
Genet. Res., Camb. (2001), 78, pp. 177–186. With 7 figures. # 2001 Cambridge University Press
DOI: 10.1017}S0016672301005225 Printed in the United Kingdom

177

Selection and subsequent analysis of sib pair data for QTL
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Summary

Haseman and Elston (1972) developed a robust regression method for the detection of linkage

between a marker and a quantitative trait locus (QTL) using sib pair data. The principle

underlying this method is that the difference in phenotypes between pairs of sibs becomes larger as

they share a decreasing number of alleles at a particular QTL identical by descent (IBD) from

their parents. In this case, phenotypically very different sibs will also on average share a

proportion of alleles IBD at any marker linked to the QTL that is lower than the expected value

of 0±5. Thus, the deviation of the proportion of marker alleles IBD from the expected value in

pairs of sibs selected to be phenotypically different (i.e. discordant) can provide a test for the

presence of a QTL. A simple regression method for QTL detection in sib pairs selected for high

phenotypic differences is presented here. The power of the analytical method was found to be

greater than the power obtained using the standard analysis when samples of sib pairs with high

phenotypic differences were used. However, the use of discordant sib pairs was found to be less

powerful for QTL detection than alternative selective genotyping schemes based on the phenotypic

values of the sibs except with intense selection, when its advantage was only marginal. The most

effective selection scheme overall was the use of sib pairs from entire families selected on the basis

of high within-family variance for the trait in question. There is little effect of selection on QTL

position estimates, which are in good agreement with the simulated values. However, QTL

variance estimates are biased to a greater or lesser degree, depending on the selection method.

1. Introduction

The mapping of loci affecting quantitative traits

(quantitative trait loci or QTLs) in livestock provides

a potential tool for genetic improvement through

marker-assisted selection as well as a route to the

ultimate cloning of the underlying genes. In many

species, including some livestock, crosses between

genetically divergent lines provide the basis for a QTL

mapping study. However, such crosses are often not

possible or practicable in livestock and QTL detection

within a single outbred population may be the

preferred option. QTL detection in outbred popu-

lations is problematical since markers and QTLs are

segregating in the population and linkage phases will
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differ from family to family. One approach, which has

been widely used for studies of QTLs in human

populations, where these same problems exist, has

been sib pair analysis (Haseman & Elston, 1972).

In sib pair analysis a relationship between the

differences between the phenotypes of sib pairs and

the number of alleles shared identical by descent

(IBD) at a marker locus provides a means for

identifying a QTL near that marker. A simple test of

this association is the regression of squared phenotypic

difference between a sib pair on the proportion of

alleles the sib pair shares IBD at a marker locus.

When a QTL is a recombination fraction θ from a

marker, the expectation of the regression coefficient

(β) is

β¯®2(1®2θ)#σ#
g
,

where σ#
g

is the additive variance explained by the

QTL when there is no dominance variation present

(Haseman & Elston, 1972). A significant negative
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regression coefficient, as tested by a simple t statistic,

indicates linkage between the marker and a QTL.

The attraction of sib pair analysis is its simplicity,

and hence computational rapidity, and its relative

robustness compared with more fully parameterized

approaches. However, sib pair analysis may be less

powerful than other more parameterized methods,

especially in the case of small family sizes (small

number of available sib pairs). Consequently, a large

number of sib pairs is needed to achieve adequate

power for the detection of QTLs (Blackwelder &

Elston, 1982). In livestock populations, however, the

large full-sib families that may be available can

provide large numbers of sib pairs, making the method

attractive for use in these populations (Go$ tz & Ollivier,

1992). This is especially so since the non-independence

of sib pairs in large sibships does not have a major

adverse effect on power (Blackwelder & Elston, 1982;

Go$ tz & Ollivier, 1992; Wan et al., 1997; Chatziplis,

1998). Power for QTL detection is largely determined

by the total number of sib pairs and not the size of the

families from which they are sampled. Consequently,

the number of individuals that need to be genotyped

to achieve adequate power of detection is reduced

when large families are used.

The use of samples of sib pairs selected on their

phenotype has been suggested as a means to reduce

the amount of genotyping for a given power of QTL

detection (Darvasi & Soller, 1992; Mackinnon &

Georges, 1992; Risch & Zhang, 1995). Phenotypically

different sibs are expected to share a smaller (and

similar sib pairs a greater) than average proportion of

alleles IBD at markers linked to any segregating QTL.

