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Product decompositions of moment-angle
manifolds and B-rigidity

Steven Amelotte and Benjamin Briggs

Abstract. A simple polytope P is called B-rigid if its combinatorial type is determined by the
cohomology ring of the moment-angle manifold ZP over P. We show that any tensor product
decomposition of this cohomology ring is geometrically realized by a product decomposition of the
moment-angle manifold up to equivariant diffeomorphism. As an application, we find that B-rigid
polytopes are closed under products, generalizing some recent results in the toric topology literature.
Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring
admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex
decomposes as a join of full subcomplexes.

1 Introduction

Problems surrounding cohomological rigidity have received a great deal of
attention throughout the development of toric topology; for a recent overview,
we recommend [16] and the references therein. Recall that a family C of spaces
(or of smooth manifolds) is called cohomologically rigid if, for all X, Y ∈ C, a ring
isomorphism H∗(X) ≅ H∗(Y) implies that X and Y are homeomorphic (resp.
diffeomorphic). Toric topology associates with each simplicial complex K with m
vertices, the moment-angle complex ZK , a finite CW-complex with an action of the
torus T m = (S1)m , whose equivariant topology is intimately tied to the combinatorics
of K and the homological algebra of its Stanley–Reisner ring. For example, if
K = ∂P∗ for some simple polytope P, then ZP ∶= ZK has the structure of a smooth
T m-manifold. More generally, when the Stanley–Reisner ringZ[K] is Gorenstein,ZK
is a topological manifold called a moment-angle manifold. Computational evidence
and a lack of counterexamples (despite the attention of many authors) makes a positive
solution to the cohomological rigidity problem for this family of manifolds plausible.

An individual moment-angle manifold is said to be cohomologically rigid if its
homeomorphism type among all moment-angle manifolds is distinguished by its
cohomology ring. Since the combinatorial type of K determines ZK up to equivariant
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1314 S. Amelotte and B. Briggs

homeomorphism, one way to produce cohomologically rigid moment-angle
manifolds is to find simplicial complexes K whose combinatorial type is uniquely
determined by the ring H∗(ZK).

Question 1.1 Let K1 and K2 be simplicial complexes, and let k be a field. When
does a graded ring isomorphism H∗(ZK1 ; k) ≅ H∗(ZK2 ; k) imply a combinatorial
equivalence K1 ≃ K2?

The question above is due to Buchstaber [4], and simplicial complexes or simple
polytopes for which the answer is positive are known as B-rigid (see Section 3 for
precise definitions). Question 1.1 is reduced to a commutative algebraic problem by
(1) the Stanley–Reisner correspondence between simplicial complexes and square-
free monomial rings, and (2) an identification of H∗(ZK ; k) with the Tor-algebra of
the Stanley–Reisner ring k[K] (see Section 2).

B-rigid complexes seem to be rare in general (and indeed, combinatorially distinct
polytopes often define diffeomorphic moment-angle manifolds, see [5, Example 3.4]),
but examples to date have proven useful in establishing a variety of rigidity results
for moment-angle manifolds, (quasi)toric manifolds, small covers, and other related
spaces.

For example, flag simplicial 2-spheres without chordless cycles of length 4 were
shown to be B-rigid by Fan, Ma, and Wang [15], implying the cohomological rigidity
of a large class of moment-angle manifolds including ZP for all fullerenes P (i.e.,
simple 3-polytopes with only pentagonal and hexagonal facets). More generally,
this class of simplicial 2-spheres contains the dual simplicial complexes ∂P∗ of all
Pogorelov polytopes P, and their B-rigidity was used by Buchstaber et al. [5] to obtain
cohomological rigidity results for all quasitoric manifolds and small covers over these
3-polytopes.

Finite products of simplices are B-rigid by a result of Choi, Panov, and Suh [9]. This
was used to show any quasitoric manifold M with H∗(M) ≅ H∗(∏�

i=1 CPn i ) is in fact
homeomorphic to∏�

i=1 CPn i [9, Theorem 1.5]. Quasitoric manifolds over products of
simplices include an important family of toric varieties known as (generalized) Bott
manifolds, and here B-rigidity implies that if a quasitoric manifold has cohomology
isomorphic to that of a generalized Bott manifold, then their orbit spaces are combi-
natorially equivalent.

