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LACUNARY MUNTZ SYSTEMS

by PETER BORWEIN and TAMAS ERDELYI
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The classical theorem of Miintz and Szasz says that the span of

is dense in C[0,1] in the uniform norm if and only if Yf= 11/Af= ao. We prove that, if {A,} is lacunary, we can
replace the underlying interval [0,1] by any set of positive measure. The key to the proof is the establishment
of a bounded Remez-type inequality for lacunary Muntz systems. Namely if A c= [0,1] and its Lebesgue
measure n(A) is at least e>0 then

where c depends only on e and A (not on n and A) and where A: = inff A1+ ,/A(> 1.

1991 Mathematics subject classification: 41A50.

1. Introduction

A very beautiful theorem of Miintz and Szasz says that

M: = span{l,xx',xX2,...}, 0<A!<A 2 <-••->(» (1.1)

is dense in C[0,1] in the uniform norm if and only if

00 1
1 | = o o . (1.2)

i = i ^ i

This is very much a theorem about continuous functions on intervals. So it can be
proved that exactly the same theorem holds in C[A] provided

A c [0, oo)

is a closed set with non-empty interior. This result is due to Clarkson and Erdos [5].
When A has no interior it is by no means obvious what happens. Our intention is to
prove the following theorem.
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Theorem 1. Suppose Af^A' (i=l,2,...), where A>1, and suppose A
set with positive Lebesgue measure. Then

[0,oo) is any

fails to be dense in C[A] in the uniform norm.

Indeed, under the above assumptions, if ye A is a point of Lebesgue density 1 then
every function / from the uniform closure of M on A is of the form

xXi> xe[0,y)nA
i = O

where Ao = 0. This in turn rests on the following inequality.

Inequality 1 (Remez-type inequality). Suppose p>0 and A <= [p, 1) is a closed set of
measure e>0. Suppose Ao=0 and A,^A' (i=l,2,...), where A> 1. Then

n

i = 0
itx

Xi

10. p]

n
%iXXi

where the constant c depends only on p, e and A (and not on n and A).

Here, and in what follows || • \\A denotes the uniform norm on A.
In a seminal paper [5], Clarkson and Erdos prove Theorem 1 in the case where

>4: = [1— e, 1]. The fact that Inequality 1 holds in this interval case is critical to our
argument. This follows from [5] and is proved in Section 3. (These interval results are
more generally applicable to any system where J^Li 1/A,<oo.)

Proofs of the Miintz-Szasz Theorem may be found in [4], [7] and [8] with various
generalizations and extensions in [2, 3, 10, 12, 13, and 16]. A discussion of Remez-type
inequalities for polynomials is given in [6].

Our proof relies on an examination of (generalized) Chebyshev polynomials from M.
In particular we must establish estimates for the size of their zeros. This is done in
Section 2. The very close relationship between the location of zeros of the associated
Chebyshev polynomials and the possibility of approximation is discussed in [1] and [2].

Section 3 contains a proof of the Remez-type inequality for span{l,xA,x*2,...}. In
the fourth section we offer a comparison theorem which allows us to extend our results
to Muntz spaces

M:=span{\,xx\xx\.

where for some A > 1,
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Section 5 contains an example which shows that a bounded Remez-type inequality for
an infinite Muntz system cannot hold on arbitrary perfect sites of measure 0.

In the final section we characterize the Muntz systems which are dense in C[A] in the
uniform norm for every countable closed A cz [0,1]. Q]j*L 11/A,-= oo is necessary and
sufficient, assuming Ao=0 and inf,(AI+1 —A,)>0.)

2. Zeros of Chebyshev polynomials

The generalized Chebyshev polynomial from

<A1<--- (2.1)

with respect to a compact set A <= [0, oo) is denoted by

and is defined to be

••=<>

where we chose {at}"=l to minimize

n - l

xkn+

and c is chosen so that

||T-IU = 1 and lim Tn(x)=+oo.
x -* oo

Then, Tn achieves ±maxx e X|Tn(x) | n + 1 times in A with alternating sign and has
exactly n zeros in (0,oo). Suppose always 0^Ao<Xl <•••.

