
1
Introduction

You have some data. You have trained a model. The results are below of what
you need. You believe more work should help. Now what? You can try to
improve the model. You can try to collect more data. Both are good avenues
for improved results. A third avenue is to modify the features to better capture
the nature of your problem. This process, feature engineering (FE), is partly an
art and partly a palette of tricks and recipes. In the following chapters, I hope
to expand your palette with new ideas to improve the performance of your
machine learning solution.

To understand the importance of FE, I would like to draw an analogy to the
techniques for solving word problems covered in mathematics textbooks. Take
the following problem:

A dog runs at 10 mph back and forth between two spouses while they run into each
other for 100 feet at 5 mph. What is the total distance the dog runs?

Depending on the framing, solving this problem requires an integral (adding
all the distances run by the dog) or elementary school arithmetic (calculating
the time it takes the spouses to meet and the distance travelled at the dog
speed for that period of time). The importance of framing is easy to overlook
and hard to teach. Machine learning (referred as ML throughout this book)
encounters a similar situation: most ML algorithms take a representation
of the reality as vectors of “features,” which are aspects of the reality
over which the algorithm operates. First, choosing the right representation
is key. Second, sometimes the features can be preprocessed outside of the
algorithm, incorporating insights from the problem domain to better solve
it. This type of operations, FE, tends to bring out performance gains beyond
tweaking the algorithms themselves. This book is about these techniques and
approaches.

3

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

4 1 Introduction

Book Structure. This book is structured into two parts. In the first part, I†

have sought to present FE ideas and approaches that are as much domain
independent as FE can possibly be. The second part exemplifies the different
techniques as used in key domains (graph data, time series, text processing,
computer vision and others) through case studies. All the code and data for
these case studies is available under open-source licenses at

http://artoffeatureengineering.com

This chapter covers definitions and processes. The key to FE is expanding
the ML cycle (Section 1.3.1) to accommodate FE (Section 1.3.2) and, among
other things, to include a data release schedule to avoid overfitting, a matter
of evaluation (Section 1.2). Two types of analysis are central to this cycle, one
to be done before the ML starts (Exploratory Data Analysis, Section 1.4.1)
and another one after one ML cycle has concluded (Error Analysis, Section
1.4.2), which will inform the next steps in your FE process. Then we will
look into two other processes related to FE: domain modelling, which helps
with feature ideation (Section 1.5.1) that then results in different techniques
for feature construction (Section 1.5.2). The chapter concludes with general
discussions about FE particularly where it falls with respect to hyperparameter
fitting and when and why to engage in a FE process (Section 1.6).

Chapter 2 discusses FE techniques that modify the features based on their
behaviour as a whole. Techniques such as normalization, scaling, dealing with
outliers and generating descriptive features are covered. Chapter 3 deals with
the topic of feature expansion and imputation with an emphasis on computable
features. Chapter 4 presents a staple of FE: the automatic reduction of features,
either by pruning or by projection onto a smaller feature space. Chapter 5
concludes Part One by presenting advanced topics, including dealing with
variable-length feature vectors, FE for deep learning (DL) and automatic FE
(either supervised or unsupervised).

Part Two presents case studies on domains where FE is well understood and
common practice. Studying these techniques can help readers working on new
domains where the domain lacks such maturity. Neither of the case studies is to
be taken as comprehensive instructional material on the domain; you would be
better served by specific books on each domain, some of which are mentioned
at the end of each chapter. Instead, the case studies are intended to help you
brainstorm ideas for FE in your domain. As such, the nomenclature used might

† FE has plenty of topics still left open for debate. I have tried to separate my opinions from more
established topics by using first person singular in cases where I felt you might want to take my
comments with extra care. The use of first person singular is not to be less welcoming, it is to
warn you to be specially critical of what you are about to read.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

http://artoffeatureengineering.com
https://doi.org/10.1017/9781108671682.003

1 Introduction 5

differ slightly from what is usual for each domain. A contribution of this book
is also a dataset shared by the first four chapters specifically built to teach FE,
which contains graph data, textual data, image data and timestamped data. The
task is that of predicting the population of 80,000 cities and towns around
the world based on different available data, and it is described in detail in
Chapter 6. The domains studied are graph data, timestamped data (Chapter
7), textual data (Chapter 8), image data (Chapter 9) and other domains in
Chapter 10, including video, geographical data and preference data. The chap-
ters refer to accompanying source code implemented as Python notebooks;
however, studying the code is not required to understand or follow the case
studies.

How to Read this Book. This book has been written with practitioners in
mind, people who have already trained models over data. With such readers in
mind, there are two different situations this book can help you with:

You want to get better at FE. You have done some light FE and felt your
efforts were lacking. A full light reading of Part One will give you fresh ideas
of things to try. Pay special attention to the cycle proposed in Section 1.3.2 in
this chapter and see if it makes sense to you. You could adapt it or develop your
own cycle. It is good to have a process when doing FE; this way you can decide
when to stop and how to allocate efforts and evaluation data. Then, move to
Part Two and tear apart the case studies. The work presented in Part Two is
intended to get the conversation started; your own opinions on the data and
domains should give you plenty of ideas and criticism. I disagree with many of
my own decisions in each of these case studies, as shown in the postmortems.
Enticing you to come up with better ways to approach the case studies could
be your fastest route to excel at FE. Hopefully, you will feel energized to give
your ideas a try on the datasets and code released with the book.

You have a dataset and problem and need help with FE for it. This requires
more precise reading of specific sections. If your domain is structured,
approach the case study in Chapter 6 and read the linked material in Part One
as needed. If your domain is sensor data, look at Chapter 9. If it is discrete data,
look at Chapter 8. If it has a time component, look at Chapter 7. Alternatively,
if you have too many features, look at Chapter 4. If you feel your features have
a signal that is poorly captured by the ML algorithm, try a feature drill-down
using the ideas in Chapter 3. If the relation of a feature value to the rest of
the values and features might be important, look into Chapter 2. Finally, if you
have variable length features, Section 5.1 in Chapter 5 can help you.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

6 1 Introduction

Background Expected from the Reader. ML practitioners come from a
variety of backgrounds. The same can be said about ML researchers, which
in turn means a wide variety of methods in existing work. There are many
techniques that require advanced mathematics to understand them but not
necessarily to use them. The explanations in these pages try to stay away from
advanced topics as much as possible but the following subjects are assumed:
knowledge of ML algorithms (decision trees, regression, neural networks, k-
means clustering and others), knowledge of linear algebra (matrix inversion,
eigenvalues and eigenvectors, matrix decomposition) and probability (corre-
lation, covariance, independence). The last section of the chapter contains
pointers to material suitable to cover these topics, if needed. Practitioners tend
to be very strategic with their learning as their time is limited. Many of the
techniques described in this part exceed this basic background. If the technique
ends up in your critical path, references to all the source material are included
in case you need to drill down deeper.

Throughout the book, I use the following abbreviations: ML for machine
learning, NN for neural networks, IR for information retrieval, NLP for natural
language processing and CV for computer vision.

1.1 Feature Engineering

The input to a supervised ML system is represented as a set of training
examples called instances. Each instance in a classification or regression
problem has a target class, or target value, which can be of discrete size
(classification) or continuous (regression). This discussion refers to target class
and classification but it also applies to target value and regression. Besides its
target class, each instance contains a fixed-size vector of features, specific
information about the instance that the practitioner doing ML expects will be
useful for learning.

