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Direct numerical simulations of
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and an improved model for multicomponent
reacting mixtures
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We present direct numerical simulations of a three-layer Rayleigh–Taylor instability
(RTI) problem with a configuration based on the experiments of Suchandra & Ranjan
(J. Fluid Mech., vol. 974, 2023, A35) and Jacobs & Dalziel (J. Fluid Mech., vol. 542,
2005, pp. 251–279). The problem consists of a layer of light fluid between two layers
of heavy fluid with an Atwood number of 0.3. These simulations are first validated
through comparison with available experimental data. The validated simulations are then
utilized to analyse statistics in this three-component flow. First, length scales are examined
utilizing spectra and two-point spatial correlations of velocity and species concentration
fluctuations. Next, joint probability density functions (p.d.f.s) of species concentration
are compared against several model p.d.f.s representing generalizations of the bivariate
beta distribution. Notably, the joint p.d.f.s do not appear to be accurately described by
a Dirichlet distribution, indicating the marginal distributions do not conform to a beta
distribution. Finally, similarity of the present configuration to three-component mixing
found in inertial confinement fusion (ICF) applications is exploited to develop and validate
an improved model for the impact of multicomponent mixing on thermonuclear (TN)
reaction rates. A single time instant from the present simulations is chosen for a TN burn
calculation under the hypothetical assumption of ICF materials and temperatures. Total
TN output from this second calculation is then compared against the prediction of the
improved model. The new model is found to accurately predict TN reaction rates in both
premixed and non-premixed configurations.
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1. Introduction

The Rayleigh–Taylor instability (RTI) occurs when a perturbed interface between two
fluids of differing density undergoes an acceleration directed from the more dense to
the less dense fluid. This instability was first described by Rayleigh (1883) and was later
expanded upon by Taylor (1950). The RTI is relevant in a number of natural contexts such
as atmospheric inversions and cloud physics (Schultz et al. 2006), astrophysics (Arnett
et al. 1989; Cabot & Cook 2006) and art (Zhou 2017a). The RTI also appears in a number
of industrial contexts such as combustion (Biferale et al. 2011) and in inertial confinement
fusion (ICF) (Lindl et al. 2014). These are only a few of the areas in which the RTI appears,
and a more thorough summary is presented by Zhou (2017a,b).

The RTI is frequently considered in the context of the mixing of two components,
but in many practical applications, including ICF, the RTI can occur in the presence of
more than two components. Prior investigations of the RTI with multiple fluid layers
has been conducted through experiment (Jacobs & Dalziel 2005; Adkins et al. 2017;
Suchandra & Ranjan 2023), simulation (Youngs 2009, 2017; Morgan 2022a,b) and
modelling (Mikaelian 1983, 1990, 1996, 2005; Parhi & Nath 1991; Yang & Zhang 1993).
Three-layer RTI configurations differ in several ways from the more commonly considered
two-layer case. Of particular note, the addition of a third layer results in two interfaces,
and the stability of each interface is controlled by the density of the fluids used in each
layer. Jacobs & Dalziel (2005) considered the special case where the upper and lower
layers consist of the same fluid with a density ρ1, and the middle layer consists of a
fluid with density ρ2 such that ρ1 > ρ2. This results in an unstable interface between the
upper and middle layers, and a stable interface between the middle and lower layers. They
then showed that a self-similar three-layer RTI mixing layer in such a configuration will
grow linearly with time as opposed to the quadratic growth predicted in the two-layer
case. Jacobs & Dalziel find the slope, γ , of this linear growth to be γ = 0.49 ± 0.03 in
their experiments with an Atwood number of 0.002. Suchandra & Ranjan (2023) found
γ = 0.41 ± 0.01 for their three-layer experiments with Atwood numbers of 0.3 and 0.6.

In ICF applications, Rayleigh–Taylor (and Richtmyer–Meshkov) induced mixing
between the layers of capsule material and the deuterium–tritium (DT) fuel contributes to
degradation of capsule yield (Haan et al. 2011). The CD Symcap experiments, for example,
were a set of separated reactant experiments that were fielded on the National Ignition
Facility (NIF) with the goal of studying the amount of mixing that occurs during a capsule
implosion (Casey et al. 2014). The CD Symcap experiments consisted of a recessed layer
of deuterated plastic (CD) separated from tritium gas in the centre of the capsule by an
inert plastic layer (CH). As a result, the measured DT yield signal represents a measure
of the amount of mixing between the two reactant layers. However, in experiments such
as CD Symcap as well as other ICF capsules with multiple layers, the thermonuclear
(TN) output is not simply a function of mixing between the two reactant materials, and
the impact of the inert layer must be considered as well. Understanding the factors that
influence instability-driven mixing in ICF targets, as well as the effects of mixing on
capsule performance, has been cited as a significant technical challenge in the pursuit
of fusion ignition and greater fusion yields at the NIF (Lindl 1998; Smalyuk et al. 2019;
Abu-Shawareb et al. 2024).

Experiments such as these have motivated the development of models for use in
the computational codes used to design ICF capsules to better predict the influence of
turbulence and mixing on capsule yield. Generally, an equation for the average reaction
rate can be written as

ṙγ,αβ = Ratomic [1 + (· · · )] , (1.1)
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DNS of three-component Rayleigh–Taylor mixing

where ṙγ,αβ is the average binary reaction rate with product γ and reactants α and β,
Ratomic is the average reaction rate for atomically mixed reactants and (· · · ) represents
an augmentation of the reaction rate due to turbulent mixing. One important aspect to
consider in developing such a model is the behaviour of that model in the ‘no-mix
limit’, or whether the model returns to the correct physical limit for immiscible mixing
of components. Existing models for reacting flow have treated this augmentation term
in different ways, and with different results for the no-mix limit. Ristorcelli (2017)
presents a model for reacting flow with mixing that recovers the no-mix limit based on
the asssumption that the mixing conforms to a beta distribution. However, this model
is not extensible to mixtures with more than two components. Morgan et al. (2018a)
presents another model describing the reaction rate in binary mixtures based on a truncated
expansion of the reaction rate equation. A model that is applicable to mixing between an
arbitrary number of components is presented by Morgan (2022b), though this model does
not recover the no-mix limit. Therefore, it is desirable to construct a model for an arbitrary
number of mixing components that also recovers the no-mix limit. A principal motivation
for the present work is thus to generate a validated dataset against which an improved
reaction rate model can be evaluated.

The CD Symcap experiments represent a valuable dataset with experimental data
available for a three-component reacting mixing problem. However, these experiments
were quite complicated in design and with somewhat limited diagnostic data available.
Additionally, due to the challenging range of physical scales involved, direct numerical
simulation (DNS) of ICF capsules such as CD Symcap remains intractable (Bender
et al. 2021), and many computational efforts to simulate ICF capsules employ the use
of turbulent mix models or simplify the problem to one or two dimensions (Raman et al.
2012; Casey et al. 2014; Smalyuk et al. 2014; Weber et al. 2014; Khan et al. 2016; Gatu
Johnson et al. 2017, 2018). The present work therefore adopts a simpler approach based
on the non-reacting three-component RTI experiments of Suchandra & Ranjan (2023) and
Jacobs & Dalziel (2005). Direct numerical simulation of this simplified configuration is
first validated through comparison with available experimental data. The benchmarked
simulation is then extrapolated to a reacting configuration.