The B-rigidity of a prism (i.e., a product of a polygon and an interval) follows
from [8], and this result was generalized to the product of a polygon and any simplex
by Choi and Park in their study of projective bundles over toric surfaces [11]. We will
return to this example in Section 4.

These last examples motivate the question of whether B-rigid polytopes are closed
under products. This question is also raised in work of Bosio [2] where a weaker
property for polytopes, puzzle-rigidity, is shown to be closed under products. The
purpose of this short note is to answer this question affirmatively.

Theorem A The collection of B-rigid Gorenstein complexes is closed under finite joins.
Consequently, the collection of B-rigid polytopes is closed under finite products.
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This result substantially extends the class of known B-rigid polytopes, and
subsumes those products established to be B-rigid in [8, 9, 11]. We deduce Theorem A
from the following more general structure theorem for moment-angle manifolds.

Theorem B Let K be a simplicial complex on m vertices, and let k be a field. If K is
Gorenstein over k and the cohomology ring ofZK admits a tensor product decomposition

H∗(ZK ; k) ≅ A1 ⊗⋯⊗ A�

as graded k-algebras, then there is a T m-equivariant homeomorphism

ZK ≅ ZK1 ×⋯×ZK�

with H∗(ZK i ; k) ≅ A i for each i = 1, . . . , �.

The remainder of the paper is organized as follows: In Section 2, we review the rele-
vant background on simplicial complexes, Stanley–Reisner rings and moment-angle
complexes and collect some facts concerning their cohomology rings. In Section 3,
we define B-rigidity and prove Theorems A and B. In Section 4, we consider some
consequences of the results above for quasitoric manifolds. The cohomology rings of
these spaces are given by Artinian reductions of Stanley–Reisner rings, and the main
results of this section (Theorems 4.3 and 4.7) address a variant of Question 1.1 that
asks to what extent the orbit polytope of a quasitoric manifold M is determined by
H∗(M).

2 Preliminaries

Let k be a field. All graded algebras considered in this paper will be connected (that is,
nonnegatively graded with A0 = k) and of finite type. The term commutative graded
algebra will refer to a graded algebra that is commutative in the graded sense. All
tensor products are taken over k.

2.1 Simplicial complexes and Stanley–Reisner rings

Let K be an abstract simplicial complex on the vertex set [m] = {1, . . . , m}. We will
always assume that ∅ ∈ K and that {i} ∈ K for all i ∈ [m].

For a subset I ⊆ [m], the full subcomplex of K on I is defined by

KI = {σ ∈ K ∶ σ ⊆ I}.

A missing face of K is a minimal non-face, that is, a subset I ⊆ [m] with I ∉ K and
J ∈ K for every proper subset J ⊂ I (equivalently, KI = ∂Δ∣I∣−1). We will write MF(K)
for the set of missing faces of K.

The join of two simplicial complexes K1 and K2 on disjoint vertex sets is defined to
be the simplicial complex

K1 ∗ K2 = {σ ∪ τ ∶ σ ∈ K1 , τ ∈ K2}.

In particular, K ∗ Δ0 is called the cone over K. Note that a simplicial complex on a
given vertex set [m] is uniquely determined by its set of missing faces and that K
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1316 S. Amelotte and B. Briggs

decomposes as K = KI ∗ KJ if and only if the vertex set admits a partition [m] = I ⊔ J
with the property that MF(K) =MF(KI) ⊔MF(KJ).

The polynomial algebra S = k[v1 , . . . , vm], having variables in bijection with the
vertices of K, is naturally graded by Z

m . We refer to this grading as the multidegree
and use the notation mdeg(v e1

1 . . . v em
m ) = (e1 , . . . , em).

The Stanley–Reisner ring of K is the multigraded algebra

k[K] = S/(v i1 . . . v i t ∶ {i1 , . . . , it} ∈MF(K)).
The Koszul complex of the Stanley–Reisner ring is the differential graded algebra

Kosk[K](v1 , . . . , vm) = (k[K] ⊗ Λ(u1 , . . . , um), d), d(u i) = v i ,(1)

with its usual exterior algebra product and each u i in homological degree 1. The
Tor-algebra

TorS
∗(k[K], k) = H∗(Kosk[K](v1 , . . . , vm))

inherits its product from the Koszul complex. It is naturally graded by Z ×Zm ; we
write TorS

i (k[K], k)J for the subspace of homological degree i and multidegree J.
A multidegree J ∈ Zm is said to be square-free if each of its entries is 0 or 1. The set

of square-free multidegrees can be identified with the set of subsets of [m], and we
make this identification in the next result, which expresses TorS

∗(k[K], k) in terms of
the reduced simplicial cohomology groups of full subcomplexes of K.