Hence, sib pairs can be selected for analysis based on

their trait values and inspected to see whether the

proportion of marker alleles inherited IBD deviates

from expectation, for example using chi-square analy-

sis (Eaves & Meyer, 1994). However, this analysis is

unable to provide estimates of QTL position and

variance explained by the QTL. The usual Haseman &

Elston (1972) analysis loses power with data selected

to contain only phenotypically different sib pairs,

because of the very limited range of relationships

between IBD status and phenotypic difference. In this

paper, we develop a method for analysing data from

selected full sib pairs and compare the power of

detection and parameter estimates obtained from sib

pair analysis using different selective genotyping

methods in large full-sib families. In another paper

(Chatziplis & Haley, 2000) alternative selective geno-

typing schemes in a joint analysis of full and half-sib

data are compared for power of QTL detection.

2. Materials and methods

In the traditional Haseman & Elston (1972) regression

method, one is looking for a relationship between

differences between the phenotypes of sib pairs and

the number of alleles shared IBD at a marker, as a

means of identifying a QTL near that marker. The t-

value of the regression coefficient is used as the test

statistic and under the assumption of no dominance

variation we have

E(Y
j
rπW

jm

)¯ [σ#
e
­2(1®2θ­2θ#)σ#

g
]®2(1®2θ)#σ#

g
πW
jm

,

(1)

where Y
j
is the squared phenotypic difference of the

jth sib pair, π#
jm

is the estimated proportion of alleles

shared IBD at a marker locus m of the jth sib pair, σ#
e

is the residual variance due to environmental variance

and covariance of full sibs and any other effect, σ#
g
is

the variance due to the QTL and θ is the recombination

rate between the marker and the QTL.

However, in a full-sib pair, the expected proportion

of alleles at any locus IBD from parents is 0±5 (Amos

& Elston, 1989). Phenotypically very different (similar)

full-sibs on average share a proportion smaller

(greater) than 0±5 of their genes IBD at a QTL which

is influencing the phenotype in question as well as at

linked markers.

With selected sib pairs, instead of regressing the

squared phenotypic differences onto the estimated

proportion of alleles IBD at a marker locus, one can

invert the regression. In this analysis in practice, the

proportion of alleles shared IBD at a marker locus of

every sib pair in a selected sample is estimated and

their squared phenotypic differences is calculated.

Then the expected proportion shared IBD (0±5) is

subtracted from the estimated proportion of alleles

shared IBD of every sib pair in the selected sample.

The adjusted value for every sib pair is then regressed

onto the deviations of their squared phenotypic

differences from the mean (squared) phenotypic

difference of all the available sib pairs from which the

sample has been drawn (see Appendix). Then:

πW
jm

®0±5¯ (E(π
m
)®0±5)®

2(1®2θ)#σ#
g
σ#

πW
j
m

σ#
Yj

(Y
j
®E(Y)),

(2)

where E(π
m
) is the expected proportion of alleles

shared IBD, of selected sib pairs, at a marker locus m,

E(Y) is the expected squared phenotypic differences of

all sib pairs, σ#
π#
jm

is the variance of the proportion

of alleles shared IBD at a marker locus m and σ#
Yj

is the variance of squared phenotypic differences.

The above equation (1) is of the general linear

form:

Y¯α­βX,

where

α¯ (E(π
jm

)®0±5)
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and

β¯
2(1®2θ)#σ#

g
σ#

πW
j
m

σ#
Yj

.

Consequently, a significantly negative regression

constant (α) provides evidence for the presence of a

QTL linked to a marker when a sample of sib pairs

with high phenotypic differences is examined. A

significantly positive regression constant would in-

dicate the presence of linkage when the sample of sib

pairs examined has low phenotypic differences. In the

absence of linkage, a zero regression constant is

expected. The analysis potentially provides three test

statistics for the detection of QTLs linked with

markers : firstly, the commonly used t-values of the

regression coefficient (Haseman & Elston, 1972) ;

secondly, the t-value of the regression constant ; and

thirdly, the F-value of the regression analysis with two

degrees of freedom, which is the joint test of both the

regression coefficient and the regression constant. The

three test statistics are compared for power of

detection, as will be described in a later section.

