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Endomorphism Rings of Finite
Global Dimension

Graham J. Leuschke

Abstract. For a commutative local ring R, consider (noncommutative) R-algebras Λ of the form Λ =

EndR(M) where M is a reflexive R-module with nonzero free direct summand. Such algebras Λ of

finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of

singularities of Spec R. For example, Van den Bergh has shown that a three-dimensional Gorenstein

normal C-algebra with isolated terminal singularities has a crepant resolution of singularities if and

only if it has such an algebra Λ with finite global dimension and which is maximal Cohen–Macaulay

over R (a “noncommutative crepant resolution of singularities”). We produce algebras Λ = EndR(M)

having finite global dimension in two contexts: when R is a reduced one-dimensional complete local

ring, or when R is a Cohen–Macaulay local ring of finite Cohen–Macaulay type. If in the latter case R

is Gorenstein, then the construction gives a noncommutative crepant resolution of singularities in the

sense of Van den Bergh.

This paper takes for its starting point two results of Auslander.

Theorem A Let Λ be a left Artinian ring with radical r and assume that r
n

= 0,

r
n−1 6= 0. Set M =

⊕n
i=1 Λ/r

i . Then Γ := EndΛ(M)op is coherent of global dimension

at most n + 1 [1, §III.3].

Theorem B Let S = k[[x, y]] be the ring of formal power series in two variables over a

field k and let G be a finite subgroup of GL2(k) with |G| invertible in k. Set R = SG.

Then A := EndR(S)op has global dimension at most two [2].

These theorems both relate to Auslander’s notion of representation dimension, in-

troduced in [1] as a way to measure homologically the failure of an Artin algebra to

have finite representation type. The representation dimension of an Artin algebra Λ

can be defined as

repdim Λ = inf{gldim EndΛ(M)},

where the infimum is taken over all finitely generated modules M which are genera-

tor-cogenerators for mod Λ. Note that Theorem A does not prove finiteness of the

representation dimension; while M has a nonzero free direct summand, it need not

be a cogenerator. Auslander showed in [1] that repdim Λ ≤ 2 if and only if Λ has

finite representation type, and in 2003, Rouquier [19] gave the first examples with

repdim Λ > 3. Iyama has recently shown [15] that the representation dimension of

an Artin algebra is always finite.
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We extend Theorems A and B in two directions. In each case, we consider com-

mutative Noetherian (semi)local base rings.

First, we fill a gap between Auslander’s theorems: the case of dimension one. A

reduced complete local ring R of dimension 1 always has a finitely generated module

whose endomorphism ring has finite global dimension, the normalization R̃. How-

ever, R̃ is never a generator in the category of R-modules, unless R is already a dis-

crete valuation ring. Theorem 4 produces a finitely generated generator M such that

EndR(M) has finite global dimension. Specifically, M can be taken to be a direct

sum of certain overrings S between R and R̃, and the global dimension of EndR(M)

is bounded by the multiplicity of R. This completes a coherent picture for rings of

dimension at most 2; see [20, 21] for related progress in dimension 3.

We also generalize to dimensions d > 2 by exploiting the connection with fi-

nite representation type. The two-dimensional quotient singularities C[[x, y]]G, with

G ⊆ GL2(C) a finite group, are precisely the two-dimensional complete local rings

with residue field C and having finite Cohen–Macaulay (CM) type [2, 9, 12]. More-

over, C[[x, y]] contains as R-direct summands all indecomposable maximal Cohen–

Macaulay R-modules [12]. Theorem 6 states that if R is a d-dimensional Cohen–

Macaulay local ring of finite Cohen–Macaulay type, and if M is the direct sum of

all indecomposable maximal Cohen–Macaulay R-modules, then EndR(M) has global

dimension at most max{2, d}. It follows that the representation dimension of a com-

plete Cohen–Macaulay local ring of finite Cohen–Macaulay type is finite. (See Defi-

nition 7 for the definition of representation dimension in this context.)