Theorem 2.1 (Hochster’s formula [17]) If J is square-free, then

TorS
i (k[K], k)J ≅ H̃∣J∣−i−1(KJ ; k),

with the convention that H̃−1(K∅; k) = k. Otherwise TorS
i (k[K], k)J = 0.

Remark 2.2 Hochster’s formula allows us to identify multidegrees of TorS
∗(k[K], k)

with subsets of [m], and we will do this henceforth. It follows as well that for any subset
J ⊆ [m] the graded subspace

TorS
∗(k[K], k)⊆J =⊕

I⊆J
TorS
∗(k[K], k)I

is a subalgebra of TorS
∗(k[K], k), and moreover that the natural projection

proj⊆J ∶TorS
∗(k[K], k) �→ TorS

∗(k[K], k)⊆J

is an algebra homomorphism.

Lemma 2.3 In homological degree 1, a k-basis for TorS
1 (k[K], k) is given by

{[v i1 . . . v i t u i t+1] ∶ {i1 , . . . , it+1} ∈MF(K)} .

Proof A direct computation with the Koszul complex shows that v i1 . . . v i t u i t+1

is closed and not exact when {i1 , . . . , it+1} ∈MF(K). The resulting nonzero classes
[v i1 . . . v i t u i t+1] are linearly independent since they lie in distinct multidegrees, and
therefore form a basis since dimk TorS

1 (k[K], k) = ∣MF(K)∣, the minimal number of
generators of the Stanley–Reisner ideal. ∎
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2.2 Moment-angle complexes and their cohomology rings

We now recall some notions from toric topology, largely in order to lay out our
notation. Fix as before a simplicial complex K on a vertex set [m]. Identify D2 and S1

with the unit disk in C and its boundary, respectively.
The moment-angle complex over K is the subspace of the polydisk (D2)m defined by

ZK = ⋃
σ∈K
(D2 , S1)σ ⊆ (D2)m ,

where

(D2 , S1)σ = {(z1 , . . . , zm) ∈ (D2)m ∶ z i ∈ S1 if i ∉ σ} .

The coordinatewise action of the m-torus T m = (S1)m on (D2)m restricts to an
action of T m on ZK . The equivariant cohomology ring H∗T m(ZK ; k) is naturally
a graded module over H∗(BT m ; k) ≅ S (with polynomial generators v1 , . . . , vm in
cohomological degree 2), and there is an isomorphism of graded S-modules

H∗T m(ZK ; k) ≅ k[K],

see, for example, [6, Corollary 4.3.3].
For the ordinary cohomology, the cellular cochain complex of ZK can be shown

to be quasi-isomorphic to the Koszul complex (1), which leads to the following
fundamental result.

Theorem 2.4 [6, Theorem 4.5.4] There is an isomorphism of graded algebras

H∗(ZK ; k) ≅ TorS
∗(k[K], k),

where

Hn(ZK ; k) ≅ ⊕
n=2∣J∣−i

TorS
i (k[K], k)J .

In particular, the cohomology ring of ZK obtains a multigrading from the
Tor-algebra. Under the isomorphism of Theorem 2.4, the projection operators

proj⊆J ∶TorS
∗(k[K], k) �→ TorS

∗(k[K], k)⊆J

of Remark 2.2 can be identified with homomorphisms

j∗∶H∗(ZK ; k) �→ H∗(ZK J ; k)

induced by the natural maps j∶ZK J → ZK coming from inclusions of full subcom-
plexes KJ → K.