The regression coefficient (β) can provide parameter

estimates for the recombination rate and the variance

due to the QTL in the same way as in the ordinary

regression method (Hamann & Go$ tz, 1995), since σ#π#
j
m

and σ#
Yj

can be calculated from the data (Amos

et al., 1997; for fully informative markers, σ#
π#
j
m

¯1}8

(Amos & Elston, 1989)).

For example, if the markers with the highest t-

values of their regression coefficients are known to be

linked (θ
t
), the three parameters (recombination rates

between the markers and the QTL (θ
"
, θ

#
) and QTL

variance (σ#
g
)) can be estimated from the regression

coefficients of the two markers (β
"
, β

#
) and Haldane’s

map function (Hamann & Go$ tz, 1995). For example

by simultaneously solving the equations

E(β
"
)¯

2(1®2θ
"
)#σ#

g
σ#

πW
j
m

σ#
Yj

E(β
#
)¯

2(1®2θ
#
)#σ#

g
σ#

πW
j
m

σ#
Yj

θ
t
¯ θ

"
­θ

#
®2θ

"
θ
#
,

solutions for θ
"
, θ

#
and σ#

g
can be obtained. Liang et al.

(2000) give an alternative approach to estimate QTL

position in selected samples.

(i) Simulations

For the comparison of the test statistics in the inverted

regression (2) and the power comparisons of alterna-

tive genotyping schemes, data sets with one marker

with relatively low information content (2 alleles)

completely linked (θ¯ 0) with a biallelic QTL were

simulated. For the comparison of parameter estimates

(QTL position and effect), data sets were simulated

with a 100 cM chromosome with markers spaced at

10 cM intervals, each marker having 8 alleles at equal

allelic frequencies (0±125).

For most studies, 100 independent families of

family size 8 were simulated. This resulted in 800

progeny with 2800 sib pairs in total. To investigate the

power of the methods with a smaller family size, the

above simulations were repeated with 200 families of

size 4. This resulted in 800 progeny with 1200 sib pairs

in total.

In all cases the phenotypic values of a quantitative

trait with only additive effect were determined by: (a)

the biallelic QTL, (b) a polygenic effect created by 10

additional loci independent of each other and of the

QTL (i.e. unlinked) and (c) an environmental com-

ponent.

The total phenotypic variance (σ#
g
) of the trait was

1±0, with a trait heritability of 0±4 and variance

explained by the QTL 28% of the total phenotypic

variance (0±28σ#
p
). The parents were mated at random

to produce the offspring generation used in the

analysis. Linkage equilibrium was assumed.

The simulated data were generated and analysed

using programs written in FORTRAN 77, supple-

mented with routines from the NAG library (Nu-

merical Algorithms Group 1990) for the random

number generator (RAN2) and for simple linear

regression (G02CAF).

(ii) Sib pair selection

Several strategies of selection of sib pairs were

simulated as outlined below.

(a) Most different sib pairs (MD). First, using the

distribution of the phenotypic differences between

pairs, a percentage of the most different sib pairs

(MD) were selected. Thus the phenotypic differences

between all pairs of sibs were calculated and ranked

and the desired proportion of sib pairs with the largest

differences were selected.

(b) Discordant sib pairs (D). Second, using the

distribution of the phenotypes of all sibs, sib pairs that

had one sibling at one end of the distribution, and the

other sibling at the other end, were selected. Thus

equal proportions of individuals were selected from

the two ends of the phenotypic distribution and sib

pairs with an individual in either tail were used. This

means that different families were represented in the

sample with different numbers of sib pairs. Risch &

Zhang (1995) have also used discordant sib pairs for

sampling from families of size 2.

The above selection schemes using sib pairs with

high phenotypic differences (D and MD) were used

for the comparison of the three test statistics of the

inverted regression (2).

(c) Concordant and discordant sib pairs (CD).

