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ON AN ESTIMATE OF THE PARTIAL SUMS 
OF VILENKIN-FOURIER 

WO-SANG YOUNG 

ABSTRACT. We show that the partial sums S^f of the Vilenkin-Fourier series of/ G 
L1 are of exponential type off any set where the Hardy-Littlewood maximal function of 
/ is bounded. It then follows that Snkf(x) = o(\og log n^) a.e. for any lacunary sequence 
{ nit}. Our results are Vilenkin-Fourier series analogues of those of R. A. Hunt [1]. 

1. Introduction. Let {pt}i>o be a sequence of integers with/?/ > 2, and G == 
U™oZPi be the direct product of cyclic groups of order pt. For JC = {**} £ G, de­
fine (j>k(x) = exp(2irixk/ Pk), k = 0,1,2, The set of characters of G consists of all 
finite products of {<j>k}, which we enumerate in the following manner. Let mo = 1, nik = 
nfjo puk— 1,2, Express each nonnegative integer n as a finite sum n — £ £ 0 <**#**, 
where 0 < ak < pk, and let \n — n£L0 ^T- ^ o r t n e c a s e A* = 2, / = 0 , 1 , . . . , G is the 
dyadic group, {<f>k} are the Rademacher functions and {xn} are the Walsh functions. 
In general, the system (G, { \n} ) is a realization of the multiplicative Vilenkin system 
studied in [5]. In this paper, there is no restriction on the orders {/?,}. 

We consider Fourier series with respect to { %«}. Let /x be the Haar measure on G 
normalized by /i(G) = 1. For/ G L1, let 

W = if H) E x/(̂  - 0 dp®, n - 1,2,... 

be the n111 partial sum of the Vilenkin-Fourier series off. It is shown in [6] that there are 
absolute constants C and Cp such that, for n = 1,2,..., 

(1.1) n{\Snf\>y} <Cy-l\\f\\u f G L1, y > 0, 

and 

(1.2) \\Snf\\p<CP\\f\\P, fetf, Kp< oo. 

In this paper, we give a refinement of the above estimates and show that for/ G L1, 5^/ 
is of exponential type off any set where the Hardy-Littlewood maximal function of/ is 
bounded. 

Before we define the Hardy-Littlewood maximal function that is appropriate for the 
study of Vilenkin-Fourier series, we introduce the following notation. We identify G 
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with the unit interval (0,1) by associating with each {x,} G G, 0 < xt < /?;, the point 
££o*«'mi+i ^ (Q> *)• ^ w e disregard t n e countable set of /?rrationals, this mapping is 
one-one, onto and measure-preserving. Let { G*} be the sequence of subgroups of G 
defined by 

k—l oo 

G0 = G, Gk= n ( ° } *IlZpn * = 1,2,.... 
i=0 i=k 

On the interval (0,1), cosets of G* are intervals of the form (jnij~l
9 (j + l)nïj~l\ j = 

0 , 1 , . . . ,mk — 1. Asubset/of acosetJt + Gfc,jt G G, k = 0 , 1 , . . . , is called a generalized 
interval if / is a union of cosets of Gk+\, and / is an interval when x + G* is considered as 
a circle. The collection of all generalized intervals is denoted by J7. 

For/ G L1, the Hardy-Littlewood maximal function of/ is defined by 

1 r 
Mf(x) = s up -— / l/l J/x. 

xei W) JI 

This maximal function was first introduced by P. Simon in [3]. He also showed that there 
are absolute constants C and Cp such that 

(1.3) M{M/>v} < Cy"1 ll/Hi, / E L 1 , v > 0, 

and 

llAtfll,<Cpll/IU fetf,i<P<oo. 

(See also [7].) 
We obtain the following Vilenkin-Fourier series analogues of results of R. A. Hun [1]. 

(See also Muckenhoupt [2]). 

THEOREM 1. There is an absolute constant C such that, for n— 1,2,..., 

(1.4) ii{Mf<y,\Srf\ > Ay} < Ce~x'c, f G L1, y > 0, A > 0. 

THEOREM 2. LeJ {nk\k>\ be a lacunary sequence, i.e., there is a > 1 such that 
nk+i > anic, k = 1,2, Then there is an absolute constant C such that 

(L5) ^h^^>y}-Cy~lmufGLl'y>0-
Moreover, Sn,f(x) = ^(loglogn^) a.e.forf G L1. 