The proofs of both theorems are based on projectivization [3, II.2]. In the present

contexts, this means that the functor HomR(M,−) induces an equivalence of cat-

egories between add(M), the full subcategory of R-modules which are direct sum-

mands of finite direct sums of copies of M, and the full subcategory of finitely gener-

ated projective modules over A := EndR(M)op. In particular, if M is an R-generator,

then M has an R-free direct summand, and so M is a projective A-module. Aus-

lander’s original proof of Theorem A uses this technique, and the proofs of our two

main results are very close in spirit to his method. Iyama has refined Auslander’s

methods into a theory of rejective subcategories [13, 14], which he uses to prove that

the representation dimension of an order over a complete discrete valuation ring is

finite.

Section 3 discusses the implications of Theorem 6 to the theory of non-commu-

tative crepant resolutions [21]. If R is Gorenstein of dimension 2 or 3 and has finite

Cohen–Macaulay type, Theorem 6 does indeed produce a non-commutative crepant

resolution of R. If R is not Gorenstein, then non-commutative crepant resolutions

are not yet defined, but Theorem 6 still gives an analogue. We discuss advantages and

disadvantages of this analogy.

The rings under consideration will be Noetherian, and all modules finitely gener-

ated. We abbreviate HomR(−,−) by (−,−).

1 Dimension One

In this section we consider reduced one-dimensional semilocal rings R. We always

assume that R is complete with respect to its Jacobson radical, equivalently that R
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is isomorphic to a direct product of complete local rings. Let K be the total quo-

tient ring of R, obtained by inverting all nonzerodivisors of R. Recall that a finitely

generated R-module M is torsion-free provided the natural map M → M ⊗R K is

injective.

Our goal requires us to consider the module theory of certain birational extensions

of reduced rings, that is, extensions R ⊆ S where S is a finitely generated R-module

contained in the total quotient ring K of R. Of course, in this situation every finitely

generated torsion-free S-module is a finitely generated torsion-free R-module, but

not vice versa. The following lemma, however, follows easily by clearing denomina-

tors.

Lemma 1 Let R ⊆ S be a birational extension of reduced rings as above. Let C and

D be finitely generated torsion-free S-modules. Then HomR(C, D) = HomS(C, D).

Furthermore, if M is a finitely generated torsion-free R-module, and f : C → M is an

R-linear map, then the image of f is an S-module.

For the remainder of this section, (R, m) will be a reduced complete local ring of

dimension one with total quotient ring K and integral closure R̃. Note that K is a

direct product of finitely many fields, and R̃ is correspondingly a direct product of

discrete valuation rings. Since R is complete and reduced, R̃ is a finitely generated

R-module [18, Theorem 11.7].

Set R(1) := EndR(m). Since m contains a nonzerodivisor, R(1) embeds naturally

into K (by sending f to f (r)/r, which is independent of the nonzerodivisor r). It is

well known that in fact R(1) ⊆ R̃. Furthermore, R ( R(1) unless R = R̃. Now, R(1)

may no longer be local (if, for example, we take R = k[[x, y]]/(xy)), but by Hensel’s

Lemma, R(1) is a direct product of complete local rings, R(1)
= R(1)

1 × · · · ×R(1)
n1

, each

of which is again reduced.

Iterating this procedure by taking the endomorphism ring of the maximal ideal

of each of the local rings R(1)
ℓ , ℓ = 1, . . . , n1, gives a family of reduced complete

local rings {R(i)
j }. Since R̃/R is an R-module of finite length and each R(i)

j is trapped

between some R(i−1)
l and R̃, this family is finite. It follows that the lengths of the

chains

(‡) R ( R(1)
j1

( · · · ( R(n)
jn

= R̃,

are bounded above, where each R(i)
ji

is a direct factor of the endomorphism ring of

the maximal ideal of R(i−1)
( ji−1).

Let E(R) denote the family of rings obtained in this way, including R itself. Put

A(R) = add(E(R)), the full subcategory of mod-R containing all direct summands of

finite direct sums of rings in E(R), considered as R-modules. If S is a direct product

of complete local rings Si , j = 1, . . . , m, let E(S) be the corresponding union of the

E(S j ), and A(S) = add(E(S)) the full subcategory containing all direct summands of

finite direct sums of rings in E(S), again considered as S-modules.