Individuals in the population were ranked according
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to their phenotype. An equal number of individuals

were selected from the upper and lower tails of the

distribution. Sib pairs were used which had both

siblings in the same (upper or lower) tail or one sibling

in the upper tail and the other in the bottom tail of the

phenotypic distribution of sibs. This selection means

that different families were represented in the sample

with different numbers of sib pairs. The truncation

points of selection for the two tails were kept equal for

both tails of the distribution. Note that with the

lowest intensity of selection (50%) all individuals

were selected and all sib pairs were used in the

analysis. Gu et al. (1996) have also used similar

methods for concordant and discordant sampling.

(d) Within-family �ariance (WFV ). The within-

family phenotypic variance was calculated for each

full-sib family. Families with the highest within-family

variance were selected for the analysis. All the possible

sib pairs from selected families were included in the

analysis. It should be noted that in the case of families

of size 2, this selection method is the same as selecting

discordant sib-pairs.

(e) Random sample (RS). Entire full-sib families

were selected at random and all their sib pairs were

used in the analysis.

The discordant selection (D), using the inverted

regression method of analysis, was compared for

power of detection with three additional selection

schemes (CD, WFV and RS) using the standard

Haseman & Elston (1972) analytical method.

For all methods, selection was applied to a

population of fixed size, with proportions selected

being varied to get the desired number of sib pairs.

Note that with these selection schemes, the number of

sib pairs selected vary from family to family and some

sibs are involved in more than one sib pair.

(ii) Analyses

The power of the three test statistics (t-value of the

regression constant, t-value of the regression

coefficient and F-value of the regression) of the

inverted regression method (2) under alternative

methods of selection (MD and D) were compared in

simulated data with a QTL completely linked to a

single marker. The proportion of alleles shared IBD at

the markers was estimated according to the algorithm

described by Haseman & Elston (1972).

For the power comparisons of alternative selective

genotyping schemes, two different methods of analysis

were used depending on how the sib pairs had been

selected. For the concordant-discordant (CD), within-

family variance (WFV) and random selection (RS)

schemes the standard Haseman & Elston (1972)

analysis (1) was used. In this analysis, the squared

difference in phenotypic scores between sib pairs is

regressed onto the estimated proportion of alleles IBD

at a marker. Linkage of a QTL to the marker is

expected to cause a negative slope in this regression,

and hence the t-value of the regression coefficient

provides a test statistic for the presence of a linked

QTL.

With selection of discordant sib pairs (scheme D)

we used the inverted regression (2) as described above.

This analysis was not used in the other selective

genotyping schemes because, when selecting for both

high and low phenotypic differences (CD) or for high

within-family variance (WFV), the above test would

not be as powerful as the traditional test of Haseman

& Elston (1972). Since the mean expected proportion

of alleles shared IBD at marker locus would be 0±5 if

both high and low phenotypically different sib pairs

were included in the sample, a test of significance for

the regression constant would be inappropriate.

Consequently, in these selection schemes (CD, WFV,

RS), a significant negative t-value of the regression

coefficient is used for the detection of linkage. Again

the comparisons were made using simulated data with

a QTL completely linked to a single marker.

In order to investigate more generally the power of

the method and the parameter estimates obtained,

analysis of data simulated with a 100 cM chromosome

with equally spaced markers was used.

The parameter estimates for position and effect can

be obtained from the estimated regression coefficients

of markers flanking the QTL (Hamann & Go$ tz, 1995)

for the traditionalHaseman&Elston (1972) regression

method as described previously. In all cases the

proportion of alleles shared IBD in any marker locus

was estimated using a FORTRAN 77 program

developed by the authors which was based on the

algorithm described by Haseman & Elston (1972).

(iii) Significance thresholds

The empirical thresholds, at the 5% level of

significance, were obtained for every level of selection

(sample selection intensity) and for the different

selection methods by simulations under the null

hypothesis (σ#
QTL

¯ 0) using 1000 replicates.

3. Results

(i) Comparison of test statistics

The power obtained from the three test statistics (the

t-value of the regression coefficient and the regression

constant and the F-value of the regression) of the

single marker analysis are presented in Figs. 1 and 2

for the D and MD methods, respectively. As is

apparent from Fig. 1 (D), the t-value of the regression

constant provided a more powerful test statistic for

selected samples than the other two methods. The

power obtained from the t-value of the regression
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Fig. 1. Power obtained from the three test statistics in
different sample sizes selected for discordant sib pairs (D).
The graph shows power obtained from the t-values of
the regression constant (triangles), the t-values of the
regression coefficient (squares) and the F-values of
the regression (circles). Data were simulated with one
QTL of large effect (σ#

P
¯1, h#¯ 0±4, σ#

QTL
¯ 0±28σ#

p
)

completely linked to a biallelic marker. The power was
obtained from 1000 replicates and expressed as the
percentage of replicates exceeding the simulated empirical
threshold in each case. The population size simulated and
hence the maximum number of animals genotyped was
1000 (800 progeny and 200 parents; family size 8).