For the full sequence of partial sums, there is the following analogue of a result for 
trigonometric series. (See [8,1, pp. 65-66].) 
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THEOREM 3. There is an absolute constant C such that 

^Upl-^>y}<cy-l\\fh, feL\y>o. 
I n>2 10g n ) 

Moreover, S„f(x) = o(\og n) a.e.forf G L1. 

The constants C in the above theorems are independent of the orders {/?;}. 
Theorem 2 is a consequence of Theorem 1. As it is shown in [ 1 ], ( 1.3) and the uniform 

exponential estimates in Theorem 1 imply that 

I wool ^ 
sup < oo a.e. 

k log log nk 

A theorem of E. M. Stein [4] then yields (1.5). Since polynomials in {xn} are dense 
in L1, the "o" result follows. Theorem 3 can be obtained from Theorem 1 in a similar 
manner. 

Our proof of Theorem 1 consists of adapting the method used in [1] to the Vilenkin 
system. In what follows C will denote an absolute constant which may vary from line to 
line. 

2. Proof of Theorem 1. We recall some properties of Vilenkin-Fourier series. Let 
S*nf — XnSnifXn) be the n t n modified partial sum, n— 1,2, It is shown in [6] that if 

n = E ^ o a*m*> ° ^ ak < Pk, then 

oo 

(2-i) # = E S U / 
k=0 

and 

WW = ̂  L/«* "*(x - o( g ^ - o) dm. 
(The sum on the right is interpreted to be zero if ak = 0.) S*akmhf can be expressed in 
terms of conjugate functions, defined by 

( 2 - 2 ) Hkf{x) = \ ^ ^ { ^ m M ^ - ^ p t ) d ^ ' 

f £L\x= {xk} EG. We have 

ock ^{x)=^L^j«)d^ V(Gk) J(x+Gk)n{xk=tk}* 

^ra t(*)-^7T f f(t)<t>?k(t)dn(t) 
(2.3) 2 r * v"' /x(G*) A*+G*)n{**A}" 

1 1 /• 
/ f(t)du(t) 

2 ti(Gk) U ) n { ^ / 4 p v 

+ i<t>-ak(x)Hk(f^)(x) - *W(x). 
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Because of these special properties of the modified partial sums, we shall prove Theo­
rem 1 by establishing (1.4) with Sn replaced by S*. 

Let n = EJ£oa*m*' 0 — ak < P^f € Ll and y > \\f\\i. Applying the modified 
Calderon-Zygmund decomposition lemma [6, Lemma 2] to the function/ and the value 
3y, we obtain a collection C = {Ij} of disjoint generalized intervals such that 

3y<m{>md,i-9y' Ijec 

and 
\f(x)\<3yfoTa.e.x?\JljEEQ. 

j 

We write C = U£ 0 &> where each Ij G G is a union of cosets of G*+i and is a proper 
subset of a coset of G#. 

Let 7; € Ck and 77 be contained in the coset x + G&. If /x(/y) > /x(Gjt)/3, define 
3/y = JC + Gjc. If /x(7/) < /x(Gjfe)/ 3, consider JC + G* as a circle, and define 377 to be the 
interval in this circle which has the same center as 7y and has measure /x (37/) = 3/x(/7). 
If JC G 377-, then 

Hence, if we let Q* = U/(3/,-), we have {Mf < y} C CQ*. 

Next we decompose/ a s / = g + b with 

(/(*) i f * £ Q 
8{x) - j a,y+tyV(jr) if JC e /, G a , 

where a*/, ft*,- are constants chosen in such a way that 

f[fdfi = J^akj + bkj4,^)dtx, 

and 

y ^ d^ = j^oKj+bkj<t>k-
at)<i>k

ak du. 

It is shown in [6, Lemma 2] that g and b — f — g satisfy 

(2.4) \g\ <Cya.e., 

(2.5) b(x) = 0ifx#n, 

(2.6) / b d[i = 0 for every 7; G C 

(2.7) \ b^kd[i = 0 for every 7; G G * = 0 , 1 , . . . , 

and 

(2.8) \\b\d[i< Cyfi(Ij) for every 7, G C. 