Even though we begin with a local ring, the proof of Theorem 4 requires dealing

with semilocal rings that crop up along the way. Lemma 2 allows us to reduce to the

local case each time.
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Lemma 2 Let S = S1 × · · · × Sk be a direct product of rings. Assume that for each

i = 1, . . . , k and for each torsion-free Si-module D, there is an exact sequence

(1.1) 0−→Ci,mi
−→Ci,mi−1−→· · ·−→Ci,0−→D−→0

with each Ci j ∈ A(Si) and such that

0−→(X,Ci,mi
)−→(X,Ci,mi−1)−→· · ·−→(X,Ci,0)−→(X, D)−→0

is exact for all X ∈ A(Si). Then for each torsion-free S-module E, there exists an exact

sequence

(1.2) 0−→Cm−→Cm−1−→· · ·−→C0−→E−→0

with each C j ∈ A(Si) and such that

(1.3) 0−→(X,Cm)−→(X,Cm−1)−→· · ·−→(X,C0)−→(X, E)−→0

is exact for all X ∈ A(S).

Proof Let E be a torsion-free S-module. Then E ∼=
∏n

i=1 eiE, where ei is a complete

set of orthogonal idempotents for the decomposition S = S1 × · · · × Sn. The exact

sequence (1.2) can be taken to be the direct sum of the sequences (1.1) with D = eiE.

It remains to show that (1.3) is exact for all X ∈ A(S). Since HomS(Y, Z) = 0

whenever Y is an Si-module and Z is an S j- module with i 6= j, this is clear.

We can now state the key result which will imply our main theorem in the reduced

case.

Proposition 3 Let (R, m) be a reduced complete local ring of dimension one and let

N be a torsion-free R-module. Let n be the length of the longest chain (‡). Then there

exists an exact sequence

0−→Cn−→Cn−1−→· · ·−→C0−→N−→0

with each Ci ∈ A(R) and such that

0−→(X,Cn)−→(X,Cn−1)−→· · ·−→(X,C0)−→(X, N)−→0

is exact for all X ∈ A(R).

Proof We proceed by induction on n. If n = 0, then R = R̃ is a discrete valuation

ring, and any torsion-free R-module is free. The set A(R) consists exactly of the free

R-modules, so that 0 → C0
=
→ N → 0 is the required sequence.

Assume that the statement holds for reduced complete local rings of dimension

one having a chain (‡) of length at most n − 1, and that R has a chain of length n. In
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particular, then the proposition holds for each direct factor of R(1)
= EndR(m). Let

N be a torsion-free R-module.

First suppose that N is an R(1)-module. By Lemma 2 then, there is an exact se-

quence of R(1)-modules

(1.4) 0−→Cn−→Cn−1−→· · ·−→C0−→N−→0,

with each Ci ∈ A(R(1)), which remains exact under (X,−) for any X ∈ A(R(1)).

(We use Lemma 1 here to know that HomR(X,−) = HomR(1) (X,−).) The only

indecomposable module in A(R) but not in A(R(1)) is the free module R, so the

sequence remains exact under (X,−) for any X ∈ A(R), as desired.

Next suppose that N is not an R(1)-module. Let N ′
= HomR(R(1), N) ( N be the

largest R(1)-module contained in N . Observe that for any R(1)-module X, and any

R-linear homomorphism X → N , the image of X is contained in N ′. In particular,

(X, N ′) = (X, N) for any X ∈ A(R(1)). By induction, there is a surjection f : C ′ →
N ′, with C ′ ∈ A(R(1)), such that (X, f ) : (X,C ′) → (X, N ′) is surjective for all

X ∈ A(R(1)). Since (X, N ′) = (X, N), we see that applying (X,−) to the composition

C ′ → N ′ →֒ N yields a surjection for all X ∈ A(R(1)).

Take a free R-module F mapping minimally onto N/N ′ and lift to a homomor-

phism g : F → N . Then g−1(N ′) is an R(1)-module. Indeed, g−1(N ′) ⊆ mF as F is a

minimal free cover of N/N ′, and since mF is clearly a module over R(1)
= EndR(m),

Lemma 1 implies that g−1(N ′) = mF, so in particular is an R(1)-module.

Define π : F ⊕ C ′ → N by π(p, c) = g(p) − f (c). Since (X, f ) is surjective

for all X ∈ A(R(1)), and g induces a surjection F → N/N ′, we see that (X, π) is

surjective for all X ∈ A(R). We claim that the L = ker π is an R(1)-module. Let

α ∈ R(1) and (p, c) ∈ L, so that g(p) = f (c). Since f (c) ∈ N ′ and g−1(N ′) is

an R(1)-module, αp ∈ g−1(N ′). Then, since f | f−1(N ′) is R(1)-linear by Lemma 1,

g(αp) = αg(p) = α f (c). Finally, f : C ′ → N ′ is R(1)-linear, so α f (c) = f (αc). That

is, (αp, αc) ∈ L, as claimed.