Definition 2.5 A commutative graded k-algebra A is a Poincaré duality algebra of
dimension n if it is finite dimensional, and if the bilinear forms

Ai ⊗ An−i → k, a ⊗ b ↦ ε(ab)

are nondegenerate for some homogeneous map ε∶A→ k of degree −n.
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1318 S. Amelotte and B. Briggs

Lemma 2.6 [13, Proposition 21.5] A finite dimensional, connected, graded algebra A
is Poincaré duality of dimension n if and only if the socle soc(A) = annA(A⩾1) is one-
dimensional and concentrated in degree n. In this case, the orientation map ε∶A→ k
corresponds to a choice of isomorphism soc(A) → k.

Lemma 2.7 Let A be a Poincaré duality algebra of dimension n. If there is an
isomorphism A ≅ A1 ⊗ A2 of graded algebras, then A1 and A2 are Poincaré duality
algebras of dimension n1 and n2, respectively, with n1 + n2 = n.

Proof Since A ≅ A1 ⊗ A2 implies soc(A) ≅ soc(A1) ⊗ soc(A2), the socle of A is
one-dimensional if and only if so are the socles of A1 and A2. ∎

A classical result of Avramov and Golod [1] characterizes Poincaré duality for the
Koszul homology of a local ring in terms of the Gorenstein property. The simplicial
complex K is called Gorenstein over k if the Stanley–Reisner ring k[K] is a Gorenstein
ring, and K is simply called Gorenstein if it is Gorenstein over every field k. Moreover,
K is called Gorenstein∗ if it is Gorenstein and K is not a cone (i.e., K = core(K)).

Combined with Theorem 2.4, a graded version of Avramov–Golod’s theorem (see
[3, Theorem 3.4.5]) leads to the following characterization of Poincaré duality for
moment-angle complexes.

Theorem 2.8 [6, Theorem 4.6.8] The cohomology ring H∗(ZK ; k) is a Poincaré
duality algebra if and only if K is Gorenstein over k.

Remark 2.9 The topology behind this characterization is clarified by a result of Cai
which states that ZK is a closed topological (m + n)-manifold precisely when K is a
generalized homology (n − 1)-sphere [7, Corollary 2.10], which in turn is equivalent
to the condition that K is Gorenstein∗ by a well-known result of Stanley [19].

Gorenstein∗ complexes of particular importance in toric topology arise from
simple polytopes as follows. Let P be a simple (convex) polytope of dimension n, and
denote the facets (faces of dimension n − 1) of P by F1 , . . . , Fm . The simplicial complex
K dual to P has vertex set [m] = {1, . . . , m} and J ⊆ [m] belongs to K if and only if
⋂i∈J Fi ≠ ∅. Equivalently, K is the boundary of the polytope dual to P, i.e., K = ∂P∗.

If K′ is the simplicial complex dual to another simple polytope P′, then it is easy
to see that the simplicial complex dual to the product P × P′ is the join K ∗ K′.

Through this construction, we associate with P the Stanley–Reisner ring and
moment-angle manifold

k[P] = k[K] and ZP = ZK .

In particular, if k[P] is generated by v1 , . . . , vm as in Section 2.1, then by Theorem 2.4

H∗(ZP ; k) ≅ H∗(Kosk[P](v1 , . . . , vm)).

Moment-angle manifolds corresponding to simple polytopes can be given smooth
structures (for which the T m-action is smooth) by identifying ZP with a nonsingular
intersection of quadrics in C

m (see [6, Section 6.1] for details).
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3 B-rigidity

In this section, we prove Theorem B (Theorem 3.2) and use it to derive some
corollaries, including Theorem A (Corollary 3.5). We begin with a definition.

A simplicial complex K with K = core(K) is called B-rigid over k if for every K′
with K′ = core(K′), a graded ring isomorphism H∗(ZK ; k) ≅ H∗(ZK′ ; k) implies a
combinatorial equivalence K ≃ K′. We simply say that K is B-rigid if it is B-rigid over
every field k.

Remark 3.1 B-rigidity was introduced and defined as above in [9] to address
Question 1.1 (cf. [4, Lecture IV and Problem 7.6]), and has since been studied in [5, 10,
14–16], where some variations on the definition above have appeared. For example,
in [16], bigraded isomorphisms of cohomology rings are used to define B-rigidity
while complexes satisfying the definition above are called strongly B-rigid. In [15], a
complex is called B-rigid when it is B-rigid over Z in the sense above. We note that
any complex satisfying the definition above is also B-rigid in the bigraded and integral
senses.