When approaching a ML problem, target classes and instances are usually
given beforehand as part of the problem definition. They are part of what I
call raw data (other authors use the term variable134 or attribute vs. feature
to make a similar distinction). Such raw data is normally the result of a data
collection effort, sometimes through data collection hooks on a live system,
with target classes obtained from the system or through human annotation
(with suitable guidelines262 and cross-annotator agreement57). Features them-
selves are not so clear cut, going from raw data to features involves extracting
features following a featurization process (Section 1.5.2) on a data pipeline.
This process goes hand in hand with data cleaning and enhancement.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.1 Feature Engineering 7

Distinguishing raw data from features makes explicit the modelling decision
involved in picking and assembling feature sets. If the raw data is tabular,
each row can be an instance and there would be a temptation to consider
each column a feature. However, deciding which columns are features and
what type of preprocessing (including clustering, etc.) ought to be done
on them to obtain features is a task closely tied to the problem sought to
be solved. These decisions are better addressed through exploratory data
analysis (Section 1.4.1), and featurization (Section 1.5.2). Therefore, a feature
is defined as any value that can be computed from the raw data for the purpose
of modelling the problem for a ML algorithm.51 What makes good features
and how to come up with them is discussed in the domain modelling section
later in this chapter (Section 1.5.1).

The distinction between raw data and features is key and it enables the
type of decisions behind successful FE. In the second part of the book,
we will study examples where raw data includes graphs with hundreds of
thousands of nodes, texts with millions of words and satellite images with
hundreds of millions of pixels with features such as the average population
of cities in a given country or whether the word “congestion” appears in
a text.

Given these definitions, we are ready to define FE. The term means slightly
different things for different people and I have not found an existing definition
that captures the intuitions followed in this book. I therefore wrote my own
definition, which follows, but beware the term might mean different things to
other practitioners:

Feature engineering is the process of representing a problem domain to make it
amenable for learning techniques. This process involves the initial discovery of
features and their stepwise improvement based on domain knowledge and the
observed performance of a given ML algorithm over specific training data.

At its core, FE is a representation problem,51 that is, it is the process of
adjusting the representation of the data to improve the efficacy of the ML
algorithms. It uses domain knowledge195 and it might also use knowledge
about the ML method itself. It is difficult, expensive and time consuming.

FE is referred to by many names, such as data munging or data wran-
gling, 49 or sometimes as a synonym of feature selection (which is of course
limiting, as discussed in Section 4.1, in Chapter 4).

In the words of Jason Brownlee:51

[Feature engineering] is an art like engineering is an art, like programming is an
art, like medicine is an art. There are well defined procedures that are methodical,
provable and understood.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

8 1 Introduction

I follow other authors132 in considering FE as an encompassing term that
includes feature generation (producing features from raw data), feature trans-
formation (evolving existing features), feature selection (picking most impor-
tant features), feature analysis (understanding feature behaviour), feature
evaluation (determining feature importance) and automatic feature engineering
methods (performing FE without human intervention). Note that in many
circumstances, the term “feature engineering” will be used as a synonym for
only one of such activities.

Examples of FE include normalizing features (Section 2.1 in Chapter 2),
computing histograms (Section 2.3.1), using existing features to compute new
ones (Section 3.1 in Chapter 3), imputing missing features (Section 3.2),
selecting relevant features (Section 4.1 in Chapter 4), projecting the features
into a smaller dimension (Section 4.3) and the rest of the techniques discussed
in this book.

There is wide consensus in the field that FE is the place to add domain
knowledge49,341; therefore, half this book describes FE in the context of
domains where it is understood to be a key ingredient in learning. For example,
realizing that certain feature values are not useful after a threshold (Section 6.4
in Chapter 6), or computing averages that take into account the cyclic nature of
the data (Section 7.3 in Chapter 7) or grouping together words that start with
the same letters (Section 8.5.2 in Chapter 8). Even custom signal processing
(Section 9.8.1 in Chapter 9) is an example of using domain knowledge to
modify the feature representation to present to the ML algorithm.

In the words of Yoshua Bengio:337

Good input features are essential for successful ML. Feature engineering is close to
90% of effort in industrial ML.

These intuitions can also be captured at the feature ideation level, as discussed
in Section 1.5.1. For example, if you think that emails that include a person in
their lead photo convert better (i.e., they generate more sales), you can create a
binary feature that records whether a person appears in the lead photo (how to
compute such a feature is a different problem and you might need to rely on a
separate ML system for it). You (if you are a domain expert) or consulting
with a domain expert can provide information about the need to expand
your available raw data. For example, if there are reasons to believe power
consumption may be related to server outages in a data centre, you might
want to request measurements for power consumption begin to be recorded
and made available for learning and so on. As part of the FE process, the raw
data should be transformed into features highlighting their relation to the target
class (e.g., transform weight into BMI171 in a health assessment task).

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.1 Feature Engineering 9

In the words of Andrew Ng:337

Coming up with features is difficult, time-consuming, requires expert knowledge.
“Applied machine learning” is basically feature engineering.

FE is sensitive to the ML algorithm being used as there are certain types of
features (e.g., categorical) that fare better with some algorithms (e.g., decision
trees) than others (e.g., SVMs). In general, the hope is that better features will
improve the performance of any ML algorithm but certain operations are more
useful for certain algorithms. Whenever possible, I have tried to signal them
throughout the book.

The reasons for doing FE are usually reactive: an initial transformation of
the raw data into features (featurization) did not render the expected results
or did not render results good enough to put them into production use.
At this stage, it is common to embark on what I call model shopping, or
what has been called by other authors data dredging204 or a random walk
through algorithm land, 193 that is, to try different ML algorithms without
much intuition, just out of convenience with the ML software package. In
general, the difference between ML models with similar possible decision
boundaries is not substantial and after repeating this process a number of times,
the chosen algorithm will most definitely overfit (even when doing cross-
validation because the model will not be overfit but the decision of picking
the model will be too tied to the training data). In my experience, a well-
orchestrated FE process can highlight much value in the raw data, sometimes
even driving its expansion (for example, adding geolocation by IP49).

In the words of Pedro Domingos:84

. . . some machine learning projects succeed and some fail. What makes the
difference? Easily the most important factor is the features used.

A separate reason to do FE is to put the features into a more understandable
light from a human perspective, with the purpose of having interpretable
models. Such is the case when doing inference rather than prediction.

There are two other, more abstract, reasons. First, as Dr. Ursula Franklin
said on her 1989 CBC Massey Lectures,310 “Tools often redefine a problem.”
FE allows to maintain a focus on problem-solving grounded in the domain
at hand. ML does not exist in isolation. Second, having a suitable toolbox
can prove to be a phenomenal boost in self-confidence, a fact highlighted by
Stephen King in his non-fiction work On Writing: 183

[C]onstruct your own toolbox [. . .] Then, instead of looking at a hard job and
getting discouraged, you will perhaps seize the correct tool and get immediately to
work.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

10 1 Introduction

Finally, many types of raw data require significant FE before they can be used
with ML. The domains in Part Two fall into this category. The same goes for
raw data with very large number of attributes.

I will conclude with a quote from Dima Korolev regarding over-
engineering:72

The most productive time during the feature engineering phase is spent at the
whiteboard. The most productive way to make sure it is done right is to ask the
right questions about the data.

1.2 Evaluation

Before looking into ML and FE cycles, let us spend some time looking into the
issue of evaluating the performance of your trained model. They say it is better
to crawl in the right direction than to run in the wrong one. This applies also to
ML. How you will evaluate your trained model has deep implications on your
choice of model and the type of FE you can perform. Centering the evaluation
metric decision based on which metrics are easily available in your ML toolkit
can be a great mistake, particularly as many toolkits allow you to plug in your
own metric.

