n — 1, the desired result follows.
Finally, assume that B is not invertible. Choose a scalar A such that B — Al is
invertible. By the above, (A(B — Al ))"—IA belongs to the span of words in A, B — A\l of
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length at most 2n — 3 together with the identity, and hence to V,,_3. But
(A(B-AD))""'A - (AB)" A

belongs to Va,_4, so the proof is complete. 0

PROPOSITION 5. Ifn=2,3 or 4, then I(A, B) < 2n — 2, for all n x n complex
matrices A and B, that is, the unital algebra generated by A, B is the span of the set of
all, possibly empty, words in A, B of length at most 2n — 2.

PROOF: Define B as before, after totally-ordering the set of all words in A and B.
If (A, B) > 2n — 2, B would contain a word W of length 2n — 1. This word would have
no factor of A™ or B™ and have at most n? subwords. By Corollary 1, there is no such
word if n = 2 or 3. If n = 4, again by Corollary 1, W could only be (AB)*A or (BA)*B.
But these words cannot belong to B by Proposition 4.

The remainder of this paper is devoted to showing that n can also be taken to be 5
in Proposition 5.

THEOREM 2. For all 5 x 5 complex matrices A and B, I(A, B) < 8.

PROOF: Suppose that I(A,B) > 8 and let W be the smallest word of length 9
belonging to B. Then W contains no factors of A% or B® and has at most 25 subwords
(including the empty subword). By Corollary 2 it must be one of the words

(AB)*4; (BA)*B; (A’B)% (B®A)% A(AB)*; B(BA)*;
(ABAY; (BABY'; (AB)'B; (BA)A; (AB%); (BA?Y:.

By Proposition 4, W cannot be either (AB)*A or (BA)*B. Now each of the remaining
10 possible words has 24 subwords. We complete the proof by showing that W being any
one of these 10 possible words leads to a contradiction. Notice that
(a) Since W is the smallest word of length 9 belonging to B, if V' is a word of
length 9 satisfying V X W,V &£ W then V € V,
(b) Since M5(C) has dimension 25, every proper subword of any element of B
is a subword of W.

By the Cayley-Hamilton Theorem both

(A+ B)*+ (A- B)® and  F o (A+1iB)>+ (A — iB)®
2 h 2

belong to V,. Therefore, so do

E =

1 Y= E—%—F— = A’B? + A’BAB + A’B%*A + ABA’B + ABABA

+ AB?A? + BA’B + BA’BA + BABA? + B243,
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and, interchanging A and B,

(I1) Z = A’B*+ ABAB® + AB?AB + AB*A + BA’B?
+ BABAB + BAB>A+ B*A’B + B’ABA + B*A?

(i) Suppose that W was the word (AB)*B. In the expression for Y the first 4
words on the right hand side are less than the fifth ABABA. Thus, if X is any of these
first 4 words (X)BAB? < (ABABA)BAB? = W and so (X)BAB? € Vs, by the remark
(a) immediately above. Thus

(Y)BAB? = (ABABA+ AB?A* + BA*B+ BA’BA+ BABA* + B*A®)BAB%* +V € V4
where V € V5. Hence
W + AB?A?BAB? + BA’B’AB? + BA’BABAB? + BABA?BAB? + B’A*BAB? € V.

Neither of A3, A?B belongs to B, by remark (b) immediately above (each has A? as a
proper subword), so both belong to V, (because of the way that B is defined). Since each
of ‘
AB*A’BAB?, BA*B*AB?, BA’BABAB?, BABA’BAB? B*A’BAB?

has A?B as a factor, each of these 5 words belong to V. It follows that W € Vs. This is
a contradiction. Thus W cannot be (AB)'B.

The proof that W cannot be B(BA)! is similar to the one just given.