Constant
Coefficint
F-value

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
No. of animals genotyped

Po
w

er
 (

%
)

Fig. 2. Power obtained from the three test statistics in
different sample sizes selected for the most different sib
pairs (MD). Symbols, simulated population size and
parameters are as in Fig. 1.

coefficient and F-value of the regression increased

with sample size. The power obtained from the

regression constant decreased with both selection

schemes as the proportion of the population selected

approached 1.

Similarly in Fig. 2 (MD), the t-value of the

regression constant provided a more powerful test in

selected samples than the other two test statistics. The

power using the t-value of the regression coefficient

and F-value of the regression increased with sample

size. The power based on use of the regression

constant dropped to the 5% threshold when all sib

pairs were included. The difference between the MD

W.F.V.
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Fig. 3. Power of alternative selective genotyping schemes
at different selection intensities. Simulated population size
and parameters are as in Fig. 1.

and D approaches in this respect is that in the MD

approach all sib pairs are included in the analysis, so

the overall proportion of alleles IBD should be at the

expectation of 0±5, other than deviations due to

sampling. In the D approach, even when all sibs in

both tails are potentially included in the analysis, only

sib pairs with a sib in each tail (i.e. above and below

the mean in this case) are actually included in the

analysis.

Overall, the MD and D approaches produced quite

similar results. The maximum power of the MD

approach was maintained over a greater range of

selection than the D approach. On the other hand, the

maximum power achieved was greater for the D

approach. The D approach was chosen for the further

comparisons with other selection schemes.

(ii) Comparison of selecti�e genotyping schemes

The power of detection of a QTL of large effect by

linkage to a single marker with two alleles under the

four selection schemes is shown in Fig. 3. Selecting the

sample of sib pairs from families with high within-

family variance was either the most powerful selection

method for a given sample size or was close to the

most powerful method. With this selection scheme,

only 40–50% of individuals need to be genotyped to

achieve power similar to that obtained when all

individuals were genotyped. At high selection

intensities (10–20% of the population genotyped), the

power of the selection schemes using only sib pairs

with high phenotypic differences (D, discordant sib

pairs) was marginally the greatest, although selection

based on the within-family variance (WFV) gave very

similar power. At moderate selection intensities

(30–50% of the population genotyped), selection on

the within-family variance was better than any other

method. At low selection intensities (" 50% of the

population genotyped) the within-family variance and

concordant–discordant selection (CD) schemes gave
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Fig. 4. Power of alternative selective genotyping schemes
at different selection intensities. Simulated population size
and parameters are as in Fig. 1 except that the QTL was
placed on a 100 cM chromosome carrying 11 markers.
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Fig. 5. Power of alternative selective genotyping schemes
at different selection intensities. Simulated parameters are
as in Fig. 1. The population size simulated and hence the
maximum number of animals genotyped was 1000 (800
progeny and 400 parents ; family size 4).

Table 1. Mean QTL position estimates in centimorgans and QTL �ariance estimates as the proportion of the

total phenotypic �ariance, o�er 1000 replications with increasing sample size

Selection
method

Sample size

C100 C 400 C 600 C 800 C1000

QTL
position

QTL
variance

QTL
position

QTL
variance

QTL
position

QTL
variance

QTL
position

QTL
variance

QTL
position

QTL
variance

WFV 29±8 0±394 28±3 0±341 26±6 0±331 26±2 0±322 26±3 0±310
(0±7) (0±005) (0±5) (0±004) (0±4) (0±004) (0±4) (0±003) (0±4) (0±003)

CD 36±6 0±673 27±4 0±436 26±2 0±395 26±1 0±349 26±3 0±310
(0±9) (0±005) (0±6) (0±004) (0±4) (0±004) (0±4) (0±004) (0±4) (0±003)