In [5, 10, 14], the notion of B-rigidity is defined for simple polytopes rather
than simplicial complexes. A simple polytope P is called B-rigid over k if for every
simple polytope P′, a graded ring isomorphism H∗(ZP ; k) ≅ H∗(ZP′ ; k) implies a
combinatorial equivalence P ≃ P′. As before, we say that P is B-rigid if it is B-rigid
over every field k. Our main results apply in the more general context of simplicial
complexes.

Theorem 3.2 Let K be a simplicial complex on vertex set [m], and let k be a field. If K is
Gorenstein over k and the cohomology ring ofZK admits a tensor product decomposition

H∗(ZK ; k) ≅ A1 ⊗⋯⊗ A�

as graded k-algebras, then there is a T m-equivariant homeomorphism

ZK ≅ ZK1 ×⋯×ZK�
,

where H∗(ZK i ; k) ≅ A i for each i = 1, . . . , �.

Proof Note that if K = K′ ∗ Δ0, then ZK is T m-equivariantly homeomorphic to
ZK′ ×ZΔ0 = ZK′ × (D2)with T m = T m−1 × S1 acting coordinatewise on the product.
We may therefore assume without loss of generality that K is not a cone and hence
that K is Gorenstein∗ over k.

It will suffice to assume � = 2, so suppose

φ∶A1 ⊗ A2 �→ H∗(ZK ; k)

is an isomorphism of graded k-algebras. Since K is Gorenstein∗ over k, the cohomol-
ogy ring H∗(ZK ; k) is a Poincaré duality algebra by Theorem 2.8, and so are A1 and
A2 by Lemma 2.7. Let τ i ∈ A i be a generator of the highest degree nonzero graded
component of A i , i = 1, 2. Then τ ∶= φ(τ1) ⋅ φ(τ2) generates the top cohomology
group of ZK , and it follows from the Gorenstein∗ property that τ is homogeneous
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1320 S. Amelotte and B. Briggs

of multidegree mdeg(τ) = [m]. Identifying H∗(ZK ; k) with ⊕J⊆[m] TorS
∗(k[K], k)J

using Theorem 2.4, write

φ(τ i) = ∑J⊆[m]φ(τ i)J , φ(τ i)J ∈ TorS
∗(k[K], k)J

for i = 1, 2 and choose multidegrees U , V ⊆ [m] such that φ(τ1)U ⋅ φ(τ2)V = cτ for
some nonzero c ∈ k. Note that U ∩ V = ∅ by square-freeness (Theorem 2.1), and
U ∪ V = [m] since mdeg(τ) = [m].

Next, define subalgebras of H∗(ZK ; k) by

Ã1 = proj⊆U(φ(A1)) and Ã2 = proj⊆V(φ(A2))

using the projections from Remark 2.2. Since proj⊆U φ(τ1) ≠ 0, and every nonzero
element of φ(A1) divides φ(τ1) by Poincaré duality, it follows that proj⊆U ∣φ(A1) is
injective and therefore defines an isomorphism φ(A1) ≅ Ã1. Similarly, φ(A2) ≅ Ã2.
Consider the homomorphism of graded algebras Ã1 ⊗ Ã2 → H∗(ZK ; k) defined by
multiplication. Since Ã1 ⊗ Ã2 is clearly a Poincaré duality algebra with socle generated
by φ(τ1)U ⋅ φ(τ2)V , this map is injective and therefore an isomorphism as dimk(Ã1 ⊗
Ã2) = dimk(A1 ⊗ A2) = dimk H∗(ZK ; k).

Finally, in homological degree 1, observe that the decomposition H∗(ZK ; k) ≅
Ã1 ⊗ Ã2 implies that each indecomposable generator

[v i1 . . . v i t u i t+1] ∈ TorS
1 (k[K], k) ⊆ H∗(ZK ; k)

of Lemma 2.3 must lie either in Ã1 or Ã2 (since it is homogeneous of multidegree
{i1 , . . . , it+1} and Ã1 ⊆ TorS

∗(k[K], k)⊆U , Ã2 ⊆ TorS
∗(k[K], k)⊆V ). In particular, each

missing face σ = {i1 , . . . , it+1} ∉ K satisfies either σ ∈ U or σ ∈ V , that is, MF(K) =
MF(KU) ⊔MF(KV). It follows that K = KU ∗ KV and hence ZK is equivariantly
homeomorphic to ZKU ×ZKV . Note that since H∗(ZKU ; k) ≅ TorS