This work consists of two parts that will be discussed separately. The first part
considers a DNS of a Rayleigh–Taylor mixing layer with three components. The physical
configuration and fluid properties of this simulation are based on the experiments of
Jacobs & Dalziel (2005) as well as Suchandra & Ranjan (2023). Confidence is established
in the present simulations through comparison to experimental data as well as through
a rigorous numerical convergence study. The computational dataset is then analysed
to extract characteristic length scales using turbulence spectra and two-point spatial
correlation techniques. Additionally, joint probability statistics of mixing concentration
are examined and compared against several multivariate beta distributions of increasing
complexity. While similar analyses have been performed in the past for two-component
RTI mixing (Ristorcelli & Clark 2004), as well as for three-component passive scalar
mixing (Perry & Mueller 2018), to the best of the authors’ knowledge, this work is the
first time these statistics have been examined for a three-component RTI mixing problem.

The second part of this work focuses on development of an improved model for the
average reaction rate in a multicomponent mixing layer. Analysis is first presented to
demonstrate that the model of Morgan (2022a) can be extended to include higher-order
statistical moments that were previously neglected while also respecting the no-mix limit.
This improved model is then evaluated against the simulation data generated in the first
part of this work. A single time instant from the DNS calculation representing significant,
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although not complete, mixing of the three components is numerically transformed to treat
the mixing components as either ‘premixed’ or ‘non-premixed’ deuterium and tritium. The
flow field is computationally frozen and a TN burn calculation is performed. The results
from the high-fidelity calculation are then compared with a one-dimensional calculation
utilizing the improved model.

This work is presented in the following sections. Section 2 discusses the configuration of
the simulation, including a description of the numerical methods used, the computational
domain, the fluids used and the initial conditions. Next, several sections are then focused
on the results generated from these simulations. First, § 3 presents comparison of these
simulation results with experimental data as well as verification that these simulations have
converged and achieved DNS resolution. Section 4 presents additional analysis of this flow
beyond that which was presented in the experiment and focuses on the turbulent aspects
of the flow, including analysis of turbulent length scales utilizing spectra and two-point
correlations. An evaluation of the joint probability distribution of the concentration of the
mixing components is also presented. Section 5 introduces the proposed model for reacting
flow in this configuration, and a comparison between the model and a calculation based
on the DNS data is made. Lastly, § 6 summarizes the conclusions of this work.

2. Problem set-up

2.1. Numerical methods
The simulations presented in this work are conducted in two stages. The first stage
involves simulating a non-reacting three-layer RTI mixing layer in time and validating the
simulation through comparison with available experimental data from Jacobs & Dalziel
(2005) and Suchandra & Ranjan (2023). As such, the material properties in this stage
are chosen to be similar to those of the experiments. The second stage is conducted to
validate and assess an improved model for the influence of mixing on reaction rates. This
is accomplished in the present study by transforming the simulation state from the first
stage into an ICF-relevant configuration and simulating the mixing layer as it undergoes
TN burn. This calculation is performed utilizing both the simulation data directly as well
as through the improved reaction rate model. Hydrodynamic evolution of the mixing layer
is disabled in this second stage so that the mass fraction covariances do not evolve as a
result of hydrodynamic motion during the TN burn process. This approach is not meant
to represent the physics of ICF targets, but is a useful approach for evaluating the reaction
rate model under the idealized case where second-moment concentration statistics that are
known exactly (i.e. without the need for a coupled model for hydrodynamic evolution),
thus simplifying the comparison between the simulation data and the model. In the
first stage of the simulation, a high-order numerical scheme is desirable to capture all
of the scales of turbulence with minimal numerical dissipation. In the second stage of
the simulation, TN burn physics, radiation diffusion and tabular equations of state are
required. To accommodate these differing computational requirements, separate codes are
utilized for each stage of the simulation. This two-stage approach has been used previously
in simulations of a reacting Rayleigh–Taylor mixing layer (Morgan et al. 2018a; Morgan
2022b), and the following paragraphs outline the computational codes utilized in each
stage.

In the first stage, the Miranda hydrodynamics code (Cook 2007, 2009; Cabot &
Cook 2006; Morgan et al. 2017) is utilized to simulate an RTI mixing layer with three
components in a configuration similar to the experiments of Jacobs & Dalziel (2005) and
Suchandra & Ranjan (2023) as it evolves with time. Miranda has seen extensive use in
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compressible, multicomponent turbulent mixing problems (Cook, Cabot & Miller 2004;
Cabot & Cook 2006; Olson & Cook 2007; Olson et al. 2011; Olson & Greenough 2014a,b;
Tritschler et al. 2014; Morgan et al. 2018a; Campos & Morgan 2019; Morgan 2022a,b;
Ferguson, Wang & Morgan 2023). Miranda solves the compressible Navier–Stokes
equations for a non-reacting, multicomponent mixture,

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1)

∂(ρYα)
∂t

+ ∂(ρYαui)

∂xi
= −∂Jα,i

∂xi
, (2.2)

∂(ρuj)

∂t
+ ∂(ρuiuj)

∂xi
= − ∂p

∂xj
+ ∂σij

∂xi
+ ρgj, (2.3)

∂E
∂t

+ ∂[(E + p)ui]
∂xi

= ∂(σijui)

∂xj
− ∂qi

∂xi
+ ρgiui, (2.4)

where ρ is the density, t is the time, ui is the velocity along axis i, xi is the spatial coordinate
in axis i, Yα is the mass fraction of species α, Jα,i is the diffusive mass flux of species α,
p is the pressure, σij is the viscous stress tensor, gj is the gravitational body force in axis
j, E is the total energy and qi is the heat flux in axis i. These governing equations are
solved using a tenth-order compact finite differencing scheme in space and a fourth-order
explicit Runge–Kutta scheme in time. Miranda models the subgrid transfer of energy using
an artificial fluid large-eddy simulation (AFLES) approach, where an eighth-order filter is
applied to selectively add artificial contributions to the viscosity, diffusivity and thermal
conductivity. Further information on Miranda, including specifics of the AFLES approach,
is presented in Appendix A.1. Section 3.1 demonstrates that the influence of Miranda’s
artificial fluid approach is negligible in the present study.