D 31±5 0±380 29±6 0±247 28±1 0±243 29±3 0±232 31±0 0±224
(0±9) (0±020) (0±8) (0±007) (0±7) (0±005) (0±7) (0±004) (0±7) (0±004)

RS 37±0 0±478 29±4 0±346 27±6 0±327 26±8 0±317 26±3 0±310
(1±0) (0±008) (0±6) (0±004) (0±6) (0±004) (0±4) (0±003) (0±4) (0±003)

The standard errors are given in parentheses. The simulated position was 25 cM and the QTL variance was 0±28σ
P
# (family

size 8).

very similar power and the power of the discordant

scheme declined. Similar results were obtained from

analysis of data with a QTL of large effect on a

100 cM chromosome (Fig. 4).

Results obtained with families of size 4 using a

100 cM chromosome are shown in Fig. 5. With

families of size 4 the total number of offspring is the

same as in families of size 8, but the maximum number

of sib pairs drops from 2800 to 1200, with a

commensurate drop in the power achievable. As

previously, the highest power overall was obtained

when sib pairs from selected families with high within-

family variance were used and approaching maximum

power could be attained with only half the population

being genotyped.

(iii) Parameter estimates

The parameter estimates (position and QTL variance

based on data simulated with the 100 cM chromo-

some) are presented as the mean of all 1000 replicates,

whether or not the QTL detected in a particular

replicate was deemed significant. This was done in

order to eliminate selection bias, which can result if

only significant replicates are selected.

When the larger family size was used (8 sibs per

family), the position estimates were generally near the

simulated values with selected samples down to 60%

of the total number of animals (Table 1). There was a

general tendency for position estimates to be biased

towards the centre of the chromosome. With the most

intense selection, the mean estimated position was

outside the correct interval, except in the case of

samples selected for high within-family variance.

When samples of discordant sib pairs were used the

position estimates were not improved when more

individuals are genotyped (decreased selection in-
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Fig. 6. The number of sib pairs generated in each
selective genotyping scheme. Simulated parameters are as
in Fig. 1. The numbers shown represent the mean of 1000
replicates. The population size simulated and hence the
maximum number of animals genotyped was 1000 (800
progeny and 200 parents), resulting in a maximum of
2800 sib pairs (family size 8).

tensity). Moreover, when discordant sib pairs were

selected (D) the maximum number of selected animals

was always less than the overall maximum (i.e. 1000

animals) (Fig. 6). Therefore, even with the least

intense selection, some sib pairs were not used in the

analysis – something that resulted in more biased

parameter estimates. With the smaller family size,

where the overall power of QTL detection was lower,

the position estimates were biased towards the centre

of the chromosome and in many cases the mean

estimated QTL position was outside the correct

interval (Table 2).

The QTL variance estimates were biased upwards

for all except the discordant selection scheme, where

the bias was in the downwards direction for all but the

most intense selection (Table 1). The upward bias in

the estimated QTL variance was greatest with high

selection intensities (and thus lower power for de-

Table 2. Mean QTL position estimates in centimorgans and QTL �ariance estimates as a proportion of the

total phenotypic �ariance, o�er 1000 replications with increasing sample size

Selection
method

Sample size

C100 C 400 C 600 C 800 C1000

QTL
position

QTL
variance

QTL
position

QTL
variance

QTL
position

QTL
variance

QTL
position

QTL
variance

QTL
position

QTL
variance

WFV 33±7 0±433 30±1 0±363 29±1 0±354 29±3 0±342 29±9 0±319
(0±7) (0±006) (0±6) (0±005) (0±6) (0±004) (0±6) (0±003) (0±6) (0±003)

CD 35±4 0±556 30±8 0±446 29±1 0±418 28±7 0±383 29±9 0±319
(0±9) (0±008) (0±7) (0±005) (0±6) (0±005) (0±6) (0±004) (0±6) (0±003)

D 36±3 0±385 32±2 0±232 32±3 0±219 32±8 0±207 34±0 0±201

(1±1) (0±019) (0±9) (0±008) (0±9) (0±006) (0±9) (0±006) (0±8) (0±006)
RS 40±7 0±678 34±3 0±395 32±5 0±359 31±3 0±338 29±9 0±319

(1±1) (0±009) (0±7) (0±005) (0±7) (0±004) (0±6) (0±003) (0±6) (0±003)

The standard errors are given in parentheses. The simulated position was 25 cM and the QTL variance was 0±28σ
P
# (family

size 4).

tection of the QTL). The bias in QTL position and

variance estimates increased when smaller family sizes

(4 sibs}family) were used (Table 2).