∗(k[K], k)⊆U
and H∗(ZKV ; k) ≅ TorS

∗(k[K], k)⊆V , both inclusions Ã1 ⊆ TorS
∗(k[K], k)⊆U and

Ã2 ⊆ TorS
∗(k[K], k)⊆V must be equalities for dimension reasons. Therefore

H∗(ZKU ; k) ≅ Ã1 ≅ φ(A1) ≅ A1 ,

and similarly H∗(ZKV ; k) ≅ A2, as desired. ∎

The next corollary follows immediately from the proof above. It is interesting to
note that any product decomposition of a moment-angle manifold up to homotopy
can be improved to one up to T m-equivariant homeomorphism.

Corollary 3.3 Let K be a Gorenstein simplicial complex on the vertex set [m]. The
following conditions are equivalent:
(a) H∗(ZK) decomposes nontrivially as a tensor product.
(b) ZK is homotopy equivalent to a product of non-contractible spaces.
(c) ZK is T m-equivariantly homeomorphic to a product of non-contractible moment-

angle manifolds.
(d) K = K1 ∗ K2, where K i is not a simplex, i = 1, 2.
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Remark 3.4 Of course, for a moment-angle manifold over a simple polytope P,
it follows from the results above that a nontrivial tensor product decomposition of
H∗(ZP ; k) implies a product decomposition of P. In this case, the T m-equivariant
homeomorphisms of Theorem 3.2 and Corollary 3.3 can be replaced by T m-
equivariant diffeomorphisms.

Corollary 3.5 The collection of B-rigid Gorenstein complexes is closed under finite
joins. Consequently, the collection of B-rigid polytopes is closed under finite products.

Proof Let K1 and K2 be B-rigid Gorenstein complexes. To see that K1 ∗ K2 is
B-rigid, assume there is a graded ring isomorphism H∗(ZK1∗K2 ; k) ≅ H∗(ZL ; k)
for some complex L with L = core(L). Then, since H∗(ZK1∗K2 ; k) ≅ H∗(ZK1 ; k) ⊗
H∗(ZK2 ; k), the proof of Theorem 3.2 implies that L decomposes as a join L1 ∗ L2
with H∗(ZL i ; k) ≅ H∗(ZK i ; k) for i = 1, 2. It now follows from the B-rigidity of K i
that there is a combinatorial equivalence K i ≃ L i for i = 1, 2, and hence L ≃ K1 ∗ K2.
Therefore K1 ∗ K2 is B-rigid. ∎

4 Quasitoric manifolds

In their foundational work [12], Davis and Januszkiewicz introduced the notion of a
quasitoric manifold as a topological generalization of a nonsingular projective toric
variety (or toric manifold). In this section, we discuss some implications of the results
of the previous section for quasitoric manifolds.

Let P be a simple convex polytope of dimension n. A quasitoric manifold over P is a
closed smooth 2n-dimensional manifold M equipped with a smooth locally standard
action of T n such that the orbit space M/T n can be identified with P. (A locally
standard T n-action is one which is locally modeled on the standard action of T n on
C

n , and this property implies that the orbit space is a manifold with corners.)
Every quasitoric manifold over P arises as a quotient M ≅ ZP/T m−n for some

subtorus T m−n ⊆ T m that acts freely on ZP [6, Proposition 7.3.12], resulting in a
principal fibration sequence

T m−n �→ ZP �→ M .

The cohomology of quasitoric manifolds was described in [12]. Associated with the
T n-action on M, there is a regular sequence t1 , . . . , tn of linear elements in k[P] such
that

H∗(M; k) ≅ k[P]/(t1 , . . . , tn).(2)

Since t1 , . . . , tn is a regular sequence, it follows from Theorem 2.4 that there is an
isomorphism (cf. [6, Lemma A.3.5])

H∗(ZP ; k) ≅ TorS/J
∗ (k[P]/J , k),(3)

where J denotes the ideal generated by (homogeneous lifts to S of) t1 , . . . , tn .
As a consequence of the isomorphisms (2) and (3), we emphasize that the cohomol-

ogy ring of any quasitoric manifold over P determines, in particular, the cohomology
ring of the moment-angle manifold over P.

https://doi.org/10.4153/S0008439523000383 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000383


1322 S. Amelotte and B. Briggs

Lemma 4.1 [9, Lemma 3.7] Let M and M′ be quasitoric manifolds over simple
polytopes P and P′, respectively. If there is a graded ring isomorphism H∗(M; k) ≅
H∗(M′; k), then there is a graded ring isomorphism H∗(ZP ; k) ≅ H∗(ZP′ ; k).