In the second stage, a single time instant where there is significant, although not
complete, mixing between all three layers is imported into the Ares code (Sharp 1978;
Darlington, McAbee & Rodrigue 2001), where the mixing layer is simulated as it
undergoes TN burn. Ares has been used extensively in the simulation of ICF targets and
experiments (Raman et al. 2012; Casey et al. 2014; Smalyuk et al. 2014; Weber et al. 2014;
Khan et al. 2016; Gatu Johnson et al. 2017, 2018; Bender et al. 2021). In this stage, the
mixing components are replaced with ICF-relevant materials. The materials considered
in this stage include non-reactive CH plastic as well as deuterium (D) and tritium (T)
in the form of either CD and tritium gas in a non-premixed configuration, or a mixture
of deuterium and tritium (DT) in a premixed configuration. As such, only a single TN
reaction is considered,

D + T → n0 + 4He. (2.5)

The rate of reaction with products γ and reactants α and β is described by

ṙγ,αβ = 〈σv〉αβ nαnβ, (2.6)

where 〈σv〉αβ is the reaction cross-section, and nα and nβ are the particle number
densities. The reaction cross-section is interpolated using the TDFv2.3 library (Warshaw
2001). Each reaction has an average thermal energy of 17.59 MeV for the D + T reaction
considered here. Local deposition of this energy is assumed such that the average thermal
energy is removed from the ion energy field. Charged particle energy is deposited in the
same volume with a split between the ion and electron energies, determined according to
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the Corman–Spitzer model (Corman et al. 1975). Neutrons are assumed to immediately
escape the problem, and energy carried by neutron products is removed from the system.
Thermal effects and the apportionment of average thermal energy between reactants is
determined following the method of Warshaw (2001), and the ion–electron coefficient is
determined via the method of Brysk (1974). Further details on the Ares code are presented
in Appendix A.2.

The proposed reaction rate model is solved using the Ares code coupled with the
modular RANSBox library (Morgan et al. 2024). Reynolds-averaged Navier–Stokes
(RANS) calculations are performed on a one-dimensional computational mesh with grid
spacing in the z dimension set to be identical to the DNS grid spacing in order to compare
with DNS data. First and second moments of species concentrations (i.e. mean mass
fractions and mass fraction covariances) in the RANS calculations are taken directly from
DNS at the same time instant chosen for TN burn. In this way, the reaction rate model may
be assessed independently of the accuracy of any coupled model for the evolution of the
mass fraction covariances, such as the k–L–a–C model (Morgan 2022b) or the R–2L–a–C
model (Morgan, Ferguson & Olson 2023).

2.2. Computational set-up
The present work aims to study the RTI in a three-layered configuration. The experiments
of Suchandra & Ranjan (2023) and Jacobs & Dalziel (2005) provide useful experimental
data for a three-layer Rayleigh–Taylor driven flow, and so the present simulations aim
to be similar in configuration to those experiments to permit reasonable comparison.
However, the present simulations do not attempt to exactly replicate either experiment.
The experiments consist of three layers of fluid with an acceleration due to Earth’s gravity,
with the upper and lower layers being more dense than the middle layer. This results in an
unstable interface between the upper and middle layers, and a stable interface between the
middle and lower layers. The experiments of Jacobs & Dalziel stabilize the upper unstable
interface through the use of a splitter plate that is withdrawn to initiate the experiment.
Suchandra & Ranjan, in contrast, utilize three initially separated streams of gas flowing
with a mean velocity that meet at the entrance to a test section where they are allowed
to mix. The initial conditions of the simulation, discussed in detail in § 2.3, are chosen to
approximate the perturbations that these approaches induce on the interface.

The computational domain is set up to be similar to the experimental configuration. This
consists of three layers of fluid, with layer 1 located at the top of the domain, layer 3 located
at the bottom of the domain and layer 2 located between layers 1 and 3. Gravitational
acceleration is applied in the −z direction. This results in two interfaces being formed,
with one between layers 1 and 2, and the other between layers 2 and 3. The fluid properties
in each layer are set such that the upper (1–2) interface is initially unstable, and the lower
(2– 3) interface is initially stable. Additionally, the fluid properties used in layers 1 and 3
are chosen to be identical. A schematic of the domain, including the location of each layer
of fluid and the direction of gravity, is presented in figure 1.

The problem domain is rectangular in shape, with dimensions of Lx = 40 cm, Ly =
40 cm and Lz = 80 cm in the x, y and z axes, respectively. These dimensions are chosen to
be similar to the test section utilized in the experiments of Suchandra & Ranjan (2023),
though a few modifications are made to account for numerical limitations. In particular, the
length of the experimental test section used by Suchandra & Ranjan is several metres long,
rendering simulation of the entire test section computationally intractable. To simplify this
constraint, the frozen turbulence hypothesis of Taylor (1938) is invoked to transform the
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Figure 1. Schematic representation of the computational domain. The location and index of the three layers
is indicated by the circled numerals. The location of the origin and orientation of the axes is indicated by the
triad. The origin is located at the midpoint of the domain in the x and y dimensions, and at the vertical midpoint
of the initial middle layer location in the z dimension.

spatially developing mixing layer into a temporally developing one. This approach was
also used by Suchandra & Ranjan in the presentation of their results. Conceptually, this
approach considers a box of fluid that starts attached to the trailing edge of the splitter
plate used to separate the fluids. The box then moves at a constant velocity equal to the
mean flow velocity relative to the splitter plate. Thus, a spatially developing mixing layer
with a mean flow relative to the splitter plate instead appears as a temporally developing
layer with no mean flow from the perspective of the box. This allows the streamwise axis
to be shortened to match the cross-stream direction, with this choice made to result in a
domain with a square horizontal cross-section. The vertical axis in the simulation is set
to be 80 cm, which is somewhat taller than the experimental test section height of 60 cm.
This change is made to address numerical stability issues associated with the mixing layer
approaching the upper domain edge.

The domain boundaries are located at ±20 cm in the x and y axes, and at −20 and
+60 cm in the vertical axis. The boundary conditions used for this problem are periodic on
the ±20 cm faces in x and y, and no penetration on the top (+60 cm) and bottom (−20 cm)
faces in z. The middle layer is initially located with its midpoint at z = 0, with an initial
layer thickness of h2,0 = 3.2 cm. This results in a greater amount of vertical space above
the initial middle layer location than below it. This asymmetry, as with the increased length
of the domain in the vertical axis discussed previously, is chosen to eliminate numerical
stability issues as the mixing layer approaches the upper domain edge and to allow the
developing mixing layer to remain approximately equidistant from the upper and lower
domain boundaries.

The fluid properties in the present simulations are chosen to match those used in the
experiments of Suchandra & Ranjan (2023). Atmospheric pressure and temperature were
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Fluid Mf γ μf × 10−4

(g1 mol−1) (g1 cm−1 s−1)

Air 28.9647 1.4 1.820
He 4.0026 5/3 1.992

Table 1. The molecular weight (Mf ), ratio of specific heats (γ ) and dynamic viscosity (μf ) of each pure fluid
used in the present work.

not reported in the experiment, and so a temperature of Tatm = 290 K and a pressure of
Patm = 101.3 kPa are assumed. The upper and lower layers of fluid in the experiment
consisted of air, and the middle layer consisted of a mixture of air and helium with the ratio
of these two components controlled to achieve a desired Atwood number. The densities of
the pure gas components in the simulation are calculated from their molecular weights and
ratio of specific heats as given in table 1 utilizing ideal gas relationships. The properties
of the middle layer are calculated from the volume fractions of air and helium required
to achieve a specified Atwood number using Miranda’s mixture equation of state (Cook
2009).