We will briefly discuss metrics next, about which many books have
been devoted.169,350 We will then look into how cross-validation relates to
evaluation (Section 1.2.2) and at issues related to overfitting (Section 1.2.3),
before concluding with a discussion about the curse of dimensionality.

1.2.1 Metrics

As part of the problem definition, it is important to spend some time thinking
about the different metrics that will be used to evaluate the results for a
trained algorithm. The metrics are deeply tied to the underlying use for which
you are training the model. Not all errors will have the same impact on
your application. Different metrics can penalize specific errors differently.
Familiarizing yourself with them can help you pick the right one for your
task. We will start by looking into metrics for classification before discussing
regression metrics.

A great way to understand errors and metrics is through a contingency table
(also known as a cross-classification table), which for the case of predicting a
binary class becomes the following:

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.2 Evaluation 11

Real
+ –

Predicted + true positives false positives
– false negatives true negatives

In general, it is good to distinguish false positives (type I errors), where the
system is predicting something that it is not there, from false negatives (type
II errors), where the system is missing to identify something that it should.
Certain applications are more tolerant of one type of errors over the other.
For example, prefiltering data can be quite tolerant of type I errors. On the
other hand, an application that decides to single out a person for shoplifting,
however, will have very little tolerance for type I errors.

Measuring how many times a classifier outputs the right answer (accuracy,
true positives plus true negatives over the total number of points) is usually not
enough, as many interesting problems are very biased towards a background
class (and thus true negatives will dominate the computation). If 95% of the
time something does not happen, saying it will never happen will make you
only 5% wrong, but is not at all a useful classifier.

Type I and type II errors are usually summarized as ratios. For instance,
the number of true positives over the total number of labelled examples.
This metric has received many names including precision or PPV (positive
predictive value):

precision = |correctly tagged|
|tagged| = tp

tp + fp

Alternatively, you can focus on the false negatives. This metric is called recall,
TPR (true positive rate) or also sensitivity:

recall = |correctly tagged|
|should be tagged| = tp

tp + f n

This metric will give you an idea about whether the system is missing many
labels.

Other metrics can be so defined, for example, NPV (negative predictive
value) and TNR (true negative ratio). If you need to have only one metric that
summarizes both numbers, you can take a weighted average of them, what
is called the Fβ -measure, where the β tells you whether to favour precision
rather than recall:

Fβ = (1 + β2) · P · R

β2P + R

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

12 1 Introduction

Setting β to 1 renders the metric as F1 or simply just F and that favours
both metrics equally (2PR/P+R). Another popular metric to summarize the
behaviour is area under the ROC curve (AUC-ROC), that is, the curve under
a recall vs. false positive rate (1-TNR) plot obtained by varying sensitivity
parameters of the model.

Note that using F2 versus using F1 might significantly change the results
of your evaluation. If you know nothing about your task, you can use F1,
but the more you know, the better metrics you can use (or even design). For
example, in the question answering competition TREC, the script distributed
by the organizers53 computed a whopping 36 metrics on the results. Focusing
only on one metric is usually preferred by higher-level decision makers, but
as a practitioner working closely with ML algorithms and source data, you
will be better served to consult a variety of metrics in order to build a better
understanding of the behaviour of the trained model. Ultimately, I advocating
for a full-fledged error analysis process (Section 1.4.2).

When comparing multiple annotations, as when having multiple annotators,
metrics for inter-rater reliability can be used, for example Fleiss’ kappa,108

which measures the agreement that can be achieved above chance and the
numerator measures the agreement actually observed above chance.

For regression problems, the error can be measured as a difference, but
in that case negative errors might cancel with positive errors. Therefore, it is
necessary to take the absolute value of the error. However, the absolute value
does not produce a continuous derivative, and thus, it is customary to use the
square of the errors instead, the mean squared (MSE). To have the metric in
the same units as the original signal, you can take the square root of the mean
of the squared errors, obtaining the RMSE. Other ways to weigh the errors
are possible but less common. For example, you can use another exponent
instead of powers of 2, or you can weigh negative errors different than positive
errors. Note that the requirement of a continuous derivative is important if you
are using the error directly as part of the optimization process of your ML
algorithm (for example, to train a neural network). You can also use an error
metric for algorithmic purposes and another to evaluate your results and see
whether they are fit for their underlying purpose (utility metrics).

Finally, the metrics discussed before all deal with averages and try to
summarize the behaviour of the model on its most representative case. Nev-
ertheless, that does not address the variance of the results. This topic is well
studied in ML, where we talk about the bias (learning the wrong thing; errors
due to limitations of the model) versus variance (learning scattered points;
errors due to finite data sampling and different samples produce different
models).84

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.2 Evaluation 13

1.2.2 Cross-Validation

Cross-validation is a technique to deal with small datasets in model evaluation
by reducing the loss of data allocated to testing the model. In general, this
is done due to a lingering feeling that testing data is “wasted” as it is not
used to estimate the parameters of your model. However, keeping data aside
to understand how well your trained ML model performs on production is
definitely more valuable than the marginal changes to the model that data will
produce: if 20% more data produces drastic changes, then your model is not
stable, and you do not have much of a model, really. Basically, you will be
better served by a simpler model with fewer parameters that behaves in a stable
fashion over your available data.

Moreover, the value in executing your model on test data goes hand in
hand with using your model as a component inside a larger solution. A
good understanding of how well your model performs on unseen data might
enable you to address many of the model’s shortcomings with business logic
outside the model itself. Would you rather have a model that has a 5% lower
RMSE but fails in obscure, not understandable ways, or one where its errors
are understood, signed off and accepted by its potential users and clearly
communicated to them? (Of course, if you do not know how either model
behaves, you will choose the one with lower RMSE but I am trying to argue
for deeper understanding of the behaviour of the models.) The process for
leveraging the test data to gain such rich insights is called error analysis and it
is discussed in Section 1.4.2.

In cross-validation, the rationale is to split the training data into N parts,
taken at random. The system is then trained and tested N times: for each fold,
the remaining N − 1 folds are used to train a model, which is then used to
predict labels or values on the selected fold. In certain domains, care has to
be taken when splitting the data so that each fold contains a full view of the
data, and then the splitting is random over sets of instances rather than over all
instances. For example, if training over multiple rounds of user logs, all rows
for the same user should fall into the same fold. Otherwise, the evaluation will
not be representative of the behaviour in production. Also, care should also be
taken that all labels appear in the train set.

At the end of the process, the evaluation metric or metrics can be computed
over the full, labelled dataset (micro evaluation) or as the average of the
evaluation metrics over each fold (macro evaluation). I personally prefer micro
evaluation as it does not depend on the number of folds but the variance of
the macro evaluation is a good estimator of the stability of the model over the
available data.42

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

14 1 Introduction

1.2.2.1 Out-of-Fold Estimation
A great use of cross-validation, which is needed by many techniques presented
in this book, including the case study in Chapter 6, is to use the fold system
to compute feature transformation estimates that depend on the target variable.
Without the use of cross-validation, such estimates constitute what is known
as a target leak, a poorly constructed feature where the target class has
been made available by mistake to the ML algorithm. Such target leaks are
usually very unfortunate. The too-good-to-be-true evaluation numbers could
get communicated widely before the target leak is discovered when trying to
implement the production code that makes use of the model (“What do you
mean I need the attrition rate to compute this feature? I don’t know the attrition
rate, that’s why I’m calling your model!”). This technique of using folds for
estimating feature transformation that require the target variable is known as
out-of-fold estimation, and it is so common that it is abbreviated as OOF. Be
careful to use a large number of folds, so as to have estimates that are stable
enough. For an example, see Section 6.4 in Chapter 6.