By the previous case then, there is an exact sequence

0−→Cn−1−→Cn−2−→· · ·−→C0−→L−→0

such that

0−→(X,Cn−1)−→(X,Cn−2)−→· · ·−→(X,C0)−→(X, L)−→0

is exact for all X ∈ A(R(1)). Splicing this together with the short exact sequence

0 → L → F ⊕ C ′ → N → 0, and using once again that the only indecomposable

module in A(R) but not in A(R(1)) is the free module R, we are done.

Theorem 4 Let (R, m) be a one-dimensional reduced complete local ring. Put M =⊕
S∈E(R) S, a finitely generated R-module. Then Γ := EndR(M)op has global dimension

at most n + 1, where n is the length of the longest chain (‡).

https://doi.org/10.4153/CJM-2007-014-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-014-1


Endomorphism Rings of Finite Global Dimension 337

Proof Let N be a finitely generated Γ-module. Then by [3, II.2] there exists a homo-

morphism M1 → M0 with Mi ∈ add(M) such that (M, M1) → (M, M0) → N → 0

is exact. Let L be the kernel of M1 → M0. Then L is torsion-free, so by the proposition

has a resolution of length n by modules in add(M), which remains exact after apply-

ing (M,−). Since each (M, Mi) is a projective Λ-module, N has projective dimension

at most n + 1.

Corollary 5 A one-dimensional reduced complete local ring has a finitely generated

module whose endomorphism ring has global dimension at most e(R), the multiplicity

of R.

Proof It is known that R̃/mR̃ has dimension e(R) as a vector space over R/m. Thus

R̃/R has length e(R) − 1, so e is a uniform bound on the length of chains (‡).

It seems plausible that Theorem 4 actually holds for rings R such that the integral

closure R̃ is a finitely-generated R-module and a regular ring, for example, the hyper-

surface x2 + y3 − y2z2
= 0. The proof given above is reminiscent of the algorithm of

de Jong [7] for obtaining the integral closure by taking iterated endomorphism rings.

2 Finite Cohen–Macaulay Type

As mentioned in the introduction, the original motivation for Auslander’s represen-

tation dimension was to study Artin algebras of finite representation type, that is,

Artin algebras with only finitely many isomorphism classes of finitely generated mod-

ules. For (commutative Noetherian) rings of higher dimension, this property has

been generalized to finite Cohen–Macaulay type. A nonzero finitely generated mod-

ule M over a d-dimensional ring R is called maximal Cohen–Macaulay (MCM) if

there exists an M-regular sequence x1, . . . , xd. We then say that R has finite CM type

provided there are, up to isomorphism, only finitely many indecomposable MCM

R-modules.

The one-dimensional CM local rings of finite CM type are completely character-

ized [6,8,11,22,23]. In dimension two, the complete local rings containing the com-

plex numbers and having finite CM type are also completely classified [2,9,12]. They

are exactly the rings of Theorem B, that is, the invariant rings R = C[[x, y]]G under

the action of a finite group G. In this case, C[[x, y]] is a representation generator for

R, that is, contains as direct summands all the indecomposable MCM R-modules.

The main result of this section is a generalization of Theorem B. Again, the proof

relies on the process of projectivization, which was described in the introduction.

Theorem 6 Let (R, m) be a d-dimensional CM local ring of finite CM type. Let M

be a representation generator for R (in particular, M has a free direct summand). Then

A := EndR(M)op has global dimension at most max{2, d}. If d ≥ 2, then equality

holds.
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Proof First assume that d ≥ 2. Let N be a finitely generated left A-module. Take

the first d − 1 steps in a projective resolution of N over A:

(2.1) P• : Pd−1
ϕd−1

−−−−→ · · ·
ϕ2

−−−−→ P1
ϕ1

−−−−→ P0

with coker ϕ1 = N . For each i, we can use [3, II.2] to write Pi = HomR(M, Mi),

where Mi is a direct summand of a direct sum of copies of M. In particular, each

Mi is a MCM R-module. Moreover, each ϕi can be written as HomR(M, fi) for

R-homomorphisms fi : Mi → Mi−1. This gives the following sequence of MCM

R-modules and homomorphisms:

(2.2) C• : Md−1

fd−1

−−−−→ · · ·
f2

−−−−→ M1
f1

−−−−→ M0.