The values of the fluid contributions to the total viscosity, diffusivity and thermal
conductivity are found from the fluid properties of each layer. The dynamic viscosity of
the upper and lower fluid layers is set directly from the values in table 1, and Miranda’s
mixture equation of state is used to calculate an effective viscosity for the middle layer
mixture. The fluid contribution to the bulk viscosity is neglected. The fluid contribution to
the thermal conductivity is calculated as

κf = Cp,fμf

Pr
, (2.7)

where Pr = 0.7 is the Prandtl number. Finally, the fluid contribution to the diffusivity is
calculated as a binary species diffusivity

Df ,α = νf

Sc
, (2.8)

where Sc = 0.22 is the Schmidt number. Note that all of these properties are further
adjusted to maintain dynamic similarity between simulation and experiment owing to
restrictions imposed by the compressible nature of the Miranda code. These adjustments
are discussed in greater detail in § 2.4.

Two sets of simulation data are generated in the present work with the goal of studying
different aspects of the simulation. The first dataset, termed the ‘single realization’ set,
are simulations run on successively refined computational meshes with an identical initial
condition in order to assess convergence of the simulation solution. Information about
these meshes are outlined in table 2. The base resolution for this problem is 60 × 60 ×
120 cells in the x, y, and z axes, respectively, with these zone counts chosen to result in
square zones. Each refined mesh is then generated via integer multiplication of the base
mesh resolution, therefore ensuring that square zones are maintained for all computational
meshes. Each mesh is labelled RN , where N indicates the multiplication factor used.

The second set of simulations, termed the ‘ensemble’ dataset, arises by noting that the
experimental statistics from Suchandra & Ranjan (2023) and Jacobs & Dalziel (2005)
were captured over independent realizations of the flow with inherent randomness in their
initial state. It is thus worthwhile to assess the influence of the randomness of the initial
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Resolution Name Nx Ny Nz Ntot 
x (cm) 
y (cm) 
z (cm)

R1 (base) 60 60 120 432 000 0.6667 0.6667 0.6667
R2 120 120 240 3 456 000 0.3333 0.3333 0.3333
R4 240 240 480 27 648 000 0.1667 0.1667 0.1667
R8 480 480 960 221 184 000 0.0833 0.0833 0.0833
R12 720 720 1440 746 496 000 0.0556 0.0556 0.0556
R16 960 960 1920 1 769 472 000 0.0417 0.0417 0.0417
R24 1440 1440 2880 5 971 968 000 0.0278 0.0278 0.0278

Table 2. Computational grids utilized in the present simulations. Grids are named according to RN , where N
is an integer used to multiply the zone counts in each axis on the base (R1) grid to arrive at the refined grid.

condition by conducting multiple runs with varied initial conditions and comparing the
results. This dataset consists of the ‘single realization’ dataset results from the R4 mesh,
plus eight additional simulations also run on the R4 mesh. The random number generator
seed values used to generate the upper and lower interfaces are set to different values for
each run, with these values chosen such that a given seed value is not repeated across runs
on either interface. This ensures that nine independent initial states are generated for each
of the nine simulations. A mean value of a parameter of interest, together with a 95 %
confidence bound of that mean, is calculated from all runs to provide a measure of the
uncertainty in the calculated mean values owing to the influence of initial conditions.

2.3. Initial conditions
The interfaces in the experiments of Jacobs & Dalziel (2005) as well as Suchandra &
Ranjan (2023) are unforced, and so the initial perturbations to the interface are not well
quantified. Experiments in a similar configuration, albeit with only two fluid layers, were
conducted by Davies Wykes & Dalziel (2014) that also utilized a splitter plate to initially
separate the mixing fluids similar to the aforementioned experiments. A photograph of the
development of the perturbations in space is provided in figure 5 of that work, providing a
useful visual depiction of general shape of the interface perturbations. Observation of this
photograph reveals that the initial perturbations appear to be composed of two components.
One is a two-dimensional low-mode component parallel to the axis of the plate withdrawal,
most likely induced by vortex shedding off of the back of the splitter plate. Second is a
three-dimensional, high-mode component that is likely induced by random imperfections
in the splitter plate and other factors that result in breaking of the symmetry of the
streamwise and otherwise two-dimensional component of the perturbation. In the present
work, it is assumed that the initial perturbations for the experiments of Jacobs & Dalziel
and Suchandra & Ranjan is likely similar to the case of Davies Wykes & Dalziel owing to
the similarity in how the initial interface is formed. This suggests that an appropriate initial
perturbation for this configuration consists of a two-dimensional low-mode component
in the streamwise (x) direction and a three-dimensional, high-mode component imposed
uniformly across the interface.

Bender et al. (2021) present a method to specify an initial condition that is the
combination of a specified initial perturbation combined with unknown defects present
in the design and construction of an ICF capsule. This results in an initial perturbation
profile consisting of a two-dimensional principal component and a three-dimensional noise
component. Accordingly, the functional form of the initial perturbations that are utilized
in the present work are based on the specification of Bender et al. Initial conditions of
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a similar form were also discussed by Thornber et al. (2010), Schilling & Latini (2010)
and Thornber et al. (2017). The general calculation procedure used to define the initial
interface is outlined in the following paragraphs, and the reader is referred to appendix D
of Bender et al. (2021) for in-depth information.

First, it is useful to define the wavenumber components in x and y as

kx,i = 2πi
Lx
, ky,j = 2πj

Ly
, (2.9a,b)

such that the magnitude of the wavevector is ki,j =
√

k2
x,i + k2

y,j. Here i and j are integers
in the range [Nmin,Nmax], with this range set independently for the principal (p) and noise
(n) components of the perturbation spectrum. The amplitude of the principal and noise
components of the initial perturbation spectrum are defined as Ap and An, respectively,
and the total perturbation height is A = Ap + An.

The streamwise, or principal, perturbation component is the component of the
perturbation that arises from the influence of the splitter plate initially separating the fluid
layers. This is calculated as a one-dimensional Fourier series in x that is extruded along y
to generate a two-dimensional interface,

Ap(x, y) =
∑

i

ap,i cos
(
kx,ix + φi

)
, (2.10)

where Ap is the principal perturbation amplitude, ap,i is the mode amplitude of mode
number i, φi is a random phase offset and the summation is over the integers, i, in the range
[Np,min = 10, Np,max = 20]. The standard deviation of the perturbation height across the
resulting two-dimensional interface is calculated, and the amplitude of the profile is scaled
to have a specified standard deviation. The standard deviation of the principal component
was chosen to be 0.09 cm for this work. The range of mode numbers used, as well as the
standard deviation of the principal component of the interface profile, was chosen to result
in mixing layer growth that best matched available experimental data.