1.2.3 Overfitting

Overfitting is a well-studied topic in ML. It is well-addressed in existing
general ML books234 and it is central to FE. When doing ML, we care about
fitting a model to existing data, with the purpose of generalization, that is,
extrapolation. Overfitting happens when the model follows too closely to the
original training sample and it fails to generalize. It is the reason we always
use a separate test set when training supervised learning models. Evaluating
the train set will provide a view of the results that is too optimistic and not
representative of the behaviour on new data.

Now, the training data and test data all constitute a sample of the overall
population over which we plan to use the model. Sometimes, through a series
of training and evaluation steps, we might gain insights about the full sample
that will lead to overfitting of the ML process, not just on the testing-on-train-
data sense but on trickier ways, such as choosing suboptimal models, model
parameters or, central to this book, features that accidentally perform better on
the sample but will underperform when applied over the actual population.

For example, imagine if you are trying to predict whether a drug will
produce an adverse reaction and a patient should discontinue its use. Training
data was collected during the winter and one of the questions asked was
whether the patient was thirsty frequently. This question proved to be a very
informative feature. You might encounter that this is positive (i.e., that the

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.3 Cycles 15

feature fires) much more often during the summer months, producing many
false positives in production. At that stage we can conclude the model features
were overfit to the test set.

A common misconception that I have heard from practitioners of all levels
of expertise is that cross-validation is not prone to overfitting as compared
to using a held-out set. That is, of course, not true; if you quiz your data
repeatedly, your results get tuned to the sample rather than the overall
population. That is well understood in statistics and there are techniques like
the Bonferroni correction95 that says roughly that if you use the same data
to answer N questions, the statistical significance threshold has to be reduced
substantially, as much as dividing it by N (making rejecting the null hypothesis
much harder and therefore requiring much more extraordinary evidence for
significance). I have not yet encountered a similar principle for FE, but as
I advocate in the next section to use a held-out set only once, the issue falls
into a matter of personal taste.

1.2.4 Curse of Dimensionality

Care must be taken when designing feature sets to escape the curse of dimen-
sionality. The main issue with higher-dimensional spaces is that everything
starts to become very close, even if just by chance. That is the case as
meaningful differences on a few key coordinates are drowned over similar
values for the remaining coordinates. Moreover, the more dimensions present
in the data, the more training data needed (a rule of thumb says an absolute
minimum of five training instances per dimension.)84

1.3 Cycles

Given a ML algorithm and some identified features, the parameters for the
algorithm can be estimated from the training data and then evaluated on
unseen data. The purpose of this book is to provide you with tools to perform
several cycles iterating over the process of finding better features, a process
called feature evolution. If the test set is consulted multiple times, that will
lead to overfitting (discussed in detail in the next section), that is, to select
a suboptimal model that appears to perform better than what it will perform
when applied to truly fresh data (which will be tragic when deployed on a
production setting). To avoid this problem, it is of uttermost importance to have
a development test set to use during feature evolution and to leave enough test
data for a final evaluation. Such data might be new, held-out data or freshly

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

16 1 Introduction

acquired data if you are looking into a process that continuously generates
annotated data.49

1.3.1 ML Cycle

Building computer systems that adapt their behaviour based on available
evidence is usually subdivided into several types of problems. By far, the
most common type of ML problem is that of extrapolation of a function. In
this context, extrapolation involves, given some known points of a function, to
predict how the function will behave over a different set of points. This is the
case of supervised learning of classifiers, discussed in the next section.

While supervised learning is the most common problem and technique,
there are other problems and techniques popular within ML (see Table 1.1):
unsupervised learning (which seeks to find structure on unannotated data),
reinforcement learning (which uses delayed feedback to guess annotations
over the data), active learning (that selects which data to be annotated
next) and semi-supervised learning (that mixes annotated and unannotated
data), to name a few. Most of these problems and techniques operate over
representations of reality consisting of feature vectors and can benefit from
the techniques discussed in this book.

At its core, a supervised ML algorithm is defined by a representation
being learned, an objective function to be minimized or maximized and an

Table 1.1. Types of ML.

Learning Type Goal Example/Advantage

Supervised Function extrapolation. Given the behaviour of a website
visitor, determine whether they are
likely to purchase if offered a
coupon.

Unsupervised Find structure in
unannotated data.

Group together different
paradigmatic customer
behaviours in a website, to help
build marketing personas.

Others
Reinforcement Learning from past

successes and mistakes.
Game AIs.

Active Select data to be
annotated next.

Needs less annotation effort than
supervised.

Semi-supervised Mix annotated and
unannotated data.

Needs fewer annotations.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.3 Cycles 17

optimizer that guides the search over the space of potential representations.84

For example, in a decision tree, the representation is the tree being built, the
objective function is a metric of how well the tree splits the training data into
homogeneous sets and the optimizer picks the feature split that improves over
the worse subset. There is a recent trend in moving to an explicit representation
of these three components, led by NN frameworks like TensorFlow.1

The ML cycle presented here (Figure 1.1) follows consensus in the field
but it expands the relation between raw data and featurization. It starts with

Figure 1.1 ML life cycle.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

18 1 Introduction

an exploratory data analysis (EDA), discussed in Section 1.4.1 and numbered
(2) in the figure, on the raw data (1). From the obtained data insights (3), you
ought to be able to pick (4) an ML model (5) in a more informed fashion.
At this stage, the evaluation metrics should also be decided204 (6). With the
model in hand, you can proceed to generate features (8) from the raw data
(7), which is then split (9) into train (10), development (11) and test sets
(12). The train and test sets ought to be completely separated as we want to
know how the model will predict on new data.49 The test set should be at
least 10% of the total data, with some authors204 recommending up to 30%.†

The model can then be trained on the train set (13). The development set, if
any, is used for a hyperparameter search, which is model dependent (14). The
best model from the hyperparameter search is evaluated (16) on the test set
(held-out data). This cycle concludes with a trained model (15) together with
a believable evaluation (17). Note the held-out data can only be used to test the
model once. Resist what has been called “double-dipping the training data,”49

either explicitly or by applying cross-validation repeatedly. If you want to
do several cycles doing variations of different parameters of the algorithm
(or its features, see next section), you should use a different (new) held-out
set. Alternatively, you can use a separate evaluation set (“development test
set”) and acknowledge you will be overfitting your results to that set, before
performing a final evaluation. Such is the approach I advocate for a full-fledged
FE cycle, as discussed in the next section.

The changes from raw data to features plus the different experiments,
datasets being used for evaluation (and, thus, consumed), etc., become the
pedigree of your models. Care must be taken to document this process, for
example, in a log book or lab notebook.204 Without this, for problems that
undergo a long improvement process, it is not uncommon to encounter trained
models that work well in practice and there is no recollection of what data
or exact process was followed to obtain them. Trade speed in executing
iterations with judicious documentation as training a model is something
seldom done once. Always favour reproducible builds over a few extra points
of performance.

