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Abstract The question of whether ribbon-disc complements—or, equivalently, standard 2-complexes
over labelled oriented trees—are aspherical is of great importance for Whitehead’s asphericity conjecture
and, if solved affirmatively, would imply a combinatorial proof of the asphericity of knot complements.
We present here two classes of diagrammatically reducible labelled oriented trees.
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1. Introduction and main results

Let P = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite presentation where each relator is of the form
xi = xjxkx

−1
j . Such a presentation is sometimes called a labelled oriented graph (LOG),

because it may be represented by a graph TP in the following way. For each generator xi
of P define a vertex labelled i (or xi), and for each relator xi = xjxkx

−1
j define an edge

oriented from the vertex i to the vertex k labelled by j. If TP is a tree, then P or TP is
called a labelled oriented tree (LOT) (see [4] and [5]).

It is well known that the standard 2-complexes KP modelled on LOT presentations
P are spines of complements of ribbon disks in four-space and that every ribbon-disk
complement has such a spine (see [5]). Therefore, the conjecture that all 2-complexes
KP modelled on LOTs are aspherical is commonly called the ‘ribbon-disk conjecture’. In
two-dimensional homotopy theory this conjecture represents a subcase of the Whitehead
conjecture stating that all subcomplexes of aspherical 2-complexes are aspherical. This
follows from the observation that, by adding one extra relation of the form xi = 1 (where
xi is any one of the generators) to a LOT presentation, one obtains a contractible and
hence aspherical 2-complex. Moreover, it was pointed out by Howie in [4] that the ribbon-
disk conjecture together with the Andrews–Curtis conjecture implies the Whitehead
conjecture for all finite 2-complexes. Since Wirtinger spines of classical knots are modelled
on LOT presentations, a combinatorial proof of the ribbon-disk conjecture would also
comprise a combinatorial proof of the asphericity of knot complements.
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We present two classes of aspherical LOTs in this paper. The statement of the results
relies on the following definitions.

We call a LOG P in our context reducible if there exists a generator in P that occurs
exactly once among the set of relators. For TP this means there is a vertex of valence one,
which does not occur as an edge label. A LOG which is not reducible is called reduced
(note the change of terminology from [6]).

A LOG is called compressed if every relator contains three different generators. If a
LOT is not compressed or reduced, it may be transformed by simple homotopy operations
into a compressed and reduced LOT.

A LOG P is called injective if each vertex of TP occurs at most once as an edge label.
Let P be the class of all LOGs P , where the corresponding graph TP does not contain

a cycle, i.e. where TP is a forest. This class certainly contains all LOTs.
Our main result is the following theorem.

Theorem 1.1. Let P ∈ P be compressed and injective. If TP does not contain a
subtree that is a reducible LOT, then KP is diagrammatically reducible.

A 2-complex K is called diagrammatically reducible (DR) if every spherical diagram
over K can be reduced by a folding operation (for details see the next section). Following
[1], a 2-complex K is called diagrammatically aspherical (DA) if each spherical diagram
over P can be converted by diamond moves to one that can be reduced by a folding
operation (as in the definition of DR). DR implies DA, which in turn implies aspherical.
It is known that not all standard 2-complexes modelled on compressed LOTs are DA
(see [10]). However, the known examples of LOTs that are not DR are all non-injective.

The Wirtinger presentation P read from the projection of a tame knot (with one
relation suppressed) is a LOT presentation and its 2-complex KP is a spine of the knot
complement. We will call it the ‘Wirtinger spine’. Weinbaum gives a combinatorial proof
of the asphericity of complements of alternating knots for the ‘Dehn complex’, which is
a different spine of a knot complement [11] (see also [7]). As a corollary to Theorem 1.1
we obtain Weinbaum’s result for the Wirtinger spine in a different way.

Theorem 1.2. If a knot in the 3-sphere admits a tame alternating projection, then
its complement has a Wirtinger spine coming from a LOT that is DA.