The noise component of the initial perturbation is inherently two-dimensional and is
imposed uniformly across the initial interface. Functionally, this perturbation component
has the form

An(x, y) =
∑

i

∑
j

η
(1)
ij cos

(
kx,ix

)
cos
(
ky,jy

)+ η
(2)
i,j cos

(
kx,ix

)
sin
(
ky,jy

)
+ η

(3)
i,j sin

(
kx,ix

)
cos
(
ky,jy

)+ η
(4)
i,j sin

(
kx,ix

)
sin
(
ky,jy

)
, (2.11)

where η(··· )i,j are amplitude coefficients drawn from a normal distribution with zero mean
and a variance defined as

V (kx, ky) = kx,1ky,1

2πki,j
P(kx, ky). (2.12)

The factor P is chosen to be 1 if kmin ≤ k ≤ kmax and 0 otherwise, where kmin and kmax
are the wavenumbers associated with Nn,min and Nn,max, respectively. The summation
takes place over the integers i, j in the range [Nn,min = 30, Nn,max = 35]. These values
were likewise chosen to obtain good agreement with available experimental data. The full
two-dimensional random noise perturbation profile, An, is then scaled similarly to that of
the principal perturbation profile, with the profile amplitude scaled to achieve a specified
standard deviation in interface perturbation height. This standard deviation was chosen
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x

z
y

Figure 2. An image of the initial condition depicting the mass fraction of the middle layer, Y2, from 0 (red) to
1 (blue).

to be 0.09 cm for the noise component of the perturbation profile. As with the principal
part of the perturbation profile, the range of mode numbers used as well as the specified
standard deviation were chosen to result in mixing layer growth that best matched available
experimental data.

The principal and noise components of the initial perturbation spectrum are calculated
independently and then added together to produce a single perturbation amplitude. This
process is repeated separately for the upper and lower interfaces with the random number
generator seed value used to generate the random phase offsets chosen to be different
values for each interface. Figure 2 depicts the initial state of the middle layer of fluid for
the single realization simulation, also depicting the initial perturbations on the upper and
lower interfaces as well as the difference in the perturbations in the streamwise (x) and
cross-stream (y) axes.

Finally, the present simulations assume an initially quiescent state, U(x) = 0. This
choice, together with the form of the initial perturbations described in this section, results
in the initial state of the present simulations most closely resembling the state immediately
after plate withdrawal in the experiments of Jacobs & Dalziel (2005), or the case where
the mean flow velocities of all three streams of gas are exactly matched in the experiments
of Suchandra & Ranjan (2023). It should be noted, however, that it is practically difficult
for the latter experiment to exactly match the mean velocities of the three gas streams,
and a mismatch may cause the resulting statistics to contain an influence from shear. The
present simulations do not attempt to reproduce this effect, and some differences from the
experimental results may be expected depending on the strength of this influence.

2.4. Non-dimensionalization
For the purposes of comparison with experimental data, the non-dimensional scalings
utilized by Suchandra & Ranjan (2023) as well as Jacobs & Dalziel (2005) are utilized
here. Jacobs & Dalziel find that the mixing width of a self-similar three-layer mixing layer
grows linearly as a function of time according to

h = γ
√

A12h2,0gt, (2.13)

where A12 is the Atwood number between the upper and middle layers, h2,0 is the initial
middle layer thickness, g is gravity, t is time and γ is an unknown coefficient. Equation
(2.13) can then be non-dimensionalized by the initial layer thickness to find

hc

h2,0
= γ

√
A12g
h2,0

t = 1
max

[
C̄
] , (2.14)
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where the right-hand side of (2.14) is found by considering the conservation of a passive
scalar, C, with an initial value of 1 in the middle layer and 0 elsewhere such that

∫ ∞

−∞
C̄ dz = h2,0. (2.15)

Therefore, the non-dimensional mixing layer width grows linearly with a non-dimensional
time defined as

τ =
√

A12g
h2,0

t (2.16)

such that h/h2,0 = γ τ .
Miranda is a compressible code with an explicit fourth-order Runge–Kutta time

integration scheme, and so has a time-step limit for numerical stability that is related
to the acoustic Courant–Friedrichs–Lewy condition (Cook 2007). At the same time, the
experiment took place over several seconds. The consequence of these two factors is that
performing the present simulation over the same physical time range as the experiment is
intractable. Therefore, it is desired to compress the physical time range to be simulated in
order to make this problem more computationally feasible. Equation (2.16) indicates that
this can be accomplished by increasing the Atwood number, decreasing the middle layer
thickness or increasing the magnitude of gravity. The Atwood number is fixed to facilitate
comparison with experiment and grid resolution restricts the amount by which the middle
layer thickness can be decreased. This leaves the gravity as the only parameter that can be
varied. The gravity is therefore scaled by a factor of N such that gsim = Ngexp.

Reducing the physical time over which the simulation takes place requires consideration
of how other fluid parameters, in particular viscosity and diffusivity, must be scaled to
maintain dynamic similarity with the experiment. The Reynolds number is a natural choice
to establish a scaling factor between the two cases in order to maintain dynamic similarity.
Suchandra & Ranjan (2023) define a characteristic Reynolds number in their experiments
as

Re = hu′
z,rms

ν
, (2.17)

where h is the mixing layer width, u′
z,rms is the maximum of the vertical velocity

fluctuations and ν is an average mixture viscosity. However, the effect of compressing the
simulation time on u′

z,rms is not clear a priori, making establishing a scaling relationship
using (3.6) difficult. Instead, a generic Reynolds number may be defined as

Re = LU
ν

= L2/T
ν

, (2.18)

where L, U and T are characteristic length, velocity and time scales. The right-hand side
of (2.18) is arrived at by noting U = L/T , allowing the dependence on the characteristic
velocity scale to be removed in favour of the characteristic length and time scales that are
better known a priori. Requiring that this generic Reynolds number is similar between the
experiment and simulation and assuming that the characteristic length scale is the same in
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the two cases yields

Reexp ∼ Resim ∴ Texp

Tsim
∼ νsim

νexp
. (2.19)

A relevant time scale to compare the two cases is now required, for which (2.16) may be
used. Substituting this into the above expression and noting that gsim = Ngexp yields

νsim

νexp
∼ Texp

Tsim
∼
√

h2,0/A12gexp√
h2,0/A12Ngexp

=
√

N. (2.20)

Therefore, the kinematic viscosity for each fluid is increased by a factor of
√

N in the
simulation, and the time over which the instability develops is similarly compressed
by a factor of

√
N. A value of N = 800 is chosen for the present work to reduce the

physical time simulated to a computationally feasible range. A posteriori analysis finds
the maximum Mach number to be M � 0.05, indicating that this time compression does
not introduce significant compressibility effects. This time compression also implicitly
assumes that the mean flow velocity used for Taylor’s frozen turbulence hypothesis
discussed in § 2.2 is similarly increased by a factor of

√
N. Additional a posteriori

analysis finds that the maximum value of ux,rms is less than 10 % of this scaled mean
flow velocity. Thus, this time compression also does not meaningfully impact the frozen
flow assumption.

Scaling the kinematic viscosity in this way will also scale the dynamic viscosity,
diffusivity and thermal conductivity of the fluids as well. A priori application of the scaling
relationship in (2.20) to the present simulations resulted in a Reynolds number calculated
using (2.17) that was approximately twice that of the experiment. Accordingly, the ratio
νsim/νexp was set to 2

√
N to maintain a similar Reynolds number to the experiment.