1.3.2 Feature Engineering Cycle

My proposed FE cycle (Algorithm 1.1) has an emphasis on building an
understanding of what features work and do not work and having a final

† Very large datasets can get away with using only 1% of the training data, as long it has low
variance. 235

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.3 Cycles 19

evaluation on held-out data (generated in line 1 of Algorithm 1.1). That final
evaluation set has also been called a confirmation set. 204 I am proposing this
methodology as a compromise when no continuous stream of newly annotated
(fresh) data is available. If fresh data is available (or if you can schedule
batches of test data on a data release schedule), you can just cycle through
the whole process altogether; each evaluation on fresh data is equivalent to a
full evaluation. In the proposed framework, the training data is reused on a
number of cycles (line 2 of Algorithm 1.1) and thus risks overfitting. In each
cycle, a fixed development set may be used or a new one split into a train set
and a development set (a bootstrap) can be used. Cross-validation is also an
option but the extra running time might not be worth it, and it complicates the
error analysis. Of course, the decision is yours.

FE is an iterative process where a set of features is defined, experimented
upon, evaluated and refined. As part of that process, training data is consumed
and hypotheses regarding changes to the feature set are built based on the result
of the experiments. For the process to be successful, a stream of unseen data is
needed, otherwise, the hypothesis generated from the experiments might lead
to procedural overfitting, that is, to changes to the feature representation that
will not help in the general case but help for the data analyzed as part of the
FE cycle.

If you do not have enough data, you can use a different split. The FE process
concludes with you building in your mind an understanding of the behaviour
of the features for this data, problem, and ML model.

When doing repeated ML experiments, it is useful to have a development
test set43 – a test set, independent from the train set that is used during
development. This test set is also independent from the final test set. It helps
avoid procedural overfit. This final test speaks better about the generalization
power of the model. While this is a good idea in general, when doing heavy
FE, it is mandatory as the possibility for overfitting when doing FE is greatly
increased.17

FE cycle is not unlike the ML cycle. The key difference is in the type
of processes performed in the cycle: (1) identifying good features and
expanding them17 and (2) identifying redundant/uninformative features
and dropping them. Moreover, it might not be necessary to run the full
train cycle to do this. Sometimes, measuring the correlation between a
feature and the target class is enough, that is, you might want to consider
creating a contingency table for each feature and to look for patterns in that
data.43

Ultimately, I believe that error analysis is the leading force in FE.44 The key
is improving the understanding of each feature, for example, revisiting EDA

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

20 1 Introduction

but this time only for one feature or one feature and the target.72 The final goal
is to have a better framing of the raw data.295

The final output of the FE process is a data pipeline (or two if you do not
have a stream of fresh data) that produces features from data.49† Such pipelines
can be expressed as custom code or through feature manipulation formalisms
such as the ones present in scikit-learn.253

While many quick iterations reduce the need for domain expertise,193 if
you have domain knowledge or access to people who do, this is also a great
moment to incorporate domain knowledge (for example, realizing the category
“late cretaceous” falls into the category “cretaceous”267).

If the FE process was performed without a fresh stream of test data, then
I advocate for the construction of two feature sets, an optimized set (with a
greater risk of overfitting) and a conservative set (maybe worse performing).
In the final evaluation, both feature sets are evaluated separately (lines 5 and 6
in Algorithm 1.1). The conservative set will be used if the optimized set does
not outperform it in a significant manner (line 7 in Algorithm 1.1).

Algorithm 1.1 Feature engineering life cycle. The ML cycle in the loop is the
one in Figure 1.1.
Require: raw_data
Ensure: featurizer, model

1: raw_dataf inal_eval , raw_dataf eat_eng = final_eval_split(raw_data)
2: while not good results do
3: f eaturizerC , modelC , f eaturizerO , modelO =

ML_cycle(raw_dataf eat_eng)
4: end while
5: resultsO = evaluate(modelO , f eaturizerO (raw_dataf inal_eval))
6: resultsC = evaluate(modelC , f eaturizerC(raw_dataf inal_eval))
7: if resultsO > resultsC + δ then return f eaturizerO,modelO

8: else return f eaturizerC,modelC

9: end if

1.4 Analysis

The FE process proposed in the last section is heavily dependent on two types
of analyses described next. Exploratory data analysis (Section 1.4.1) is helpful
to understand the raw data, devise features and select suitable ML algorithm

† Chapter 7.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.4 Analysis 21

and metrics. Error analysis (Section 1.4.2) seeks to understand the strength and
weakness of your feature set to drill down and improve it. Note that there is
a certain analyst bias in any of these tasks. Other practitioners doing similar
analysis might arrive at different results.284

1.4.1 Exploratory Data Analysis

EDA refers to exploratory analysis of the raw data. Even without domain
knowledge,91 it is possible to analyze raw data and extract insights about
the behaviour of the data, particularly as it relates to the target variable. I
am among many authors196,278 who find it to be a necessary ingredient for
successful FE. You want to make sure that you have “rich enough data to
distill meaningful features.”20 A good first step is to analyze the variety of
values the different columns in the raw data take. Descriptive statistics such as
mean, median, mode, extremes (max and min), variance, standard deviation,
quartiles and visualizations such as box-plots are helpful at this stage.239

Columns with very little variability tend to have very little explanatory power
and are better off being ignored, unless the variability is highly correlated
with some values of the target class. Therefore, it is good to plot correlations
between the target variable and different columns. Other things to try include
analyzing how your ongoing conclusions about the nature of the dataset change
as you take different subsamples of the data, particularly samples segmented
by time or type.72 You might also want to check whether certain fields that
look random are actually random by using standard randomness tests.204

Again, random data ought to have no explanatory power and can be discarded.
Outliers can also be found and discussed at this stage (cf., Section 2.4 in
Chapter 2).19 Similarly, you can start looking into missing values, although
you might need to do a full featurization to find ways to deal with them in a
principled way.

From there, you can look into the relationship between two columns or a
column and the target class. Scatterplots help you visualize this graphically.
Another alternative is to use summary tables (also known as pivot tables),
where a categorical column is used to segment the values of a second column.
Each cell in the table contains summary statistics about the values of the second
column that fall into the first category value. If only counts are provided, it
resembles a simplified contingency table, but other summaries (mean, standard
deviation, etc.) are possible.239 Finally, you can compute metrics about the
relationships between pairs of columns by using correlation coefficients or any
of the metrics presented in Section 4.1.1 in Chapter 4.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

22 1 Introduction

If you possess domain knowledge or have access to people who do, this
is a great time to make your assumptions about the domain as explicit as
possible and test whether such assumptions hold on the data at hand. Do you
expect certain distribution of values to follow a normal (or any other given)
distribution? State that assumption and check whether it holds. For example,
using histograms (cf., Section 2.3.1 in Chapter 2) or computing representative
statistics such as skewness, etc. (cf., Section 2.3).19 You do not want to build
heavily on assumptions that ultimately do not hold. All throughout FE, you
need to exercise an inquisitive mindset and drill down on anything that looks
suspicious. If the domain knowledge indicates a certain column ought to
behave in a certain way and it does not, do not let that fact pass by without
further investigation. You might unveil data extraction errors or hidden biases
in the sampling. Or you might just have the wrong domain assumptions that
might have deeper implications than the data columns at hand. This will also
be a good moment to engage in data cleaning, for example, to check that your
values are all in the same units using box-plots.204

Useful tools for EDA include, of course, spreadsheets such as Excel,18

Jupyter Notebooks188 and OpenRefine.316 The latter, formerly GoogleRefine,
can find similar names, bin numerical data and do mathematical transforms,
among many other capabilities.17 You might even want to do a data survey
computing key statistical descriptors following Pyle’s method from chapter
11 of Data Preparation for Data Mining. 263 There are also ways to visualize
observations by looking at multiple variables at once: based on data similarities
(clustering); based on shallow data combination (association rules); and based
on deeper data combination (decision trees).239†

All case studies in Part Two, Chapters 6 to 9 start with an EDA process. For
example, in Chapter 7, we will see a feature heatmap over different versions
of the feature, reproduced here in Figure 1.2. The graph aligns features for
each year, uncovering the story of the data. Missing values are shown in a
checkerboard pattern. The values of the features are clustered into six classes,
represented as different gradations of gray. This allows you to see how the
values of a feature evolve over time. See Section 7.1.1 for further details.