To estimate £*#, we use the following exponential estimate for L°° functions. 
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THEOREM 4. There is an absolute constant C such that, for n— 1,2,..., 

M I SI/I > y} < ce-yf«M\oo)9 / G L°°, y > o. 

PROOF. Applying the Marcinkiewicz interpolation theorem [8, II, p. 112] to (1.1) 
and the case p = 2 of (1.2), we obtain the case 1 < p < 2 of (1.2) with Cp — 
0(l/(p- 1)) as p —• 1. By duality, we get (1.2) for 2 < /? < oo with CP = 0(p) 
as p —* oo. Theorem 4 then follows from an extrapolation theorem [8, II, p. 119]. 

We now return to the proof of Theorem 1. From (2.4) and Theorem 4, we have 

n{\S*ng\>\yl2}<Ce-*lc. 

Since S^f = S*g + S*b, Theorem 1 will be proved if we show 

(2.9) ii{x E CH* : \S*nb\ > Xy/2} < Ce~xlc. 

To do this we expand S*b in terms of the conjugate functions as in (2.1) and (2.3). For 
x g Q*, it follows from (2.5), (2.6) and (2.7) that the first three terms in (2.3) vanish, and 
we are left with 

oo 

S*nb(x) = i E { ^ ^ ( « ( ^ D W - Hkb(x)}. 

(See the explanation in [6] pp. 317-318.) (2.9) will be proved if we show that the mea­
sures of the sets 

A = [x G CQ* : E \Hk(b^){x)\ > Xy/4\ 

and 

B = \xecQ*:^2\Hkb(x)\ >Xy/4\ 

are bounded by Ce~xlc. 
For the first set, we have 

OO ç. 

(2.10) /x(A) < 4(Xyrl E L XA(x)\Hk(b^k)(x)\ d/x(*). 

If JC £ Q*, it follows from (2.2), (2.5), (2.6) and (2.7) that 
Hk{b^)(x)=\-^— E jb{t)^{t) 

2/i(Gjk) IjCx+Gk
 JIJ 

."(«(^-( îh 
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where i' = {4}*>o is any fixed point in Ij. (See [6], p. 318). Let / be any coset of Gk. 
Fubini's theorem gives 

jc^niXA(x)\Hk(b^)(x)\ d»{x) 

1 1 
< 

(2.11) 

rn(xk-tk)\ _ C0J^-J)\ 
V Dk J \ Dlr J 

dfi(x)d[i(t). 
Pk J v Pk 

Let 3i+lIj = 3(3lIj), £ = 1,2,.... If 3/, ^ /, write / H c(3/7) = L ^ l / z n 
(3i+lIj\3£Ij)9 where L, = min{£ > 1 : 3eIj = 1}. For 1 < £ < Lj - I, x <E 
in (3e+lIj\ 3iIj) and r, *>' G /,, we have 

cot 
/ 7 r f a - f t ) \ _ c / 7 r f a ~ 4 ) \ 
\ Pk J \ Pk ' 

< CudMD/ {fi(3e-lij)f 

<C3-V(/)/M(3 f+1/y). 

Summing over ^, substituting into (2.11) and using (2.8), we obtain 

Jc^niXA{x)\Hk{b<j>^)(x)\ dn(x) 

r °° 1 r 

< C v E [MXA(t)dfi(tX 
IiCl JIJ IJCI 
IjGCk 

since the average of %A over 3*+1// is bounded by MXA(t), t G Ij. We now sum over all 
cosets / of Gk and then over all k. From (2.10) we obtain 

p(A)<C\~l JGMXAdfi. 

Since MXA < 1, SGMXAdp = So P{MXA > y} dy.By {\.3)^{MXA > y} < 
min{ 1, Cy~ln(A)}. Hence 

M(A)<CA-1{f^U + /^)C>-V(A)rfy} 

= CA-V(A)(l-Clog/i(A)). 

If //(A) = 0, there is nothing to prove. Otherwise, dividing by /i(A) and rearranging, we 
obtain 

p{A)<Ce~xlc. 
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The estimate of ^i(B) is similar, using (2.6) instead of (2.7). This completes the proof 
of Theorem 1. 

The author would like to thank the referee for his comments. 
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