Lemma 1. Let 0^oc</? and l^m^n. Then the positive real zeros of

Tm.m{[0,lm+l,Xm+2,...,Am]:[a,P]}

and
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interlace. In particular, the smallest positive real zero of T n _ m + 1 is smaller than the
smallest positive real zero of Tn_m.

Proof. Consider Tn_m + 1 — Tn_m. The argument is a straightforward counting of
zeros. •

Lemma 2. Suppose A;^yf, i=l,...,n, with strict inequality at least once. Then the
smallest positive real zero of Tn{[0,Au...,An]:[(),/?]} is smaller than the smallest positive
real zero of Tn{[0,yu . . . ,y j : [0 , /?]} .

Proof. See [3, Proposition 1].

Lemma 3. If O^m^n and

has all its zeros in [a, /?] then

TB{[0,A1,A2,...,A.]:[0,/S]}

has at most m zeros in (0, a).

Proof. This follows from Lemma 1. •

Lemma 4. Suppose 'YjLi\/Xi<cG an^ inff(Af+i —A,-)>0. Then there exists constant
c > 0 independent of n so that the smallest positive real zero of Tn{[0,Xu... , An]:[0,1]} is
greater than c.

Proof. If A j ^ l , Y,?=i l M i < 0 ° and inf((Ai+1 —A,-)>0, then we have the Markov-type
inequality

max |p'(*)|^»/(e,{A,}) max |p(x)|

for every peMn, neN, and 0 < e < 1, where the constant ^(e,{A,}) depends only on e and
the sequence {A,}. This was obtained in [1] based on the results of Clarkson and Erdos
[5]. Now the lemma follows from the equiosciUation of Tn, the Mean Value Theorem,
and the above Markov-type inequality. When 0 < A ! < l the scaling x - » x " J ' gives the
desired result from the already proved case. •

Lemma 5. Suppose ^J°=i 1/A,<oo and Xi-l/Xi (i = 2,3,...) is nondecreasing. Then there
exists a constant c depending only on the sequence {A,} so that

Tn_m{[0,Am+1,Am+2,.. . ,An]:[0,l]}
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has all its positive real zeros in [1 — cAn_m/An, 1].

Proof. Note that the assumptions of the lemma imply inf;(A1+1 —1,)>0. Let /? m n be
the smallest non-negative real zero of

Then consider, for

where

Note that

Um,n = Tn_m{[0, (^m,nAm+J, («5m>nAm+2),..., («5m,,A)]: [0,1]}

and

A ^ ^ A ^ ^ l , if m+l^h^n.

So by Lemma 2 the smallest positive real zero of t/mn(x) (which is just PU^'") is greater
than the smallest positive real zero of

Tn.m{[0,Xm,Xm+!,..., A.-J : [0,1]}.

So in particular,

Pm.n >Pi!T- l . n - l

> ( / J O f l l _ j ' — • * - - ' . — - ' ' • - " * ' .

Here, by Lemma 4,

l>j30,n-m>Ci>0

since P0,n-m is J u s t the smallest root of

So
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ft %_ f & m . n'&m— l , n - 1 * * 'dl n-m+ I

Also, by the Mean Value Theorem, for every ct >0 there exists a c 2 > 0 so that

c{^l-c25

for 0 < 6 < 1. Therefore

ft > 1 C2^"-m
Pm,n= l ]

as required. •

From Lemmas 3 and 5 we deduce:

Lemma 6. Suppose 1 ^ At <X2, . . . ,£,°1 x 1/A;<oo, A,_ j/A, (i = 2,3,...) is nondecreasing,
and O ^ m g n . T/iew (feere exists a constant c depending only on the sequence {A,} so that

Tn: = Tn{l0,X1,...,Xn-]:[0,iy

has at most m zeros in the interval

and at least n — m zeros in

3. The Lacunary case

In most of this section let

M: = span{l,x\xx\..}, k>\

and

Mn: = span{l,x\...,xx"}.
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Lemma 6 gives the following as a special case.