1.4.2 Error Analysis

The previous discussion about approaching the behaviour of the data with
suspicion takes its full force when doing error analysis. Plenty of analysis
can be done with aggregate metrics but I feel that falls in the direction of

† Chapter 5.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.4 Analysis 23

Figure 1.2 Historical features visualization using a feature heatmap (excerpt). The
checkerboard patterns are missing values; the different shades of gray indicate
different quantiles.

evaluation metrics, discussed in Section 1.2.1. To me, error analysis is all
about the parochial, the anecdotal. Focusing on a few cases that capture your
attention for important reasons then biting down on that problem and not letting
it go, going deeper and deeper, trying to assemble a meaningful narrative
behind the reasons why that error came to be. Of course, a great working
understanding of the internals of the ML system helps quite a bit there, together
with appropriate tooling, for example, mechanisms such as TensorBoard.218 In
general, to perform a reasonable error analysis, your ML algorithm will need
to be instrumented so as to generate enough metadata to enable this type of
drilling down. Looking at samples rather than aggregates and being skeptical
are part of what has been referred as “responsible data analysis.”193

For example, the first featurization shown in Chapter 6 has a few cities
that contribute heavily to the overall error. For each of these “problematic”
cities, Section 6.3.1.1 finds the feature that further contributes to the error by
a process of feature elimination, reproduced in Table 1.2. From this analysis,
the conclusion was to dampen the effect of the count features. See Chapter 6
for details.

From a successful error analysis, you might discover that certain features
are hurting performance more than helping it (therefore deciding to incur in a
session of feature selection, cf., Section 4.1, Chapter 4) or that certain features
are really informative,72 in which case you might want to further boost their
signal engaging in some of the feature drill-down techniques discussed in
Section 3.1 in Chapter 3. Single-feature visualization techniques might also
prove useful.352†

† Chapter 2.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

24 1 Introduction

Table 1.2. Ablation study. A 5% sample was retrained while removing one
feature at a time. The highest contributor is listed here.

City Improvement Feature to remove

Dublin 0.85 to 0.6 (29.41%) city?inv#count
Mexico_City –0.53 to –0.92 (–73.81%) seeAlso#3@List_of_tallest_buildings
Edinburgh 0.17 to –0.19 (212.89%) leaderTitle#count
Algiers –1.0 to –1.2 (–15.33%) name#count
Prague –1.3 to –1.7 (–30.56%) seeAlso#count
Milan –0.84 to –1.1 (–30.81%) seeAlso#count
Amsterdam –0.74 to –0.96 (–29.86%) homepage#count
Lisbon –0.6 to –0.88 (–46.54%) seeAlso#3@Belarus
Tabriz –0.75 to –1.2 (–57.17%) seeAlso#count
Nicosia 0.3 to –0.028 (109.40%) country#count

OVERALL –4.5 to –6.3 (–40.69%) seeAlso#count

While you might use specific examples to generate hypothesis for improve-
ment, whether to pursue those hypothesis should be informed by their potential
impact on the whole dataset. Otherwise, you will encounter a situation akin to
optimizing rarely used code.267 Following Amdahl’s law,9 the code that takes
the most time is the code that ought to be optimized the most. In the same vein,
errors that account for more of the performance loss ought to be addressed
first.

When drilling down on errors, use the contingency table (cf., Section 1.2.1),
maybe even on a per-feature basis,43 and remember your chosen metrics for
this problem and domain: if type I errors are more important, drill down more
on them, accordingly.

Also keep an eye out for spotting software errors. As ML produces results
with intrinsic error, debugging ML systems can be very hard. Do not take
behaviour that counters intuition lightly, as it might indicate software bugs
that can be much more easily addressed than ML modelling issues.

Another interesting tool for error analysis is the use of random data
and random models. If your trained model is doing something sensical, it
ought to outperform a random model. If a feature is meaningful, its value
from actual data ought to outperform replacing it with a random value.72

The last approach might help you unveil errors in your data, which can be
particularly difficult to appreciate when you are tunnel focused on your model
errors.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.5 Other Processes 25

1.5 Other Processes

I will conclude this introductory chapter with two highly related processes that
wrap up the FE discussion: domain modelling, which in this book pertains to
how to go from raw data to a first feature set, and featurization (Section 1.5.2),
which deals with feature improvement and drill-down.

1.5.1 Domain Modelling

Domain modelling is separate from featurization to distinguish the more
abstract from the more operational aspects. Representing a domain’s raw data
into features is an inherently creative approach, similar to modelling in any
other area of mathematics and (software) engineering. Modelling and design
in general are matters of decisions and approximations; as such, there is an
inherent imperfection aspect to them. This discussion follows more abstract
concepts while the next section covers more concrete terms, also related to how
to generate follow-up featurizations, that is, featurization when certain features
have already been identified. In the words of Max Kanter and colleagues from
the Featuretools system:175

Transforming raw data into features is often the part of the process that most
heavily involves humans, because it is driven by intuition.

Let us see how to come up with features, and then discuss what makes
particularly good features and list domains with a tradition of successful
featurization. The process of coming up with features, feature ideation, is
closely related to brainstorming, design, creativity and programming in general
and thus benefits from general advice on brainstorming.17,178 There are no
hard truths here, just general guidelines and advice. A usual approach is to
use anything remotely related to the target class as a feature (basically, all
the raw data and variations), in what constitutes a feature explosion. 40 This
rarely works in practice unless the raw data has very low dimensionality (5 or
6 attributes). You will be better off starting with features you believe will have
predictive value.49 But do not let the available raw data constrain you.

A very beneficial approach is also to think of the type of information you
(as a human) would use to make a successful prediction.127 Such “thought
features”72 can unveil a trove of ideas and lead to requests for expansions to
be made to the original raw data. Of course, you do not need to reinvent the
wheel; you can also build on the work of others17 through published papers,
blogs or source code. Post-mortem posts in online ML competition sites such
as Kaggle.com can be very informative. Using features from existing work will

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

Kaggle.com
https://doi.org/10.1017/9781108671682.003

26 1 Introduction

most likely require some feature adaptation21 but it might save you a world of
trial and error. Do not feel constrained by the existing attributes in the raw
data and look to propose features that are computed from existing attributes
(cf., Section 3.1 in Chapter 3, for computable features).

A common oversight at this stage is to forget to reach out to domain
experts for insights on what they would consider good features for this problem
and domain. Here traditional techniques for knowledge acquisition in expert
system can be helpful.52,269

Finally, once you start converging into a feature set, you might want to step
back and start looking for rare new features that can explore other parts of
the problem space.17 The case studies provide an example of this approach:
once a baseline has been established using structured data, we move to look
at a textual description of each city. Another example is presented in Chapter
9, where we move from colour histograms to local textures expressed as the
number of corners in the image (cf., Section 9.6). That might be particularly
productive if your chosen ML model is one based on ensemble learning, like
random forests.48

As you come up with the features, the next question is: what makes for
a good feature? Which one of these potential features should you address
in your first featurizer?41 While any piece of information that is potentially
useful for a prediction may do as a feature,342 you want features with these
three properties:72

(1) Informative, the feature describes something that makes sense to a
human, which is particularly important when doing inference and seeking
out interpretable models, but also for productive error analysis,

(2) Available, the feature is defined for as many instances as possible;
otherwise you will need to deal with missing data (cf., Section 3.2 in
Chapter 3), and

(3) Discriminant, the feature divides instances into the different target
classes or correlates with the target value. Basically, you want to seek out
characteristics of objects that are available, easily modelled and have a
relation to the target being predicted.