Since M has a free direct summand and HomR(M, C•) is exact, it follows that in fact

C• is exact. Put Md = ker( fd−1). Then Md is a MCM R-module by the depth lemma,

and left-exactness of Hom gives an exact sequence

(2.3)

0 −−−−→ HomR(M, Md) −−−−→ Pd−1
ϕd−1

−−−−→ · · ·
ϕ2

−−−−→ P1
ϕ1

−−−−→ P0.

Since Md is MCM, HomR(M, Md) is A-projective, and N has projective dimension at

most d.

To see that the global dimension of A is exactly d, take N to be a simple A-module.

Then N has finite length as an R-module, so is of depth zero. A projective resolu-

tion of N is in particular an exact sequence of MCM R-modules, and so a projective

resolution of length less than d would contradict the depth lemma. Thus N has pro-

jective dimension exactly d. Since the global dimension of A is the maximum of the

projective dimensions of the simple modules, this finishes the case d ≥ 2.

If d < 2, then we can repeat the first part of the argument, simply taking an

A-projective resolution of length 1. The remainder of the proof is the same, showing

that gldim A ≤ 2.

One can also state the proof above in terms of the adjoint pair g∗ = HomR(M,−)

and g∗ = − ⊗A M. In this context, the fact that C• is exact comes down to the facts

that (i) M is a projective A-module, so g∗ is an exact functor, and (ii) g∗g∗ is the

identity on projective A-modules.

Following Iyama [14], we extend the definition of representation dimension to

rings of positive Krull dimension.

Definition 7 Let T be a complete regular local ring and let R be a T-algebra, finitely

generated and free as a T-module. Let C be the category of R-modules which are

finitely generated free T-modules. Let

repdim R = inf
N∈C

{gldim EndR(R ⊕ R∗ ⊕ N)},

where R∗ := HomT(R, T).
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Proposition 8 Let R be a CM complete local ring of finite CM type. Then repdim R ≤
max{2, dim R}.

Proof By Cohen’s structure theorem, R is a finitely generated module over some

complete regular local ring T. The MCM R-modules are precisely the R-modules

that are free over T. Finally, R∗ ∼= ωR is the canonical module for R, which is

MCM. Theorem 6 then shows that EndR(R ⊕ ωR ⊕ N) has global dimension at most

max{2, dim R}, where N is the direct sum of the remaining indecomposable MCM

R-modules.

Remark 9 As mentioned in the Introduction, Auslander proved in [1] that if Λ is

an Artin algebra of finite representation type, with additive generator M, then Γ :=

EndΛ(M) has representation dimension two. In fact, he showed that Γ is what is

now called an Auslander algebra, that is, Γ has global dimension two and dominant

dimension two. We say that a ring A has dominant dimension at least t if, in a minimal

injective resolution 0 → A → I• of A, the j-th injective module I j is also projective

for j < t .

One checks easily that the proof given in [3, VI.5] applies verbatim to CM local

rings of finite CM type, and shows that, in the situation of Theorem 6, A = EndR(M)

has dominant dimension two. To see that one cannot hope for higher dominant

dimension, consider a three-dimensional CM local ring R of finite CM type, e.g. Ex-

ample 11 or 12. Let M be the direct sum of the indecomposable MCM R-modules,

and A = EndR(M). If A has dominant dimension > 2, then the minimal injective

resolution of A is

0−→A−→HomR(M, I0)−→HomR(M, I1)−→HomR(M, I2)

where each HomR(M, I j) is a projective-injective A-module. It follows that each I j is

an injective R-module. By the equivalence of categories between add(M) and projec-

tive A-modules then, the minimal injective resolution of M over R is

0−→M−→I0−→I1−→I2,

and applying HomR(M,−) to this injective resolution preserves exactness. This im-

plies that Ext1
R(M, M) = 0, which is quite false in Examples 11 and 12.