(ii) Suppose that W was the word B(BA)*. In the expression (I) for Y, if X is any
of the first 4 words on the right hand side then B?(X)BA < B2(ABABA)BA = W and
so B%(X)BA € V;. This gives

B*(Y)BA = BX(ABABA+ AB*A? + BA'B+ BA’BA+ BABA® + B’A®)BA+V € Vs
where V € V3. Hence
W + B?AB*A’BA + B3A3B?A + B’A’BABA + B3ABA?’BA + B*A*BA € V;.
Again, neither A% nor A2B belongs to B so both belong to V. Since each of
B?AB%A’BA, B3A®B%A, B3A’BABA, B3ABA’BA, B*A’BA

has A?B as a factor, each of these 5 words belong to V. It follows that W € V,. This is
a contradiction. Thus W cannot be B(BA)%.

(iii) Suppose that W = (BA)*A. If X is any of the first 8 words on the right
hand side in the expression (I) for Y, then BABA(X) < BABA(BABA?) = W and so
BABA(X) € Vs. This gives

BABA(Y) = BABA(BABA? + B*’A®) + Vi € V4
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where Vi € V3. Hence W + BABAB?A® € V;. If A® ¢ B then A® € V, and so
BABAB?A3 € V3. This gives W € V;, which is a contradiction. Thus A3 € B, and
the elements of B are precisely A3 together with all the subwords of W. It follows that
neither A2B nor AB? belongs to B and that AB? = aA® + BABA + V; for some scalars
a, B and some element V, € V,. Hence

BABAB?A® = BAB(aA® + BABA + V,)A® = aBABA® + BBABABA® + BABV,A%.

But BABAS € V3 by the Cayley-Hamilton Theorem, BABABA* € V; because A%
€ V3 (since A* ¢ B) and clearly BABV,A® € V3. Thus BABAB2A® € V,, s0 W € V.
Again this is a contradiction.

(iv) Suppose that W = A(AB)!. If X is any of the first 5 words on the right
hand side in the expression (II) for Z, then A2(X)AB < A (BABAB)AB = W and so
A%(X)AB € Vg. This gives

A%(Z)AB = A>(BABAB + BAB?A + B’A’B + B*ABA+ B®A>)AB + V, € V,
where V) € V3. Hence
W + A’BAB?A’B + A’B?A’BAB + A’B2ABA’B + A’B3A®B ¢ V;.

None of A*, A3B, A’B? ABA? AB? can belong to B since each has a proper sub-
word which is not a subword of W. In particular, A% A%B € V; and AB? = A3
+ BA’B + YABA + V; for some scalars «, 3,7 and some V; € V,. Thus

A’B(AB*)A’B = A’B(aA®+ BA’B + YABA + V,)A’B
= aA’BA®B + 5(A’B)® + yA’BABA®B + A’BV,A’B.

Since ABA? = 6A?BA + V; for some scalar § and some V3 € Vs,
(A’B)® = A(ABA*)BA’B = A(6A’BA + V;)BA’B = §A*BABA’B + AV;BA’B € Vs,

since A’B € V3. Using the fact that A3B € V; once again together with the Cayley-
Hamilton Theorem gives that A2BAB?A?B € V.

Finally note that

A’B’A’BAB = A(AB*)A’BAB = A(aA® + BA’B + YABA + V;)A’BAB
= qA®*BAB + BA*BA’BAB + yA*BA®*BAB + AV,A’BAB € V;

and

A’B’ABA?B = A(AB*)AB*ABA’B = A(aA® + BA®B + YABA + V,)ABA®’B
= aA°BA’B + BA’BABA’B + y(A’B)® + AV, ABA’B € V4,
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using the Cayley-Hamilton Theorem and the facts that A3B € V3, (A%2B)3 € V;. This
now gives W € Vs which is a contradiction. Thus W cannot be of the form A(AB)*.

(v) Suppose that W was the word (A2B)3. In the expression (I) for Y, the first 7
words on the right hand side are less than the eighth BA2BA. If X is any one of these
seven, A%(X)AB < A2(BA?BA)AB = W, s0 A*(X)AB € V;. Thus

AX(Y)AB = A%(BA2BA + BABA? + B2 A®)AB +V € Vs

where V € Vs. Hence W + A2BABA®B + A’B?A'B € V;. If A% ¢ B then A3 € V,, so
both A2BABA®B and A2B?A*B belong to Vg, and it follows that W € V,. This is a
contradiction. Thus A% € B and B consists precisely of A% together with all the subwords
of W. In particular, A%, A3B ¢ B so A* A3B € V,. From the former it follows that
A?B2?A%B € V; and from the latter that A2BABA®B € Vg. It then follows that W € V.
Again, this is a contradiction. Thus W cannot be (A2B)3.