In the words of Peter Norvig:

Good features allow a simple model to beat a complex model.250

Moreover, you want them also to be as independent from each other and simple
as possible,127 as better features usually mean simpler models.51 How many
features to extract is also an open question, as ML can be very effective given a

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.5 Other Processes 27

good feature vector.202 In theory, the more features f you have, the more data
you will need to give to your ML to achieve the same error ε, in the order of

O
(

1
εf

)
amount of data.206

You can test your distilled features at this stage with statistical association
tests (like the t-test, building an association table between the feature values
and the target values),23 and, in general, many of the feature utility metrics
from Section 4.1.1.1 in Chapter 4 can be used. If needed, you can revisit
this feature ideation process later on after a few cycles of FE and include
more features. Brink, Richards, and Fetherolf propose49 to start with the most
predictive features first and stop there if they perform well; otherwise, try a
feature explosion and if it does not work, prune the expanded feature set using
feature selection (cf., Section 4.1).

Certain domains have standard representations by now. For new domains,
studying the existing ones might give some ideas and guidance. Such domains
include images, signals, time series, biological data, text data,40 prognosis and
health management,337 speech recognition, business analytics and biomedi-
cal.180 Part Two of this book includes seven domains.

Finally, in term of feature presentation, you want to make sure that related
variables should be contiguous and that you use multiple levels of information
(that is, you split features into sections), if needed.324 This will not affect
the ML but it will help you better visualize the feature vectors and ward off
software errors.

1.5.2 Feature Construction

The last step in the process sketched in this chapter involves the actual
execution of code (the featurizer) that assembles a feature vector from the
raw data. The featurizer is algorithm dependent and it can change the types of
features from the raw data. This process can be as simple as selecting columns
from a DB but as the multiple cycles of FE start piling up, it can get quite
complex. There are some software solutions for this problem (some of which I
have built in the past124) but none that have attracted widespread use as of the
writing of this book.

There seems to be some momentum within the academic community to
express featurization as ETL (extract, transform and load) operations from
data warehousing167 or as SQL stored procedures267 or UDFs (user-defined
functions)10 as a framework to standardize computable features. That seems
like a good idea, as featurization is inherently a data manipulation activity, of
which the DB community has a long and productive history to rely on. It is

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

28 1 Introduction

to expect that somewhat complex operations such as OOF estimation might
become standard operations available in DB systems in the future.

I will now discuss a particular featurization operation, feature templates,
which is usually employed early in the process and important enough to
deserve its own section.

1.5.2.1 Feature Types
Features as defined in Section 1.1 are values of a certain type, as used by
ML algorithms. We will review the following types, as they are accepted by
many algorithms in widespread use: binary, categorical, discrete, continuous
and complex features. Table 1.3 contains examples for each of these feature
types. In this discussion and throughout the book, xi refers to a feature within
the feature vector �x and y refers to the target class or target value.

Binary Features. These are the simplest possible features. They are
features that can take one of two values: true or false, present or absent, 1
or 0, –1 or 1, A or B. They are also known as indicator features. Some ML
models (such as some implementations of maximum entropy164 and certain
SVMs) can only take such features. Many ML models (including SVMs and
logistic regression) can only predict binary targets.

Categorical Features. These are features that can take one among many
values, known as categories, categorical values, or levels. The categories
themselves are known beforehand. In general, there is no ordering among the
different categories. Usually, the categories themselves receive a meaningful
name from the domain. The number of categories tends to be small. That is,
using the whole English dictionary (say, 20,000 categories) as a categorical
feature is possible but models will seldom benefit from such a representation.

Discrete Features. These are features that represent values that can be
mapped to integers (or a subset of them). Because integers have an absolute
order, discrete features are also ordered. Representing large number of categor-
ical features as discrete features is tempting (and many times done in practice),
but leaves the model with a false sense of ordering if the categorical features
do not posses an ordering. For example, what is the meaning of saying that
Visa is less than Mastercard, which is less than American Express?204

Continuous Features. These are features that can be mapped to a real
number (or a non-discrete subset of the real numbers). Ratios and percent-
ages are special subtypes of these features. Due to physical restrictions of
digital computers, all continuous values are actually discrete, represented as
a set of bit values on a particular encoding. While this might sound like a
theoretical point, the representational richness of the internal floating point
implementation might be a key problem with sensor data. You must take care

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.5 Other Processes 29

Table 1.3. Feature types and examples.

Type Description / Note Example

Binary One of two values

simplest

Did the customer leave a tip?
Did the turbine make noise?
Did the student turn in the exam before the
end of the allocated time?
Does the person like cats?
Did the licence plate have a match in the
DMV database?

Categorical One among many
values

values known
beforehand

Colour of the car,
Brand of the car,
Credit card type,
Number of bedrooms (also a number)
Type of mattress (also mattress surface
area)

Discrete Can be mapped to
the integers

order is important

Number of pizzas eaten, Times visited the
gas pump, Times the turbine got serviced
last year, Steps walked last week
(compare: distance walked, which is
continuous), Number of people living in
the house.

Continuous Can be mapped to
a real number

representation
issues

Engine temperature, Latitude, Longitude,
Speech length, Colour intensity at centre
of image, Distance walked, Temperature
at centre of dish (as measured by an IR
camera)

Complex Records, lists, sets

challenging

Date (year, month, day; note that it can be
expressed as number of days from a fixed
date), Product name (it might include
brand, product type, colour, size and
variant), Location (latitude and longitude),
Complaint (a sequence of characters),
Countries visited (it is a set of categories)

to avoid extreme situations; either your values might underflow, with all values
mapping to zero, or overflow, with all values mapping to the maximum possible
value.

As a refresher, floating points are usually represented using the IEEE 754
format, which uses scientific notation, for example, the number 56332.53 is
represented as 5.633253 × 104. The actual representation consists of a sign
bit, a fraction and an exponent. Single precision uses 8-bit exponent and
23-bit fraction, double precision uses 11-bit exponent and 52-bit fraction. Due
to the fraction and exponent behaviour, not all segments of the real line
are sampled at the same resolution. These topics are studied in detail in
numerical analysis courses.123,248

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

30 1 Introduction

Complex Features. Some ML algorithms can process features in what can
be called non-normal form in databases: records, sets, lists. 48,68 Most systems
benefit from decomposing those, and we will see some simple techniques in
Section 3.3 in Chapter 3 and advanced techniques in Section 5.1 in Chapter 5.

1.5.2.2 Feature Templates
Feature templates are small programs that transform raw data into multiple
(simpler) features at once. They have two objectives: first, to present data in
a way better suited for the ML model; and, second, to incorporate domain
knowledge about the nature of the problem. Many of the feature expansion
techniques in Chapter 3 involve feature templates.

For a simple example, consider a date attribute in the raw data. A feature
template can transform it into three discrete features (year, month and day). If
the month itself is meaningful, this transformation will make that information
easily available to the ML. If the original date attribute is expressed as the
number of days counting from a fixed date, the model will have to learn all the
months by itself, which will require substantive amount of training data and it
will seldom generalize.