Lemma 7. Tn: = Tn{[0,X,..., A"]: [0,1 ]} has at least n-m zeros in

and at most m zeros in (0,1 — c/Xm) where c>0 depends only on X.

Let Pn be the Chebyshev polynomial from Mn on a fixed, compact A c [0,1] of
measure at least e>0. Since Pn is the Chebyshev polynomial from Mn on A: =
{xe[0, l]:|Pn(x)| = l} as well, we may, without loss, assume that A is comprised of at
most n disjoint intervals. Choose 8 > 1 so that

Y — - e

Now partition [0,1] into subintervals

1
/ , : = [0,/?,] with /x(/1n/l)=-,

8

with fi(I2nA)=-i,82

/„: = [&-!, 1] with n(InnA)>jn,

where n denotes the Lebesgue measure.

Lemma 8. Suppose j , 2rgjgn, is fixed and Ar\l} contains an interval of length Aj.
Then there are positive constants cx and c\ depending only on X so that / I n / , - ! contains
an interval of length Aj^t where
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whenever 0 < A; < c\.

Proof. Let [a,, bj] be the interval of length A, in A n Ij and choose nij e U so that
Aj = c/Amj, where c is as in Lemma 7. Consider the Chebyshev polynomial Tn from Mn

on the interval [0, b,]. From Lemma 7, by the scaling x-*bjx we can deduce that Tn has
at least n — m zeros in [a,, £>,] where m is the smallest nonnegative integer not less than
m}. In particular Pn (the Chebyshev polynomial from Mn on A) has at most m + 2 zeros
in (0,0,], otherwise Tn — PneMn would have more than n zeros in (0,fr,] (counting every
positive zero without sign change twice). It follows that Ar\lj_l is the union of at most
WJ + 4 intervals and hence A nJj_1 contains an interval of length at least

1 1 » cx

J,-yi
V

whenever 0 < Aj ̂  c\ with some positive constants cx and c\ depending only on A. •

Lemma 9. Let b>\ and cx>0 be as in Lemma 8. Consider the (backwards) iteration

Then there is a constant cx s depending only on X and 5 so that

1 . 1
< A <

whenever cx d

Proof. Suppose

Then

1A
 cx cx

2

- i
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\ 2 S f c - l

provided k>cxs with a constant cx,s depending only on A and 5. The result now
follows. D

We will need the following inequality that may be found in [14, p. 54]. We include a
distinct new proof.

Inequality 1 in the Interval Case.

Suppose Xo = 0, inf;(A1+1 — A,) > 0 and

£ 1
I 7<co.

Then, for every £6(0,1),

I "i*"'
[0,1 i = 0

vv/iere ct depends on the sequence {!,} and e fcut not on n.

Proof. Let ee(0,1) be fixed. First let A X ^1 . Assume indirectly that there are pmeM
so that /lI11: = maxOgJ(si|p1nW|-»oo, while ||pm||,i_«.i,= l. Let qm: = A~lpm. Then, with-
out loss, we may assume that

max \qm\= max \qm\, m = l , 2

OSxSl OSjcgl-e

As in [1, Lemma 2] (see also the proof of Lemma 4), for every 0 < e ' < 1 we have

max \q'm{x)\^n(e')
Ogxgl-el

where n(e') is a constant depending only on e'. Therefore {qm}^=i is a sequence of
uniformly bounded equicontinuous functions on every closed subinterval of [0,1), hence
by the Arzela-Ascoli Theorem there is a subsequence of {qm}m=i (without loss of
generality we may assume that this is {qm}m=\ itself) which converges to a function F
uniformly on [0,1—e/2]. Then, by the Clarkson-Erdos Theorem of the Introduction, F
is analytic on (0,1 — e/2). On the other hand

^A~l, xe[l-e,l-£/2]
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and since Am->ao, we have

F(x) = 0, x e [ l - £ , l -e/2]

which implies that FsO on [0,1 — e/2], a contradiction, since maxOSl51_e/2 |F(x)| = 1.
When 0<A!<l the scaling x-»x1Ml gives the desired result from the already proved
case. •