Remark 4.2 The cohomology ring of a quasitoric manifold M contains more
information about its orbit polytope P than the ring H∗(ZP) does, but it does not
determine the combinatorial type of P in general. A simple polytope P is called
C-rigid (over k) if its combinatorial type is determined by H∗(M; k) for any quasitoric
manifold M over P—that is, if for every quasitoric manifold M′ over P′, a graded ring
isomorphism H∗(M; k) ≅ H∗(M′; k) implies a combinatorial equivalence P ≃ P′ (cf.
[4, Definition A.11], [9, Definition 1.2]). By Lemma 4.1, all B-rigid polytopes are
C-rigid. Examples of C-rigid polytopes that are not B-rigid are given in [10], while
the 3-polytopes described in [5, Example 3.4] are neither B-rigid nor C-rigid.

Although it follows from Theorem 3.2 and Lemma 4.1 that any product of B-rigid
polytopes is C-rigid, it is not clear whether the class of C-rigid polytopes is closed
under products. In this direction, we have the following result.

Theorem 4.3 Let M be a quasitoric manifold over a simple polytope P. If P is
indecomposable, then H∗(M; k) cannot be decomposed as a nontrivial tensor product
for any field k, and, in particular, M is indecomposable up to homotopy.

Proof We first note, with notation as above, that for any basis z1 , . . . , zm−n of
H2(M; k) there are isomorphisms

H∗(KosH∗(M ;k)(z1 , . . . , zm−n)) ≅ H∗(Kosk[P](t1 , . . . , tn , z1 , . . . , zm−n))
≅ H∗(Kosk[P](v1 , . . . , vm))
≅ H∗(ZP ; k);

the first isomorphism follows from [3, Corollary 6.1.13 (b)]; the second isomorphism
exists because t1 , . . . , tn , z1 , . . . , zm−n generate the same ideal as u1 , . . . , um , and there-
fore have isomorphic Koszul complexes; and the third isomorphism is Theorem 2.4.

Now suppose that H∗(M; k) ≅ A1 ⊗ A2, with neither A1 nor A2 isomorphic to k.
Take bases z1 , . . . , z i of A2

1 and z i+1 , . . . , zm−n of A2
2. The Künneth isomorphism yields

H∗(KosA1(z1 , . . . , z i)) ⊗H∗(KosA2(z i+1 , . . . , zm−n))
≅ H∗(KosA1⊗A2(z1 , . . . , zm−n)).

We may use the chain of isomorphisms above to conclude that this is isomorphic to
H∗(ZP ; k), since H2(M; k) ≅ A2

1 ⊕ A2
2. Thereby, we obtain a tensor product decom-

position of H∗(ZP ; k). By Corollary 3.3, the polytope P decomposes accordingly into
a product of polytopes. ∎

Remark 4.4 According to Theorem 4.3, if the cohomology H∗(M) of a quasitoric
manifold M over P admits a nontrivial tensor product decomposition, then the
polytope P decomposes as a product. We note that, unlike the case of moment-
angle manifolds, the converse of this result is not true: many quasitoric manifolds
over products of polytopes have indecomposable cohomology rings. For instance,
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the connected sum CP3#CP3 equipped with an appropriate T3-action is a quasitoric
manifold over the prism Δ1 × Δ2, while H∗(CP3#CP3) admits no nontrivial tensor
product decomposition.

Since a simplex Δn is trivially B-rigid, Corollary 3.5 implies that B-rigid polytopes
are closed under products with simplices. We next consider a consequence of this fact
for quasitoric manifolds and their orbit polytopes.