2.5. Averaging
Variables in turbulent flows may be decomposed in to a form that consists of an
average value plus fluctuations of the variable about that mean. The Reynolds and Favre
decompositions will be considered in the present work. An arbitrary scalar, f , may be
decomposed according to

f = f̄ + f ′ = f̃ + f ′′, (2.21)

where f̄ is the Reynolds-averaged value of f , f ′ is the fluctuations of f about f̄ , f̃ is the
Favre average and f ′′ is the fluctuations of f about f̃ . The Favre and Reynolds averages are
related through the density, ρ, according to

f̃ = ρf
ρ̄
. (2.22)

Averages in both cases are computed over all x, y for a fixed value of z owing to the doubly
periodic nature of this problem. This results in the averaged variables being a function of
z only.

3. Results: validation

3.1. Direct numerical simulation
This study seeks to perform DNS of a three-layer Rayleigh–Taylor unstable flow.
Therefore, a useful first step in the validation of these results is to establish whether these
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simulations have sufficient resolution to achieve this goal. The DNS regime can be broadly
described as the regime where all scales of turbulence are resolved, the flow physics are
governed by the physical properties of the fluid, and purely numerical contributions are
negligible. This section will demonstrate the latter two points, and additional analysis
demonstrating that all relevant scales of this flow are fully resolved by the computational
mesh will be presented in § 4.1.

Olson & Greenough (2014a) present a set of parameters that can be used to identify
the transition from well-resolved large-eddy simulation (LES) to DNS. In particular,
the transition from LES to DNS in these simulations may be identified by the total
contributions to the viscosity and diffusivity arising from the numerics becoming smaller
than the physical contributions to these quantities. This is defined in Olson & Greenough
as 〈(·)a/(·)f 〉 < 1, where (·)a are the artificial contributions arising from purely numerical
sources and (·)f is the physical contribution arising from the properties of the fluids.

The present work considers three contributions to the total fluid properties. The first
is the physical contribution, (·)f , that arises from the material properties of the fluid.
Second is the explicit contribution arising from Miranda’s artificial fluid approach, (·)a,
with these contributions calculated according to the method described in Appendix A.1.
The sum of the physical and AFLES terms at each grid point is provided as an output from
Miranda, and this output is used for these first two terms. Last are implicit contributions to
viscosity and diffusivity arising from the use of a numerical method to solve the governing
equations. These contributions are related to how well the computational grid resolves the
flow field and must be calculated from the simulation data a posteriori.

A method for calculating an effective viscosity and diffusivity arising from the use of a
numerical method is described by Olson & Greenough (2014a), and this method is utilized
here to provide an estimate for this contribution. The grid viscosity is approximated as

μG = Cμρ
∣∣∣∇2S

∣∣∣
x4, (3.1)

where μG is the grid-dependent viscosity, ρ is the fluid density, S is the magnitude of the
strain rate tensor and
x is the grid spacing. Here Cμ is a code-dependent coefficient, with
a value of 8.11 determined by Olson & Greenough for the Miranda code, corresponding
to the transition from LES to DNS when μG/μf = 1. A similar definition is given for
grid-dependent diffusivity as

DG = CDcs

∣∣∣∇2
(√∇Y · ∇Y

)∣∣∣
x4, (3.2)

where cs is the local speed of sound and Y is a mass fraction, chosen to be the middle layer
mass fraction, Y2, in this work. Here CD is again a code-dependent coefficient with a value
of 0.039 determined by Olson & Greenough (2014a) for the Miranda code, corresponding
to the transition from LES to DNS when DG/Df = 1. These contributions lead to a natural
definition of the total fluid viscosity and diffusivity as

μt = μf + μa + βa + μG (3.3)

and
Dt = Df + Da + DG, (3.4)

which then allow for a similar expression of the DNS transition criteria of Olson &
Greenough (2014a) as

max

[(
(·)t
(·)f

)]
< 2, (3.5)
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Figure 3. The ratio of total to molecular values of (a) viscosity (3.3) and (b) diffusivity (3.4) as a function of
non-dimensional time and grid resolution.

where the right-hand side of the inequality is now 2 instead of 1 owing to the inclusion
of the molecular fluid property in the definition of the total fluid property in the present
work. The maximum value of (·)t/(·)f is selected at each time instant in order to calculate
a single value of this ratio for each fluid property.

The ratios of the total to fluid properties for viscosity and diffusivity as a function of time
as calculated through (3.5) on successively refined simulation grids is plotted in figure 3. It
is clear that these simulations satisfy this criteria in the mechanical fields between the R4
and R8 meshes, and subsequently refined meshes demonstrate convergence of the effective
viscosity towards the physical viscosity. This criterion is similarly satisfied for the scalar
fields starting around the R4 mesh, with successive refinements resulting in the effective
diffusivity approaching the physical diffusivity.

The convergence of these simulations may also be established by noting the factor of

x4 in (3.1) and (3.2). The values of these two equations should decrease proportionally
to
x4 if the flow gradients are fully resolved. The maximum values of μG/μf and DG/Df
at a non-dimensional time of τ = 8.2 are presented in figure 4. It can be observed in
these figures that there is a clear change in the slope of decay between coarse and fine
resolutions. This occurs as the gradients of the flow begin to become fully resolved, rather
than being influenced by the numerical method. Furthermore, a rate of decay of grid
viscosity and diffusivity that is very close to 
x4 is observed at the highest resolution
meshes. This is further evidence that these simulations have reached a state where all flow
gradients are fully resolved and are not influenced by the numerical method.

3.2. Qualitative comparison
It is useful to qualitatively compare the experimental results to those obtained from these
simulations as this provides a useful measure for the similarity between the numerical and
physical results, particularly with regards to whether the simulation is in a similar flow
regime as the experiment. The present simulations do not attempt to exactly reproduce
the experimental state of either Jacobs & Dalziel or Suchandra & Ranjan, and so it is
unlikely that a directly comparable simulation image can be found. Instead, multiple planes
from the simulation are presented to provide a general sense of the state of the mixing
layer, including large-scale behaviour as well as small-scale structures. This also provides
a useful sense of how the randomness of the initial perturbation influences the qualitative
appearance of the mixing layer. Figure 5 depicts five x–z planes of middle mass fraction
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Figure 4. The ratio of (a) grid viscosity (3.1) and (b) grid diffusivity (3.2) to their molecular value as a
function of grid spacing at a non-dimensional time of τ = 8.2. A 
x4 fiducial is plotted for comparison.
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Figure 5. Visualization of the middle fluid layer at τ = 8.2. Images (a–e) depict x–z planes of the middle layer
mass fraction from the simulation at (a,d) y = ±9 cm, (b,e) y = ±3.7 cm and (c) y = 0 cm. Also shown is ( f )
a Mie scattering visualization of the middle layer from figure 5(a) of Suchandra & Ranjan (2023).

from the simulation at (a,d) y = ±9 cm, (b,e) y = ±3.7 cm and (c) y = 0 cm, as well as
( f ) the Mie scattering visualization image from figure 5(a) of Suchandra & Ranjan (2023).
The simulation images depict a subset of the simulation domain in order to produce images
with a similar physical scale to the experimental image. The horizontal extents for the
simulation images are x = [−15, 15] cm and the vertical extents are z = [−10, 20] cm.
These images are presented at a non-dimensional time of τ = 8.2 in both simulation and
experiment.