Inequality 2 (Remez-type Inequality for Lacunary Systems). / / Pespan{l,xx,xxl,...},
k> 1, and A c [0,1] is a closed set of measure at least e>0, then

| <ct,,\\P{x)\\A

where ce x depends only on e and L

Proof. The extremal polynomial from Mn=span{l,xx,xx2,...,xx"} is, by a simple
perturbation argument, just the Chebyshev polynomial Tn on A. By Lemmas 8 and 9
this polynomial is bounded on an interval of length cAe>0 (independently of A and ri)
in [0,1]. The rest now follows from Inequality 1 in the Interval Case. •

4. Comparison theorems

The following comparison theorem holds and shows that the Remez constant gets
smaller as the Muntz system gets sparser.

Theorem 2. Suppose {!,} and {y,} are increasing sequences of positive real numbers. If

and A is a compact set in (p, oo), where p>0. Then

S U D \\Li=oaix [|[Q.P]>SUD \\Li=obix llro.g]
(oO | |Li = O a i x \]A (b,) | |Li = o"iX | |x

Proof. A simple perturbation argument shows that the extremal polynomial for

(00

is just the Chebyshev polynomial Tn on A from span{\,xy\...,xy"). If not, it would be
possible to increase the value of p(y):=Y}=oaiy>'' f° r every fixed O^y^p without
increasing ||p(x)||,4. Now observe that for Tn
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| |Tn|| [O,p)=|rn(O)|

because Tn and hence T'n has no zeros on (0, p).
Now let Rnespan{l,xx',...,xXn} interpolate Tn at the zeros of Tn, and be normalized

so that Rn(0) = Tn(0). Theorem 1 of [15], now gives

\Rn(x)\^\Tn(x)\, xeA

and the result follows. •

Proofs of Theorem 1 and Inequality 1. Inequality 1 is immediate from the above
theorem and Inequality 2, while Theorem 1 with the remark right after it now follows
from Inequality 1 and the results of Clarkson and Erdos given in the Introduction.

5. An example

Theorem 3. Let {A,} be an arbitrary sequence of distinct positive real numbers. Then
there exists a non-empty perfect set E c [0,1] and Mu'ntz polynomials Pmespan
{xXo,xx\...} such that | |Pm| |£^l and | PJO) |-> oo when w-»oo.

Proof. Let M n : = span{x A o ,x A l , . . . , x X n } . Choose two distinct points x l i t and x l i 2 in
(0,1), By interpolating we can find a P , e M 2 such that

^i(xi.i) = ̂ i(*i.2)=0 and P1(0) = l.

Choose two disjoint closed intervals E1A and £1>2 so that xlAeEx A, x l t 2 e£ 1 > 2

l^ l for every x 6 £ M u £ l i 2 .

Assume that a sequence of Muntz polynomials {Pj}J=l and closed intervals EJk

(l^j^m, l^k^2J) have already been constructed so that the intervals Ejjc ( l^/c^2J)
are pairwise disjoint for every fixed ; (l^j^m), £J + 1 - 2i-i c £_,-,,• and Ej+l>2i c: Ej t

( l g y ^ m - 1 , Igig2-'-1), |Pj-(x)|gl on each EJ<k ( l ^ jgm, \£k^2j) and PJ(0) = 2-'
(l^j^m). Take two distinct points xm+li2,--i and xm+l >2l- from each Emi ( l ^ i ^2 m ) . By
interpolating we can find a Pm+1eM2m+i such that

m+l(xm+Uk) = 0, l^k^2m+1 and Pm+1(0)

For every i ( l^ i^2 m ) choose two disjoint closed intervals Em+1 2t-i and Em+l2i
 such

that xm + l i 2 i_1e£m + 1 | 2 i_1 , xm+u2ieEm+lf2i, £m+1>2f_1 u Em+U2t c Em,, and

|Pm+1(x)|^l for every xe {j £„+,.».

https://doi.org/10.1017/S0013091500018472 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018472


372 PETER BORWEIN AND TAMAS ERDELYI

Now let £: = f)m=iUit=i£m,*- Obviously E is perfect, PmeM2m and Pm(0) = 2m. Thus
the theorem is proved. •

6. Countable sets

Some of the subtleties of Muntz's theorem on subsets are illustrated by the following
pair of theorems.