Let P = 〈x1, . . . , xn | r1, . . . , rm〉 be a LOG. To change the orientation of the edge
corresponding to one of its relations rt : xi = xjxkx

−1
j will mean to replace rt by

r′t : xk = xjxix
−1
j . This is the same as changing the orientation of the corresponding

edge in TP . An orientation of a LOG P is a LOG that arises from P by changing the
orientations of a (possibly empty) subset of edges of TP .

Theorem 1.3. For any LOG P ∈ P there is an orientation Q of P such that KQ is
diagrammatically reducible.

In terms of ribbon-disk complements, such a change of orientation of a LOT has the
following effect. The ribbon disk is modified by locally changing some of the ribbon
intersections, as shown in Figure 1.
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Figure 1. Reversing the orientation of an edge.

2. Some graphs

All graphs are assumed to be finite. Multiple edges are allowed. For a graph G let V (G)
be the set of vertices and E(G) the set of edges of G. We sometimes write G = (V,E),
if E = E(G) and V = V (G). For any finite set S let |S| be the number of elements of S.

Let P be any finite presentation. The Whitehead graph WP is the boundary of a
regular neighbourhood of the only vertex of KP with the induced cell decomposition.
It is a non-oriented graph consisting of two vertices x+

i , x−i for each generator xi of P ,
which correspond to the beginning and the end of the oriented loop labelled xi in KP ,
respectively, and t edges for each relator of length t in P . These edges are the intersections
of the corners of the 2-cell with the boundary of the regular neighbourhood, briefly called
the ‘corners’. If P is a LOG, then each relation xixjx

−1
k x−1

j = 1 contributes four edges
(or corners) to WP : (x−i , x

+
j ), (x−k , x

−
j ), (x+

k , x
−
j ) and (x+

i , x
+
j ).

The left graph LP is the full subgraph of WP with vertex set V (LP ) = {x+
i | ∀i}. The

right graph RP is the full subgraph of WP with vertex set V (RP ) = {x−i | ∀i}. If x+
i

(x−i ) is a vertex of V (LP ) (V (RP )), we will often write i or xi for it. If xi = xjxkx
−1
j is

a relator of P , then this relator induces an edge between i and j in LP and between j

and k in RP .
We consider piecewise linear maps f : C → KP , where C is a cellular decomposition

of the 2-sphere and P is a LOG. If open cells are mapped homeomorphically to open
cells, then f is called a spherical diagram over P . f is called reducible if there is a pair
of 2-cells in C having a boundary edge t in common and being mapped onto the same
2-cell in KP by folding over t. A 2-complex K is called diagrammatically reducible (DR)
if each spherical diagram over K is reducible (for details see [3] or [10]).

The following result is well known (see, for example, [5]).

Lemma 2.1. Let P be a LOG. If LP or RP is a forest, then KP is DR.

Proof. Let f : C → KP be a spherical diagram over a LOG presentation P . There is a
covering space KP of KP induced by the homomorphism that identifies all generators. Its
vertices may be enumerated by the integers. The lift of f to KP has to have a minimum.
The boundary of a regular neighbourhood of the pre-image of this minimum in C, which
is a circle, maps to LP . Since LP is a forest, f is reducible.
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Figure 2. From TP to SP .

Related arguments apply to the maximum of the lift of f to KP and RP . �

Lemma 2.2. Let P be a compressed injective LOG. If LP and RP are forests, then
any orientation Q of P is DR.

Proof. A standard 2-complex KY is said to satisfy the weight test if the edges of the
Whitehead graphWY can be given real-valued weights satisfying the following conditions:

(1) the sum of weights of every reduced circuit (i.e. closed path without backtracking)
in WY is > 2; and

(2) for every 2-cell D of KY whose boundary consists of d edges, the sum of the weights
of the edges of WY that correspond to the corners of D is less than or equal to
d− 2.