The proof that W cannot be (ABA)3 is similar to the above.

(vi) Suppose that W = (ABA)3. Note that if X is any one of the first seven words
on the right hand side in the expression (I} for Y, then

A(X)ABA < A(BA2BA)ABA =W,

so A(X)ABA € Vg. It follows that W + ABABA®BA + AB?A*BA € V;. Again, A®
must belong to B and A% A%B ¢ B, so A*, A3B € V;. From the former it follows that
AB2A*BA € Vs and from the latter that ABABA3BA € V. It then follows that W € V.
Again, this is a contradiction. Thus W cannot be (ABA)3.

(vii) Suppose that W = (BA?)3. We use the same Y and note that

BA?(X)A < BAX(BA2BA)A =W,

so BA%(X)A € Vs, if X is any one of the first seven words on the right hand side.
This gives W + BA’BABA3 + BA’B?A* € V; and again, A> € B and B con-
sists precisely of A3 together with all the subwords of W. In particular, A* ¢ B
so A* € V; and BAZB?A* € V3. Also (using the fact that AB> ¢ B) BAB
= aA3 + BA’B + YABA + §BA? + V for some scalars o, 3,7,6 and some V € V,.
Then

BA?(BAB)A® = BA*(aA® + BA’B + YABA + 6BA* + V) A?
= aBA® + BBA*BA® + yBA’BA* + 6BA’BA® + BA>VA3 € V;

(since A* g B implies that A* € V;). Againit follows that W € Vs. This is a contradiction
so W cannot be (BA?)3.
The proofs that W cannot be (AB?)3,(BAB)3 or (B2A)3 are similar to one another.
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(viii)  Suppose that W = (AB?)3. In the expression (II) for Z the first 6 words
on the right hand side are less than the seventh BAB?A. If X is any one of these six,
AB(X)B%* < AB(BAB?A)B?* = W, so AB(X)B? € V3. Thus

AB(Z)B? = AB(BAB?A + B’A’B + B’ABA + B*A*)B*> + V € V4
where V € V3. Hence
W + AB3A’B® + AB*ABAB? + AB*A’B? € Vs.

Since AB?A is a subword of W it belongs to B. In fact AB?A is the smallest word of
length 4 in A and B which belongs to B. Indeed, none of A%, A3B, A2BA, A2B2, ABA?
can belong to B because each has A? as a proper subword, and A? is not a subword of
W (see remark (b) above). Also, ABAB ¢ B since ABA is not a subword of W. Thus,
A?B? and ABAB both belong to Vs. It follows that

AB3A’B®, AB3ABAB?, AB*A’B? € V;

and that W € V;. This is a contradiction so W cannot be (AB?)3.

(ix) Suppose that W = (BAB)3. Using Z as above, we have (X)B’AB
< (BAB%A)B%AB = W, so (X)B%AB € V4, for any of the first 6 words X on the
right hand side of the expression (II) for Z. This gives

W + B2A’B*AB + B’ABAB*AB + B*A’B?AB € ;.

By exactly the same argument as in the proof of case (viii) immediately above, both
A?B? and ABAB belong to V. It follows that

B?A’B3AB, B*ABAB?AB,B3*A’B%*AB € V;

and that W € V5. Again, this is a contradiction so W cannot be (BAB)3.

(x) Suppose that W = (B%A)3. Using Z as above, we have B(X)B?A
=< B(BAB?A)B*A = W, so B(X)B%A € Vs, for any of the first 6 words X on the
right hand side of the expression (II) for Z. This gives

W + B%A%’B3A + B*ABAB?A + B*A2B%A € V.
Once again, both A2B? and ABAB belong to V; so
B3A’B®A, B’ABAB?A, B*A’B?A € V;

and W € V;. This is a contradiction so W cannot be (B%A)3.
This completes the proof of the theorem. 0
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