Theorem 4. Let {!,} be an arbitrary sequence of distinct positive real numbers. Then
there exists a closed infinite set (a convergent sequence with its limit) S cz [0,1] such that
span{l,xx',xX2,...} is dense in C{_S] in the uniform norm.

Proof. Let _yx = 1/2 and assume that {);J}"=1 c (0,1) has already been constructed.
We choose a yn + l such that

(1) yn<yn+i<l
(2) l - C n + l ) - 1 ^ , , ^ ,
(3) I p W l ^ n + l ) - 1 for every peMn: = span{l,xAl,...,xA"} satisfying

j=l,2,...,n, and p(l) = 0, and for every yn + 1 ^ x ^ l .

The existence of such a yn+l follows from the following argument. In Mn we define the
norms

IHIi^Zlfljl and
J=0 j=l

of a Miintz polynomial p{x) = ao + Yj=i.ajx>'J which are equivalent to each other. If
peMn, |p(y,)|^l 0 = 1,2,...,«) and p(l) = 0, then | |p| |2^n, hence ||p||1 = /C with some
constant K depending only on n. Therefore there is a constant K' = K'(n) _ 1 such that
max1 / 2 S x Si |p'(x)|_/C' for every peHn, which, together with the Mean Value Theorem
and p(l) = 0, implies

\ x ) K ' < ( n + l)-1, peMn

if l-x^ftw+lJK')"1- Hence

is suitable. Obviously lima^O0yn= 1. Let S: = {yn}"=1 VJ{1}. We show that span{l,
xx',x*2,...} is dense in C[5]. Let / be continuous on S, without loss of generality we
may assume that / ( l ) = 0. Let L: = max;ceS|/(x)|. Choose pneMn (n=l,2,...) such that
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Pn(yj)=f(yj) C/ = l»2,...,n) and pn(l)=O (this is the interpolation property of a Haar
space). Then, from the choice of {yJ}jL1 we easily deduce that

max|/(x)-pn(x)|g——-
xeS n + l

which proves the theorem. •

Our next theorem, together with Miintz's and Tietze's theorems, will show that if {AJ
is a sequence of real numbers satisfying infi(Xi + l — Xi)>0, then span{l,
xx',xXl,...} is dense in C[S] in the uniform norm for every countable closed S c [0,1] if
andonly i fX," i lA=oo.

Theorem 5. Let {A,},^! be a sequence of positive real numbers such that Y,i°=i 1M.< 0 0

and inf,(A1 + 1—Af)>0. Then there is a countable closed subset S of [0,1] so that
span{l,xx\xX2,...} fails to be dense in C\_S] in the uniform norm.

Proof. For every neM, let £„ be the collection of the n+ 1 extreme points of the nth
Chebyshev polynomial rn = Tn{[0,A1,...,An]:[0,1]} of Mn and let £ = u^ = 1 £ n . Since
YT=i lMi<00> Lemma 4 gives 0<c: = inf {£\{0}}, hence we can choose three points
0<y 1 <y 2 <y 3 <c . Now let S = Ev{yuy1,yi}. By an observation of [1] we have
£" = {1}, where £' denotes the collection of the limit points of E. Therefore S" = {1} as
well, hence S is a closed countable set. Now let / be continuous on S, /(x) = 0 on [c, 1],
/(y1) = /(y3) = 2 and f(y2)= — 2. Assume that there is a pe Mn such that maxxeS|p(x) —
/(x) |^l /2. Then it is easy to check that p—TneMn has at least n+1 zeros in (0,1),
which is a contradiction. This finishes the proof. •

We remark that if {A,} is an arbitrary sequence of distinct positive real numbers then
there is a non-empty perfect set S a [0,1] such that span{xh, x*2,...} is dense in C[S~\
in the uniform norm. This can be obtained by straightforward modifications of the
proof of Theorem 3.
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