4. Discussion

The deviation of the proportion of alleles shared IBD

at a marker locus from the expected mean (0±5) can

provide the means of identifying a QTL linked to that

marker in selected sib pairs. The analysis applied in

this study was regression of the proportion of alleles

IBD at a marker locus on the squared phenotypic

differences between sibs. This method provides a test

for the presence of a QTL via the test of significance

of the regression constant. Others have successfully

used a test based on chi-square for testing the deviation

of the proportion of alleles IBD at a marker locus

from the expected mean (Eaves & Meyer, 1994) and

calculated size of sample requirements for a given

power using a mean test (Risch & Zhang, 1995, 1996).

However, these tests cannot provide means for

parameter estimation. The method proposed here can

be used to detect linkage and estimate the parameters

(QTL position and variance) simultaneously, and

furthermore it can be used in an interval mapping

context (Fulker & Cardon, 1994), giving a small

increase in power (on average 2%; data not shown).

Selective genotyping of sib pairs can reduce the

number of animals that need to be genotyped (and

hence the cost of genotyping) for a given power of

detection of a QTL (Cardon & Fulker, 1994). Using a

selected sample of discordant sib pairs, the deviation

of the proportion of alleles shared IBD at a marker

locus from the expected value of 0±5 allows detection

of linkage between a marker and a QTL. However,

the standard Haseman & Elston (1972) analysis of a

sample of sib pairs selected from families with high

within-family variance was a more powerful approach
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Fig. 7. Power of alternative selective genotyping schemes
at different selection intensities. Data simulated were
contained a dominant QTL of large effect (σ#

P
¯1,

h#¯ 0±4, σ#
QTL

¯ 0±28σ#
P
) completely linked to a biallelic

marker. Simulated population size is as in Fig. 1.

overall, except at high selection intensities. When the

selection intensity was relatively low, the power of

analyses of discordant sib pairs decreased dramati-

cally. This decrease is associated with the declining

deviation from expectation of the proportion of alleles

IBD as less phenotypically divergent sib pairs are

included in the sample. The power obtained using the

standard test of the regression coefficient continued to

increase with increasing sample size, when the samples

were selected for high within-family variance (WFV),

for concordant–discordant (CD) sib pairs or randomly

(RS). With selection on concordant–discordant sib

pairs or within-family variance the power reaches a

maximum at a certain sample size and remains almost

stable as the sample size further increases. This result

shows that selection has been effective at selecting sib

pairs that are most informative about linkage.

Presumably, sib pairs added later in the analysis come

from families in which the QTL was not segregating.

Selective genotyping on the basis of the WFV of the

trait seems to be as effective even in cases of a rare

QTL allele (P¯ 0±2) (data not shown; Chatziplis,

1998) or dominant QTL (Fig. 7). In the case of a

dominant QTL the power of detection was increased

(9%) and the proposed selective genotyping method

(WFV) slightly increases its advantage over the other

selection methods (Fig. 7). In cases of a rare QTL

allele, although the power and the expected proportion

of informative matings are reduced, the WFV selection

scheme still proved to be effective. Similar effects to

those observed with a rare QTL allele should be

expected in cases with a recessive QTL allele.

The results obtained in this study are in agreement

with previous studies in human populations of small

family size, which showed that sib pair methods using

selected samples can achieve substantial power for

QTL detection and decrease the number of individuals

genotyped (Fulker & Cardon, 1994; Eaves & Meyer,

1994; Risch & Zhang, 1995, 1996; Guo et al., 1996).

In human populations with small family sizes the use

of concordant and discordant sib pairs seem to be the

more powerful selection approach (Guo et al., 1996).

Alternative analytical methods to the Haseman &

Elston (1972) regression method for such samples

have been suggested (EDAC test ; Guo et al., 1996).

However, which analytical method is the most

powerful is an area of future research.