For a more complex example, consider the keywords4bytecodes project,92

where I seek to predict the name of a Java method based on its compiled
bytecodes. In this task, we could start adding features of the likes of “there is
an iadd operation in the method,” but that is very tedious and labour intensive.
Instead, we can use feature templates to extract features from the data. If we
take a particular instruction (e.g.,“getfield org.jpc.emulator.f.i”)
and generate three features: the instruction (“getfield”), instruction plus
operand (“getfield_org.jpc.emulator.f.i”) and instruction plus
abbreviated operand (“getfield_org.jpc.emulator”), we can obtain
a very large feature set as a first approximation. Further FE will be needed to
reduce the set to a manageable size, if needed.

1.6 Discussion

In this otherwise very practical book, I would like to spend a paragraph on my
opinions of the future of ML and FE. In a similar fashion that it is possible to
trade time for space in many algorithmic problems, using more RAM to speed
up the algorithm, it is my opinion that FE can trade domain knowledge for
training data. Does that qualify for a learning machine? If you are helping the
algorithm so earnestly, it is difficult to argue this is a reasonable direction for
creating artificial minds (I think it is not). The interesting thing about the field

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.6 Discussion 31

of AI is that in many aspects, it defines the boundaries of the computer science
field. In the 1950s, search was squarely part of AI. Finding a node in a tree
was considered an AI problem. Nowadays, nobody will put the two problems
together. In the same vein, empirical nonparametric statistical modelling using
heavy doses of domain knowledge, for example, through FE, might soon be
an accepted method to solve many real-world problems. There are many real-
world problems, such as in medical research, where collecting more data or
wasting data on uninformed models is unacceptable. Whether these techniques
remain to be called ML or not it remains to be seen. This is my view on the
topic, the convergence towards an engineering contribution of the techniques
presented in this book.

Looking ahead to the case studies and Part Two, I would like to reflect
on a few issues that can be distilled from the work presented in those five
chapters. The first is the fact that FE does not always succeed in improving
the performance of the ML process. Embarking on a FE process is prone to hit
dead-ends and regressions, something I have tried to exemplify throughout the
case studies. Omitting the dead-ends and regressions I encountered working
on these datasets would have been straightforward, but it will paint FE in
unrealistic terms. The fact that a particular technique did not work on
a particular problem should not discourage you from trying it in your
problem. The techniques showcased are valuable tools with a long track
of success in the field.

Second, there is the intertwining of FE and ML algorithm optimization,
where ML optimization includes choosing the algorithm and tuning its hyper-
parameters. For the sake of covering more FE techniques, the case studies did
not drill down into the ML algorithm optimization topic. Many applied ML
books cover that topic quite well. The finer details of hyperparameter tuning
jointly with FE are left cursorily discussed in the case studies. This issue is not
only about obtaining better ML results. It does change the potential direction
on which the FE process revolves around, as it changes the errors made by the
ML. If the ML results change, it requires redoing error analysis. Thus, error
analysis for FE should be done at key points were the ML algorithm and its
hyperparameters have been determined to have reached a local optimum.
And no technique can be expected a priori to consistenly outperform other
techniques, what is called normally a “no free lunch” theorem.332

This brings us to the last topic I want to discuss: the human-in-the-loop
nature of the FE process and experimental turnaround delays. When doing
experiments for a publication or R&D for a production system, I would
leave a hyperparameter search running for a week or use a cluster with
hundreds of cores to speed it up. In a book format, my target has been to

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

32 1 Introduction

have all case studies for a chapter run in a day, two days tops. Given the
number of featurizations explored per chapter, that has limited the exploration
of hyperparameters, as mentioned. But there is another, deeper issue with
experimental turnaround time.† It has to do with the mental focus of the
practitioner. If the experimental turnaround time is in the order of minutes,
then you can wait, see the results and proceed. Larger turnaround times will
imply a context switch on your side. You will go work on something else for
the period of time that the ML training and tuning takes place. The longer the
turnaround, the harder it will be to reconnect with your own thoughts and ideas
regarding the FE process at hand.

Luckily, many of the FE tasks can build on work from earlier versions.
As hinted in Section 10.1 in Chapter 10, it is possible to reuse computation
successfully in FE. Some recent work on this direction includes systems built
by Anderson and Cafarella10 that adapt DB technologies to detect the parts of
the train set changed by a proposed FE operation. Their system then updates
a trained ML model only over those values. This requires ML models that
are updateable and will not work on techniques like dimensionality reduction
that produce substantive changes to the training data but it is an exciting new
development in the field.

I would like to close with the following advice: try simpler ideas first. In
the case of FE, that means not doing any FE at all. If your problem is similar
to problems successfully addressed by DL and you have comparable training
data, start with DL. If you do not have enough training data but can adapt
pretrained models, then also try DL. If DL fails for you or you do not expect it
will work given your problem and data size, then try AutoML frameworks such
as Featuretools (discussed in Chapter 5, Section 5.4.1.2). At that stage, you
can start FE, maybe on top of DL pretrained feature extractors and/or AutoML
features. And do not forget to reach out to domain experts. They can save you
tons of time and training data. Good luck, and I look forward to hearing about
your experiences with feature engineering!

1.7 Learning More

FE is not covered in depth in regular ML books. Luckily, new books are being
published that focus primarily on FE, some of which we will talk about here.

† This discussion is informed by a debate I had with Dr. David Gondek in 2015. He was arguing
the ideas I talk here. At that time I was arguing against them. It took me some time to come
around. Thank you, David.

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

1.7 Learning More 33

One of the earlier books is Alice Zheng’s Mastering Feature Engineering, 351

which puts forward a mathematical formalism focusing in feature selection.
It does a very good job explaining very complex mathematical concepts to a
general public. The book has been expanded with the help of a coauthor, with
more introductory chapters suitable for data science bootcamps (the book also
has an emphasis on linear methods).352 I highly recommend their appendix
on linear algebra if you are missing that background, as the presentation is
excellent and it is written from a FE perspective. The PCA chapter is also a
great resource. Regarding the rest of the book, the emphasis on linear methods
enables clear intutions but it concerns me that some of their intuitions only
hold for linear methods and that might be lost to beginners. You might want to
be extra careful and double-check their assumptions when reading it.

Dong and Liu132 present a larger body of work than this current book,
including 14 chapters authored by almost 40 different authors. It includes
separate chapters on featurization for common data types (similar to the case
studies in Part Two, but only focusing on featurization) and three case studies
(without source code) on three novel domains (social bot detection, software
analytics and extracting features from the Twitter API). Some of the chapters
in the collection are quite introductory and others include advanced topics
in active research. I have referenced the relevant chapters in this book, and
I would advise an advanced and serious reader on FE to look at them in detail.

Regarding ML workflows and practical matters in ML, I recommend
Machine Learning for Hackers by Drew Conway and John Myles White;74

Mahout in Action by Owen, Anil, Dunning and Friedman;249 Real-World
Machine Learning by Brink, Richards and Fetherolf.49 I am particularly fond
of the last book and I have cited it quite a bit throughout this book. For a
whole book on case studies, you might want to see Fundamentals of Machine
Learning for Predictive Data Analytics: Algorithms, Worked Examples, and
Case Studies by Kelleher, Mac Namee and D’arcy.177

In terms of EDA, I recommend Doing Data Science: Straight Talk from
the Frontline by Schutt and O’Neil, as it includes EDA for many domains and
problems in almost every chapter. The series of interviews with practitioners
will prove valuable to anybody in the field, beginners and experts alike.

Finally, a great source of white papers related to practical ML lies in the
KDD Cup series of ML competitions.51

https://doi.org/10.1017/9781108671682.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.003