A 2-complex that satisfies the weight test is DR (see [3] or [6]).
The standard 2-complex of the compressed injective LOG P satisfies the weight test

by giving the edges of WP the following weights: the edges of LP and RP get weight 0,
all the other edges get weight 1. The lemma now follows from the following result.

Theorem 2.3. [see [6]] Let P be a compressed injective LOG which satisfies the
weight test. Then any LOG which is an orientation of P also satisfies the weight test.

�

The graph SP , defined below, will be instrumental in the proof of Theorem 1.1. Let P
be a LOG. The directed graph SP is defined as follows: V (SP ) = V (TP ) and each edge
from i to k labelled by j of TP gives rise to two oriented edges in SP , one going from i

to j and the other from k to j (see Figure 2).
It is easy to see that if Q is an orientation of P , then SP = SQ. If rt : xi = xjxkx

−1
j

is a relator of P , then we have seen that this relator induces an edge between i and j in
LP and between j and k in RP . In SP there are also edges between i and j and between
j and k induced from rt. So LP and RP are subgraphs of SP . Furthermore it is easy to
see that if we identify x+

i of LP with x−i of RP we get SP without the orientation of the
edges of SP .

3. Proof of Theorem 1.1

For a compressed injective LOG in P which does not contain a reducible sub-LOT, we
will find an orientation where the corresponding left and right graph are forests. Then
Lemma 2.2 implies Theorem 1.1.
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Let G be a directed graph such that for every vertex v the number of edges ending in
v (i.e. being oriented towards v) is even. An admissible partition of E(G) is a partition
into two sets E1 and E2 such that for every vertex v ∈ V (G) the following holds: the
number of edges of E1 ending in v is equal to the number of edges of E2 ending in v.

For any injective LOG P , it is clear that SP is a directed graph such that zero or two
edges end at every vertex.

Lemma 3.1. Let P be an injective LOG. Assume there is an admissible partition of
the edge-set of SP into two sets E1 and E2. Then there is an orientation Q of P , such
that LQ = (V (SP ), E1) and RQ = (V (SP ), E2).

Proof. Let P be an injective LOG and E1 and E2 be an admissible partition of
SP . Let j be a vertex of SP where two edges, e1 and e2, end. Let e1 = (i, j) ∈ E1 and
e2 = (k, j) ∈ E2. e1 and e2 correspond to the two halves of an edge e of TP with endpoints
i and k and label j. We now choose the orientation of e in TQ to be from i to k. Hence,
e1 = (i, j) will belong to LQ and e2 = (k, j) to RQ. If we do this for every vertex j of SP
where two edges end, we obtain the desired orientation Q of P . �

So in order to prove Theorem 1.1 all we have to do is find an admissible partition of
SP into sets E1 and E2 such that Gl = (V (SP ), E1) and Gr = (V (SP ), E2) are forests.
Then we have found an orientation Q of P for which LQ = Gl and RQ = Gr are forests,
which implies, by Lemma 2.2, that KP is DR.

Lemma 3.2. Let P ∈ P be injective. Assume there is a k ∈ N and a subgraph H ⊂ SP
with |V (H)| = k and |E(H)| > 2k − 1. Then TP contains a subtree that is a reducible
LOT.

Proof. Let V (H) = {x1, . . . , xk}. Since P is injective, maximally two edges of SP
can end at the same vertex. Therefore H could maximally have 2k edges; however, it is
easy to see that E(H) = 2k would imply that TP has a subgraph with k vertices and
k edges, contradicting the fact that TP has no cycles. Hence, |E(H)| = 2k − 1 and the
set of 2k− 1 edges of H partitions into k− 1 pairs ending (without loss of generality) in
the k − 1 vertices x1, . . . , xk−1 and one additional edge ending in xk. Each of the k − 1
pairs of edges corresponds to an edge in TP with label in {x1, . . . , xk−1} and endpoints
in {x1, . . . , xk}. Since TP is a forest, these k − 1 edges in TP connecting k vertices must
form a tree T ′ which is a sub-LOT. The additional edge of H that ends in xk corresponds
to an edge e in TP with label xk and exactly one endpoint in {x1, . . . , xk}. Therefore,
T ′ ∪ e is a tree that corresponds to a reducible sub-LOT of TP . �

Theorem 3.3. Let G be a directed graph such that zero or two edges end at every
vertex. Then there is an admissible partition of G into two forests if and only if for all
subgraphs H of G it follows that |E(H)| < 2|V (H)| − 1.

Proof. Assume there is a subgraph H ⊂ G with |V (H)| = k and |E(H)| > 2k−1. Any
partition of G into two forests induces a partition of H into two forests. Since |V (H)| = k

each of them has at most k − 1 edges in contradiction to |E(H)| > 2k − 1.
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g a b c d e ff d e b c g

Figure 3. A compressed injective LOT that does not satisfy the weight test.

Now assume that for all subgraphs H of G it follows that |E(H)| < 2|V (H)| − 1. For
X ⊂ V (G), let X = V (G)−X. There are vertices {x1, . . . , xj} ⊂ V (G) where no edges
end, called the roots of G. We use a result of Edmonds [2] (see also [8]) which can be
rephrased in our context as follows.

Let G be a directed graph such that zero or two edges end at every vertex. If
for any non-empty X ⊂ V (G) which does not contain any of the roots of G,
there are at least two edges having their head in X and tail in X then there
is an admissible partition of G into two forests.

So it remains to show that for any non-empty X ⊂ V (G) which does not contain the
roots of G, there are at least two edges having their head in X and tail in X. Suppose
there is an X ⊂ V (G), |X| = k, with none of the root vertices belonging to X such that
at most one edge of G has its head in X and tail in X. Since X contains no roots, there
are exactly 2k edges having their head in X. At most one of them has its tail in X. Hence
there are 2k − 1 edges with heads and tails in X which form a subgraph H ⊂ G with
X = V (H) and |E(H)| = 2|V (H)| − 1, in contradiction to our assumption above. �

Now we have all the parts of the proof of Theorem 1.1. Since TP does not contain a
subtree which is a reducible LOT we know by Lemma 3.2 that for all subgraphs H of SP
it follows that |E(H)| < 2|V (H)| − 1. Theorem 3.3 then gives us an admissible partition
of SP into two forests. By Lemma 3.1 these forests are the left and right graph of some
orientation of P , and by Lemma 2.2 we know that KP is diagrammatically reducible. �

It is still an open question whether there is an injective non-DR LOT. However, the
following example shows that the proof of Theorem 1.1 cannot be generalized to all
injective LOTs.

Example 3.4. The injective compressed LOT of Figure 3 with any orientation of its
edges does not fulfil the weight test (this can be seen with the program Graph [9]). It
contains a reducible sub-LOT.

4. Proof of Theorem 1.2

The following result is well known. It is a special case of Theorem 4.3 of [1].

Proposition 4.1. Let Q and Y be LOGs. Let TP be defined by identifying a vertex
of TQ with a vertex of TY . If KQ and KY are DA, then KP is DA.

It is easy to construct non-injective aspherical LOTs or injective aspherical LOTs
which contain a reducible sub-LOT from Theorem 1.1 and Proposition 4.1. Identify two
aspherical LOTs along a generator.
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Figure 4. Constructing aspherical non-injective LOTs.

a b

Figure 5. The LOT TP .

Example 4.2. See Figure 4. In the picture, take any orientation of the edges. Here,
the generator b of Q is identified with d of U . KQ and KU are DA by Theorem 1.1. So
the resulting LOT is DA by Proposition 4.1.