A comparison of the efficiency of selective geno-

typing schemes under different population structures

and different models can only be suggestive of which

analysis and selective genotyping methods are the

most suitable in specific cases. It is the authors ’ belief

that there is not an overall ‘best ’ analytical or

selective genotyping method. The analytical and

selective genotyping method of choice depends on

many parameters, both known (population structure,

capital investment, etc.) and unknown (QTL mode of

action and allelic frequency). The most objective way

to determine the most powerful and cost-effective

design for different scenarios would be the use of a

simulation study under a variety of analytical and

selective genotyping methods and tailored to the

population of interest. These conclusions are under-

lined by the results of Allison et al. (1998), which show

that in some circumstances where QTL of both large

and small effect are segregating, power to detect the

QTL of smaller effect can be reduced by some selective

genotyping schemes.

Nevertheless, selection based upon phenotypic

scores can be used to target genotyping effort in an

efficient way. Typically, the best selection scheme in

this study gives power for QTL detection approaching

the maximum possible through genotyping only half

of the individuals in the sample (Fig. 3). The major

difference between this study and earlier ones is that it

focuses on families larger than two sibs. With only

two sibs in the family, selection on within-family

variance is equivalent to selection of divergent sib

pairs.

The best method overall in terms of power was

selection based on the within-family variance, and this

may in part be due to the number of sib pairs that are

included in the analysis. With selection on within-

family variance, the number of sib pairs increases

linearly with the number of families and number of

individuals genotyped. With selection of concordant–

discordant sib pairs, the total number of sib pairs

increases in an exponential manner (Fig. 6). Thus,

with genotypes on half of the individuals, for example,

selection on the within-family variance provides

around 3 times the number of sib pairs in the analysis

compared with the concordant–discordant selection

scheme.

The results above and the relative power of studies

based on 4 sibs per family versus 8 sibs per family
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emphasize the particular value of large families due to

the number of sib pairs they contain. The expected t-

value of the regression increases proportionally to the

number of sib pairs whether they come from large

families or small (Blackwelder & Elston, 1982). A

family of 8 siblings requires 10 genotypes to generate

information on 28 sib pairs. To obtain similar in-

formation from families of 2 siblings requires 112

genotypes (28 families and 4 genotypes per family).

Such calculations suggest that genotyping families of

size 8 is more than 11 times more efficient than

genotyping families of size 2! Thus when selecting

families for genotyping one should bear in mind the

value of large families and balance the within-family

variance against family size. Potentially one could

develop an index that could be used to judge the value

of genotyping a family and that incorporates both the

size and phenotypic variability of a family. Defining

the balance between variability and size will depend

upon such factors as the distribution of QTL effects in

the population, and is an area for future research.

Blackwelder & Elston (1982) and others (Amos &

Elston, 1989; Go$ tz & Ollivier, 1992) indicated that

neither power nor type I errors are affected by treating

all the comparisons in a sibship as independent. The

above results are supported by Wan et al. (1997), who

showed clearly that up to family size 5 there is no

negative effect on power of detection. Our own

simulations support these conclusions, with both the

mean t-value in the presence of a linked QTL and the

significance threshold being unaffected by the size of

family from which the sib pairs were derived

(Chatziplis, 1998). However, this same simulation

study showed that the variance of the t-value over

replicates was greater, both in the presence and

absence (simulations under the null hypothesis) of a

QTL, when the sib pairs were drawn from large

families. Despite this reassuring conclusion, the use of

a simulated threshold is recommended in order to

provide a robust significance threshold.

Selective genotyping for a single trait is considered

here. If more than one correlated trait is considered,

some decrease in the selection intensity of the samples

may secure sufficient power of detection for all traits.

When traits are uncorrelated the applicability of any

selective genotyping scheme will be somewhat reduced.

This could be an interesting area for further study.

Appendix

The regression of the proportion of alleles shared IBD

at marker locus between sib pairs on their squared

phenotypic differences is known to be (Haseman &

Elston, 1972) :
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Since if y¯ a­b
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*x then r#¯ b
xy
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(Snedecor &

Cochran, 1989) :
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From (A2) and (A3), the inverted Haseman & Elston

(1972) regression would be:
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Subtracting from both sides of the equation the

expected mean proportion of alleles shared IBD at

any locus (0±5), equation (A4) can be written as:

πW
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