3 Connections with Non-Commutative Crepant Resolutions

Though it is a purely algebraic statement, Theorem 6 is closely related to geomet-

ric statements about resolution of singularities. Recent work of M. Van den Bergh

[20, 21] has revealed unexpected connections between the (geometric) resolutions of

certain rational singularities and the algebraic properties of certain endomorphism

rings over their coordinate rings. To make this connection more precise, we quote

the following definition of Van den Bergh:
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Definition 10 Let R be a Gorenstein normal domain. A non-commutative crepant

resolution of R is an R-algebra A = EndR(M), for a finitely generated reflexive

R-module M, such that A is an MCM R-module and gldim Ap = dim Rp for all

p ∈ Spec R.

Non-commutative crepant resolutions were introduced to solve a problem related

to their geometric counterparts. A (geometric) crepant resolution of a scheme X is a

projective morphism f : Y → X, with Y regular, such that f ∗ωX = ωY , where ω
denotes the canonical bundle. A. Bondal and D. Orlov [4] conjecture that if X has

a geometric crepant resolution, then any two have equivalent bounded derived cate-

gories of coherent sheaves. M. Kapranov and E. Vasserot [16] verify the conjecture of

Bondal–Orlov for two-dimensional quotient singularities C
2/G; they show that any

geometric crepant resolution is derived equivalent to the non-commutative crepant

resolution given by EndR(C[[x, y]]).

Van den Bergh pushes this point of view into dimension three. He proves [20]

that a three-dimensional Gorenstein normal C-algebra with terminal singularities

has a non-commutative crepant resolution if and only if it has a geometric crepant

resolution, and furthermore that the two crepant resolutions are derived equivalent,

establishing the conjecture of Bondal–Orlov in this case. In fact, he conjectures [20,

Conjecture 4.6] that all crepant resolutions of a given Gorenstein scheme X, non-

commutative as well as geometric, are derived equivalent. He also gives some further

examples in which non-commutative crepant resolutions exist.

Theorem 6 implies that if R is a Gorenstein local ring of finite CM type, con-

taining a field and having dimension two or three, then R has a non-commutative

crepant resolution. The completion of such a ring is the analytic local ring of one of

the simple hypersurface singularities (see, for example, [24]), the MCM modules of

which are known. One can thus check that for each of the simple singularities, the

endomorphism ring of a representation generator is indeed an MCM module.

In fact, Theorem 6 gives a little more: the reflexive module in the definition of

the non-commutative crepant resolution can actually be taken to be MCM. This is

consistent with all the other known examples of non-commutative crepant resolu-

tions [20, Remark 4.4].

It is worth pointing out that Theorem 6 also implies that graded Gorenstein lo-

cal rings of finite CM type (containing C) have rational singularities in dimensions

2 and 3. Van den Bergh shows [20, Proposition 3.3] that if R is a positively graded

Gorenstein algebra over a field, with an isolated singularity, and R has a noncom-

mutative crepant resolution of singularities, then R has at most rational singularities.

Of course, this is already known for the Gorenstein local rings of finite CM type,

following from the complete classification of such rings [5, 12, 17].

Non-commutative crepant resolutions are not yet defined for non-Gorenstein

rings. It is tempting to accept Definition 10 verbatim for all CM normal domains,

and look to Theorem 6 as a source of non-commutative crepant resolutions in this

context as well. This optimism is quickly tempered by the following two examples

(the only known non-Gorenstein CM local rings of of finite CM type and dimension

≥ 3).
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Example 11 Let R = k[[x2, xy, y2, yz, z2, xz]], where k is an algebraically closed

field of characteristic zero. By [24, 16.10], R has finite CM type. The indecom-

posable MCM R-modules are the free module of rank one, the canonical module

ω ∼= (x2, xy, xz), and M := syzR
1 (ω), which has rank 2. By Theorem 6, A :=

End(R ⊕ ω ⊕ M) has global dimension 3. However, depthR A = 2 (this can be

easily checked with, say, Macaulay2 [10]). The culprit is M: both HomR(M, R) and

HomR(M, M) have depth 2.

Removing M, however, eliminates the problem. Observe that R is a ring of invari-

ants of k[[x, y, z]] under an action of Z2. Therefore EndR(k[[x, y, z]]) is isomorphic to

the twisted group ring k[[x, y, z]] ∗ Z2, and the twisted group ring has global dimen-

sion 3 by [24, Ch. 10]. Finally, since k[[x, y, z]] ∼= R ⊕ ω as an R-module, we see that

R ⊕ ω gives a noncommutative crepant resolution of R, and exhibits repdim R ≤ 3.