For the proof of Theorem 1.2 we consider, without loss of generality, only alternat-
ing knot projections which have a minimal number of crossings for the given knot, in
particular the alternating projections will have no small loops. Suppose there is such an
alternating knot projection such that a Wirtinger spine obtained from this projection is
not DA. Further suppose that, among all such alternating knot projections with non-DA
Wirtinger spines, we choose an example with least number of crossings. Let U be its
Wirtinger presentation and let Pt = U−{rt}, where rt is one of the relators, be a presen-
tation for the spine which is not DA. U is an injective LOG with TU a circle and, since
the alternating projection has no small loops, U is compressed. Hence Pt is a compressed
injective LOT. If KPt is not DA, then it is not DR, and by Theorem 1.1 Pt must contain
a reducible sub-LOT Q.

Let a be the generator of Q which does not occur as a conjugator of a relator of Q, and
let b be the other vertex of valence one in TQ. Note that Q must be a proper sub-LOT
of Pt, otherwise, if Q = Pt, the omitted relator rt would contain only the two generators
a and b, making U non-compressed.

Let TP be the LOT obtained from TU by omitting the edge of TU − TQ with b in its
boundary. Then TP is an injective LOT built from two injective LOTs TQ and TY =
TP − TQ joined by the generator a (see Figure 5).

Let κ ⊂ R3 be the knot corresponding to U . TQ and TU − TQ have only the two
generators a and b in common. This implies the existence of an embedded 2-sphere S2 ⊂
R3 having only two points in common with κ which come from the strings corresponding
to the generators a and b. So TY and TQ are Wirtinger presentations of tame alternating
knots in the 3-sphere.

Since the knot corresponding to U was chosen with a minimal number of crossings,
KQ and KY are DA. Proposition 4.1 then gives the desired result. �

5. Proof of Theorem 1.3

The following proposition together with Lemma 2.1 implies Theorem 1.3.
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Proposition 5.1. For any LOG P ∈ P there exists an orientation Q of P , such that
LQ is a forest.

Proof. Let P = 〈x1, . . . , xn | r1, . . . , rm〉 ∈ P. For each edge of TP going from xi to
xk labelled by xj there is one edge in LP between xi and xj . Changing the orientation of
the edge in TP leads to replacing the corresponding edge in LP by one between xk and
xj .

So, defining an orientation Q of the LOG P (and thereby determining the graph LQ)
is equivalent to choosing an endpoint of each edge e ∈ TP which has to be connected
with the vertex of the label of e in LQ.

For a generator xi of a given P ∈ P, we define ν(i) to be the number of occurrences
of xi as an edge label in TP . Now define

ν(P ) = min
16i6n

{m− ν(i)},

where P has m relators and n generators.
It is easy to see that P ∈ P with ν(P ) = 0 satisfies Proposition 5.1. Let xi be the

vertex with ν(i) = m. Every edge label is xi. Note that TP is a forest. To define the
orientation Q of P that makes LQ a forest, we choose in every component of TP one
vertex as a root and orient all edges of the component towards the root. In addition we
require that the root of the component which contains the vertex xi is xi. Then every
edge of LQ will have xi as one endpoint, no edge is a loop, and for every k 6= i there is
at most one edge in LQ having xk as endpoint. Hence, LQ consists of a tree of diameter
two having xi as its centre and, possibly, some isolated vertices.

The proof is by induction over ν. We assume that every LOG P ∈ P with ν(P ) = q

(0 6 q < m− 1) may be oriented, such that its left graph has no cycles.
Consider all presentations P ∈ P such that ν(P ) = q + 1 and every orientation of

the edges of TP induces at least one cycle in LP . Among all those, let P = 〈x1, . . . , xn |
r1, . . . , rm〉 be one with a minimal number of relators.

Let xi be one of the generators that occurs most as an edge label in TP , so q + 1 =
m−ν(i). Take any edge e, which has an xj with i 6= j as label. Such an edge has to exist,
since ν(P ) > 0. Replace xj by xi as the label of e and call the resulting presentation P ′.
Then, by induction, we can find an orientation of TP ′ such that LP ′ is a forest.