One immediately notable difference between the experimental and simulation images
is that the experimental images demonstrate a high degree of streakiness, suggesting a
greater degree of small-scale entrainment and less diffusive mixing of the unseeded gas
than is observed in the simulation. This is likely due to the Mie scattering diagnostic
used to generate the experimental image, and arises due to the tracer particle used in Mie
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scattering behaving as a Lagrangian tracer rather than exactly following and diffusing with
the gas it is seeded into (Anderson et al. 2015).

Good qualitative agreement is observed between experiment and simulation in terms of
overall mixing layer extents and large-scale flow structure size. Generally good agreement
in the medium-to-small scales is also observed, though the size and quantity of small-scale
structures in the simulation appears qualitatively slightly different than the experiment
depending on the image considered. A significant amount of small-scaling mixing can
nonetheless be observed by noting the fluctuations in the mass fraction fields, particularly
within the large structures. Reynolds number analysis in § 3.3.2 and length scale analysis
in § 4.1 also indicates good overall agreement between experiment and simulation at this
time however, and so qualitative differences in scale size are likely simply an artifact of
the specific planes considered. Nevertheless, the range of scales observed indicate that the
present simulations are in a similar flow regime to the experiment.

3.3. Experimental comparison
This section focuses on comparison with available experimental data from Jacobs &
Dalziel (2005) and Suchandra & Ranjan (2023) to validate the present simulations. It
should be emphasized that the present simulations consider a similar configuration to those
experiments but do not attempt to exactly reproduce either experiment. Of particular note
is the potential influence from shear in the experiments of Suchandra & Ranjan discussed
in § 2.3. Thus, some of the experimental results may include an influence from shear that
are not reproduced in the present simulations, and so some disagreement in these cases
may be expected.

3.3.1. Mixing layer width
The first metric to be considered is the mixing layer width as a function of time. Equation
(2.14) shows that the mixing layer width can be defined in terms of the maximum value of
a conserved passive scalar, C, with a value of 0 outside of the middle layer and an initial
value of 1 inside the middle layer. The definition C = ρY2/ρ2, where ρ is the density, Y2
is the mass fraction of the middle fluid and ρ2 is the partial density of the middle fluid,
is used for the present work. This definition satisfies the assumptions of (2.14) with the
exception that ρY2 is not strictly a passive scalar.

Figure 6 depicts the mixing layer width as a function of time for (a) the single realization
case as a function of mesh resolution and (b) the ensemble averaged case with a mean
mixing layer width and associated 95 % confidence interval of the mean. Also shown
are the experimental data points from Suchandra & Ranjan (2023) and Jacobs & Dalziel
(2005). The data points from the experiments of Suchandra & Ranjan arise from four
separate experimental runs. These consist of two runs utilizing a Mie scattering diagnostic
at τ ≈ 8.2 and τ ≈ 15.8, and two additional runs utilizing a particle image velocimetry
(PIV)/planar laser induced fluorescence (PLIF) diagnostic at τ = 11.1 and τ = 17.3. The
PIV/PLIF data are indicated by a black dot surrounded by a red circle in figure 6 to
distinguish them from the Mie scattering data. Finally, a line corresponding to a value
of γ = 0.5 is shown for reference.

The ensemble averaged mixing layer width and associated 95 % confidence interval
encompasses almost all of the Mie scattering experimental data of Suchandra & Ranjan
(2023) even at late time, indicating good agreement between the present simulations
and those experiments. Agreement with the PIV/PLIF data is not observed, with the
mixing layer width in both cases lying outside the 95 % confidence band of the
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Figure 6. Plot of normalized mixing layer width versus non-dimensional time (2.14) from the (a) single
realization versus resolution and (b) ensemble with associated 95 % confidence interval. Also shown are
the values of the mixing layer width from the At = 0.002 experiments of Jacobs & Dalziel (2005) and the
At = 0.3 experiments of Suchandra & Ranjan (2023), as well as a ∼0.5τ fiducial for reference. The PIV/PLIF
experiments of Suchandra & Ranjan (2023) are indicated by a red circle.

simulation ensemble. It should be noted, however, that the PIV/PLIF data points also lay
fairly far from the linear growth trendline that well describes the other experimental data.
It is possible that some aspect of the PIV/PLIF experiments resulted in differences in the
initial condition that in turn resulted in a different mixing layer growth over time. Another
potential source of this disagreement could stem from differences in the behaviour of (2.14)
when using a PLIF diagnostic versus a Mie scattering diagnostic. Given that these data
points are not a time series, the temporal trend of these two cases and how they compare
to the present simulations is unknown.

The present simulations generally overpredict the mixing layer width values from
the At = 0.002 experiments of Jacobs & Dalziel (2005) at early times. This early time
overprediction is likely due to the fact that the perturbations in the experiments of Jacobs &
Dalziel may differ in amplitude and mode content due to the differing Atwood numbers as
well as the use of liquids versus gases, even though the functional form of the perturbations
is likely similar. As a result, differences from the data of Jacobs & Dalziel, particularly at
early times, are expected. This may also explain why differences in mixing layer width
between the experiments of Jacobs & Dalziel and Suchandra & Ranjan is also observed
at early times. The simulation data agrees well with the experimental data of Jacobs &
Dalziel starting around τ ≈ 8, with the experimental data and 95 % confidence bound of
the ensemble averaged simulations overlapping.

The single realization case from the present simulations also demonstrates a similar
level of agreement with the experimental data as the ensemble averaged case. The mixing
layer width as a function of time shows very little change with increasing mesh resolution,
indicating good convergence of this metric with increasing grid resolution. A slight
underprediction of the mixing layer width is observed at the latest times, though the fact
that the ensemble average data does not demonstrate a similar underprediction suggests
that this behaviour is likely an artifact of the specific initial condition used for the single
realization simulation.

Finally, it can be observed that the ensemble average mixing layer width grows linearly
for τ � 11. Fitting the data after this time finds a slope of γ = 0.46 ± 0.006. This
agrees well with the value of γ = 0.49 ± 0.03 found by Jacobs & Dalziel (2005), and
slightly greater than the value of γ = 0.41 ± 0.01 found by Suchandra & Ranjan (2023).
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Figure 7. Reynolds number versus non-dimensional time for (a) single realization and (b) ensemble data.
Ensemble data are from the R4 mesh and experimental data are from Suchandra & Ranjan (2023).

This agreement with the slope of linear growth, as well as the good agreement with
the majority of experimental data described previously, gives confidence that the present
simulations are similar to the experiments and are accurately describing the physics of a
three-layer RTI mixing layer.