Example 12 Let R = k[[x, y, z, u, v]]/I, where I is generated by the 2 × 2 minors of

the matrix
( x y u

y z v

)
. Then R has finite CM type [24, 16.12]. The only indecomposable

nonfree MCM R-modules are, up to isomorphism,

• the canonical module ω ∼= (u, v)R;
• M := syzR

1 (ω), isomorphic to the ideal (x, y, u)R;
• N := syzR

2 (ω), rank two and 6-generated;
• L := M∨, the canonical dual of M, isomorphic to the ideal (x, y, z)R.

In particular, ω∗
= HomR(ω, R) is isomorphic to M. Then by Theorem 6, A :=

EndR(R ⊕ ω ⊕ M ⊕ N ⊕ L) has global dimension 3. Again, A fails to be MCM

as an R-module, since none of L∗, N∗, and HomR(ω, M) are MCM. In this exam-

ple, EndR(R ⊕ ω) and EndR(R ⊕ M) are the only endomorphism rings of the form

EndR(D), with D nonfree MCM, that are themselves MCM. I do not know whether

the endomorphism ring EndR(R ⊕ ω) has finite global dimension.
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[6] N.Çimen, One-dimensional rings of finite Cohen–Macaulay type. Ph.D. thesis, University of
Nebraska–Lincoln, Lincoln, NE, 1994.

[7] T. de Jong, An algorithm for computing the integral closure. J. Symbolic Computation 26(1998),
no. 3, 273–277.

https://doi.org/10.4153/CJM-2007-014-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-014-1


342 G. J. Leuschke

[8] Ju. A. Drozd and A. V. Roı̆ter, Commutative rings with a finite number of indecomposable integral
representations. Izv. Akad. Nauk. SSSR Ser. Mat. 31(1967), 783–798.

[9] H. Esnault, Reflexive modules on quotient surface singularities. J. Reine Angew. Math. 362(1985),
63–71.

[10] D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry.
http://www.math.uiuc.edu/Macaulay2/.

[11] E. L. Green and I. Reiner, Integral representations and diagrams. Michigan Math. J. 25(1978), no. 1,
53–84.

[12] J. Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen unzerlegbaren
Cohen-Macaulay-Moduln. Math. Ann. 233(1978), no. 1, 21–34.

[13] O. Iyama, Rejective subcategories of artin algebras and order. Fields. Inst. Commun. 40(2004), 45–64.
[14] , Representation dimension and Solomon zeta function. In: Representations of finite

dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Comm. 40, Amer.
Math. Soc., Providence, RI, 2004, pp. 45–64.

[15] , Finiteness of representation dimension. Proc. Amer. Math. Soc. 131(2003), no. 4,
1011–1014.

[16] M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and Hall algebras. Math.
Ann. 316(2000), no. 3, 565–576.

[17] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities. I. Invent. Math. 88(1987),
no. 1, 153–164.

[18] H. Matsumura, Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8,
Cambridge University Press, Cambridge, 1986.

[19] R. Rouquier, Dimensions of triangulated categories. arXiv:math.CT/0310134.
[20] M. Van den Bergh, Non-commutative crepant resolutions. In: The Legacy of Niels Henrik Abel,

Springer, Berlin, 2004, pp. 749–770.
[21] , Three-dimensional flops and non-commutative rings. Duke Math. J. 122(2004), no. 3,

423–455.
[22] R. Wiegand, Noetherian rings of bounded representation type. In: Commutative Algebra, Math. Sci.

Res. Inst. Publ. 15, Springer, New York, 1989, pp. 497–516.
[23] , One-dimensional local rings with finite Cohen-Macaulay type. In: Algebraic Geometry and

its Applications. Springer, New York, 1994, pp. 381–389.
[24] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings. London Mathematical Society

Lecture Notes Series 146, Cambridge University Press, Cambridge, 1990.

Mathematics Department

Syracuse University

Syracuse, NY 13244

U.S.A.

e-mail: gjleusch@math.syr.edu

https://doi.org/10.4153/CJM-2007-014-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-014-1