Transfer this orientation to TP (we still call the resulting presentation P although
its edges have a different orientation, which leads to a different presentation). Now we
claim that LP consists of exactly one component, say K1, with exactly one cycle and
other components, K2, . . . ,Kk (k > 2), which are trees. This is true because if we take
the edge le ∈ LP induced from e, disconnect it from xj , and glue it to xi we must get
the forest LP ′ . The edge le is part of the cycle in K1. Let K2 be the component which
contains the vertex xi. Since xi appears at least once as an edge label in TP , K2 has at
least one edge ld coming from an edge d ∈ TP carrying xi as a label (see Figure 6).

Let TQ be the LOG obtained from TP by omitting the edge d of TP . We claim that
every orientation of TQ leads to a cycle in LQ. If this is true, we have a contradiction,
since ν(Q) = q or q+1, and in the latter case Q has one relator less than P , contradicting

https://doi.org/10.1017/S0013091599000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000474


Aspherical labelled oriented trees and knots 293

d

e
xj

xk

TP

LP

l

xk

l

K2

K3

K1e

d

xi

xi

xj

xi

Figure 6. The LOG TP and its left graph.

the assumption that P was a counterexample for ν(P ) = q + 1 with minimal number of
relators.

So assume we have an orientation of TQ where LQ has no cycles (by abuse of notation
we still call the resulting presentation Q). Putting back the edge d into TQ resulting in
a LOG TR (by keeping the orientation of TQ and taking the orientation which d had in
TP ), we get a cycle in LR. This is because every orientation of TP induces a cycle and
TR is nothing else than a new orientation of TP .
LP has exactly one cycle c and the component of LP containing this cycle was called

K1. Let A be the set of vertices of K1. On the other hand, LR has exactly one cycle
which contains the edge ld and ld has neither of its endpoints in A. Consider the set
of edges in TP whose orientation is changed by going from TP to TR and let F be
the corresponding set of transformations of edges that change LP to LR. Every such
transformation disconnects one end of an edge in the left graph from the vertex and
reconnects it to another vertex. Since the cycle c is not present in LR there must be at
least one transformation f1 of an edge of c in the set F changing LP to LP1 . Assume
first that LP1 no longer has a cycle whose vertices are in A. The only way this could
have happened is that the transformation f1 took an edge of c and changed one of its
endpoints to a vertex outside of A, thereby connecting two components of LP . Then LP1

would be without cycles, contradicting the hypotheses that any orientation of TP induces
cycles in the left graph.

Hence LP1 must again have exactly one cycle c1 and the vertices of c1 are still in A.
Since such a cycle c1 is not present in LR, again, there must be another transformation
f2 in F that changes an edge of c1 resulting in LP2 . By the same argument as above, LP2

must contain exactly one cycle with its vertices in A. This process would have to continue
forever, leading to a contradiction since there are only finitely many transformations in
the set F . �

Remarks

(1) The above proof is not constructive. On the other hand, for a given LOT it is easy
to test all orientations for cycles in the left graph. This gives a constructive method
for finding a DR orientation.
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(2) If we have a LOG where the left graph has no cycles, we can switch all orientations
of its edges. We end up with a LOG where the right graph has no cycles, which
also implies the diagrammatic reducibility of the corresponding 2-complex. So we
can easily strengthen the result of Theorem 1.3 to:

For any LOG P ∈ P there are two different orientations Q and Y of P
such that KQ and KY are diagrammatically reducible.

(3) It is easy to construct a LOG P with the Euler-characteristic of a LOT, satisfying
ν(P ) = 0 and containing a cycle in TP , such that every orientation of its edges
leads to a cycle in LP .

Acknowledgements. We thank Wolfgang Metzler for helpful discussions and Bruce
Richter for telling us about the result of Edmonds (cited in the proof of Theorem 3.3).
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