We first review a common method for constructing new quasitoric manifolds
from a given one M. Let E = ⊕�

i=0 ξ i be a Whitney sum of complex line bundles
over M. Removing the zero section and quotienting by theC∗-action along each fiber,
we obtain the projectivization P(E) with fiber CP�. Starting with M = {point}, for
example, and iterating this construction yields a tower of projective bundles

Bh → Bh−1 →⋯→ B1 → M = {point},

called a generalized Bott tower, where B j = P (⊕� j
i=0 ξ i) for some complex line bundles

ξ0 , . . . , ξ� j over B j−1. In this case, the generalized Bott manifold Bh at height h is a
quasitoric manifold (in fact, a smooth projective toric variety) over ∏h

i=1 Δ�i . Note
that since a product of simplices is B-rigid and hence C-rigid, generalized Bott
manifolds provide a large class of quasitoric manifolds whose cohomology rings
uniquely determine their orbit polytopes.

Let Gm denote the m-gon, m ⩾ 3. In [11], Choi and Park prove that the product of a
simplex and a polygon is B-rigid and use this to obtain the following result. Following
[11], we call P(E) a projective bundle only when the vector bundle E is a Whitney sum
of complex line bundles, as above.

Theorem 4.5 [11, Corollary 4.1] Let P(E) be a projective bundle over a 4-dimensional
quasitoric manifold. If the cohomology ring of a quasitoric manifold M is isomorphic to
that of P(E), then the orbit space of M is combinatorially equivalent to Δ� ×Gm .

Using Corollary 3.5, we can extend the result above in two ways. First, since a
4-dimensional quasitoric manifold is precisely a quasitoric manifold over a (B-rigid)
polygon Gm , we can generalize to higher dimensions by replacing the role of the
polygon with a B-rigid polytope Q of arbitrary dimension. Second, we can consider
towers of iterated projective bundles starting with a quasitoric manifold over Q since
a B-rigid polytope remains so after taking a product with a simplex any number of
times.

We will need the following lemma, which is well known for smooth projective toric
varieties.

Lemma 4.6 Let M be a quasitoric manifold over a simple polytope Q. If P(E) is a
projective bundle over M, then P(E) is a quasitoric manifold over Δ� × Q.

Proof Assume P(E) is a projective bundle over a quasitoric manifold M2n with
M2n/T n = Q. Then E = ⊕�

i=0 ξ i for some complex line bundles ξ0 , . . . , ξ� over M2n ,
so E has a T�+1-action defined by coordinatewise multiplication along each fiber.
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Moreover, since the fiber inclusion ι∶M2n → ET n ×T n M2n of the Borel construction
induces a surjection ι∗∶ k[Q] → k[Q]/(t1 , . . . , tn), the first Chern class of each line
bundle satisfies c1(ξ i) ∈ ι∗(H2

T n(M2n ;Z)) and it follows from [18, Theorem 1.1] that
the locally standard T n-action on M2n lifts to a linear action on the total space of
each ξ i . The resulting action on E makes E → M2n a T n-equivariant vector bundle,
and since this action commutes with the T�+1-action described above, these define
an action of T n+�+1 on E. The induced T n+�-action on P(E) is a locally standard
half-dimensional torus action giving P(E) the structure of a quasitoric manifold
over Δ� × Q, since the orbit space CP�/T� of the standard action on the fiber can
be identified with Δ�, and M2n/T n = Q. ∎

Theorem 4.7 Let Q be a B-rigid polytope, and let P(E) be an iterated projective bundle
over any quasitoric manifold over Q. If the cohomology ring of a quasitoric manifold M
is isomorphic to that of P(E), then the orbit space of M is combinatorially equivalent to
∏h

i=1 Δ�i × Q.

Proof Let N2n be a quasitoric manifold with N2n/T n = Q. If P(E) is an iterated
projective bundle of height h over N2n , then iteratively applying Lemma 4.6 shows
that P(E) is a quasitoric manifold over a polytope ∏h

i=1 Δ�i × Q. Now if M is a
quasitoric manifold over some simple polytope P with H∗(M; k) ≅ H∗(P(E); k),
then by Lemma 4.1, there is an isomorphism of graded rings

H∗(ZP ; k) ≅ H∗(Z∏h
i=1 Δ�i×Q ; k).

Since ∏h
i=1 Δ�i × Q is B-rigid by Corollary 3.5, P is combinatorially equivalent to

∏h
i=1 Δ�i × Q. ∎
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