3.3.2. Reynolds number
It is useful to estimate the value of the Reynolds number of this flow, as this metric
provides a useful way to establish how turbulent the flow is. The value of the Reynolds
number from the experiments of Suchandra & Ranjan (2023) is also available, making this
a useful metric to compare against the experiment. For this three-layer Rayleigh–Taylor
configuration, Suchandra & Ranjan utilize the definition

Reu′
z,rms

= hcu′
z,rms

νavg
, (3.6)

where u′
z,rms is the maximum of the root mean square (r.m.s.) of the vertical velocity

fluctuations at each time instant, hc is the mixing layer width as defined in (2.14) and νavg
is an average mixture viscosity of the three fluids in the mixing layer.

A plot of Reynolds number versus time using this definition is presented in figure 7 for
both the single realization and ensemble average cases. The Reynolds numbers reported
from the experiments of Suchandra & Ranjan (2023) at τ = 8.2 and τ = 17.3 are indicated
by the black circles. A 95 % confidence interval of the experimental Reynolds numbers
were estimated based on the reported 95 % confidence intervals of u′

z,rms at each time
instant, and are indicated by the error bars on the experimental data points. It can be
observed that excellent agreement between the experiment and the present simulations is
observed at τ = 8.2, with similar mean values and overlapping 95 % confidence bands.
There is a larger difference between the mean values of the Reynolds number at τ = 17.3,
though the 95 % confidence bounds of the two cases overlap, suggesting the two values
are within the uncertainty of the measurement. Nevertheless, there is a notable difference
between the experiment and simulation values at late time.

There are several potential reasons for the underprediction of the late time Reynolds
number observed in the present simulations. First, a decrease in the growth rate of
the mixing later at late times can be observed in the ‘single realization’ simulations,
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and this likely also translates into a similar behaviour for the Reynolds number. Thus,
this behaviour is likely an artifact of the specific initial condition used for the ‘single
realization’ data, and explains why a similar behaviour is not observed in the ensemble
averaged Reynolds number data. Second, the choice of the factor of two to scale the
viscosity likely also contributes to this disagreement. It is possible that a different scaling
factor could improve late time agreement with the experiment, but this would also
simultaneously degrade the observed agreement at τ = 8.2. Model validation discussed in
§ 5 will be conducted at this earlier time, meaning it is preferable to maintain the level of
agreement observed at this time. Finally, it is possible that differing boundary effects exist
at late time due to differences in the experimental dimensions and the simulation domain,
and this could result in statistical uncertainty becoming large at late times. Thornber (2016)
showed that statistical uncertainty becomes important once the integral scale of the flow
reaches ≈10 % of the domain width. As will be shown in § 4.1, the integral scale in the
present simulations is approximately 5 % of the domain width at τ = 8.2, and so saturation
of the simulation domain and greater statistical uncertainty is likely at later times. Thus,
the underprediction of the late-time Reynolds number is also potentially a consequence of
the saturation of the computational domain by large modes as well as confinement effects
in the experiment.

3.3.3. Density profiles
Next, it is useful to assess agreement with experimental data through comparison with
spatial profiles of density. The profiles of density from the experiments of Suchandra &
Ranjan (2023) are presented at non-dimensional times of τ = 11.1 and τ = 17.3. The
mixing layer widths associated with these runs are indicated in figure 6 as data points
surrounded by a circle. Notably, these data points do not lie on the same γ ∼ 0.5τ
line that the other experimental runs, as well as the simulation data, do. Given that it
is expected that the profiles of density are related to mixing layer width, comparisons
between experimental and simulation data will be made at a time where the mixing
layer width is matched between simulation and experiment. For the present simulations,
this corresponds to comparing the experimental data at τ = 11.1 in the experiment with
simulation data at τ = 13.75. Profiles of density at these times are presented in figure 8.

Good agreement between experiment and simulation, in particular the maximum and
minimum values of density, as well as the extents of the mixing layer, is observed. A
shift in the location of the centre of the mixing layer is observed between simulation
and experiment however, with the location of minimum average density in the simulation
appearing to be slightly lower than the experiment. Jacobs & Dalziel (2005) note that a
rise in the centreline of the mixing layer over time due to buoyancy effects is expected.
While a slight rise in the mixing layer centreline in the simulation can be observed, it is
possible that the mechanisms driving this behaviour did not scale exactly with the time
compression utilized in the present simulations, resulting in slightly less vertical shift in
the mixing layer centreline.

A slight difference in the width of the upper and lower interfaces is also observed,
though the overall width is well matched. This may be due to differences in the wavelength
and amplitude of the initial perturbations between the experiment and simulation resulting
in slightly different amounts of growth of the upper interface and erosion of the lower
interface. Also of note is that figure 7 of Jacobs & Dalziel (2005) demonstrates skewed
concentration profiles similar to what is observed in the present simulations, though
those experiments do not extend to the same non-dimensional time, thus making direct
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Figure 8. Comparison of profiles of density at τ = 11.1 in the experiment and τ = 13.75 in the simulation
from (a) single realization and (b) ensemble averaged simulation data. The shaded areas indicate the 95 %
confidence interval of ensemble averaged data, and the associated ensemble mean value is indicated by a
dashed line of the same colour.

comparison not possible. As discussed in § 2.3, the experiments of Suchandra & Ranjan
may include an influence from shear that is not reproduced in the present simulations.
Approximation of a Richardson number using figures 4.10 and 4.15 in Suchandra
(2022) to determine dρ/dz and dux/dz finds Ri = (g[dρ/dz])/(ρ[dux/dz]2) ≈ 0.5 at
a non-dimensional time of τ = 11.1. This indicates that while buoyancy effects are
dominant at this time, shear effects may also have an influence. It is therefore possible that
this influence results in the more Gaussian density profile observed in the experimental
data owing to shear-driven mixing on the lower interface. Thus, a difference may be
expected given that this influence is not reproduced in the present simulations. Finally,
excellent agreement between the profiles of average density is observed with increasing
grid resolution. This indicates that this metric is well converged with respect to grid
resolution for the highest resolution runs.

It is also informative to look at spatially averaged profiles of r.m.s. density fluctuations
as a function of vertical position. These profiles are presented in figure 9 at τ = 11.1 and
τ = 13.75 in the experiment and the simulation, respectively. Good agreement between
simulation and experiment is observed for the profiles of density fluctuations, with some
minor differences. In general, the width of the region with elevated density fluctuations
appears to be larger than the experimental observations, although the peak magnitude of
the fluctuations is similar between the two cases. Additionally, a ‘shoulder’ near z ≈ −5,
corresponding to the approximate location of the lower interface, is observed in both the
experiment and ensemble averaged simulation data, though this shoulder is more notable
in the simulation than the experiment. This shoulder is associated with entrained fluid
between the lower and middle layers as opposed to fully mixed fluid owing to the stable
(Y2, Y3) interface. The overall extents of the region with elevated r.m.s. density fluctuations
is slightly larger in the simulation than the experiment, particularly in the region above the
interface. This is in agreement with the observation that the upper part of the mixing
layer is slightly wider in the simulation than the experiment based on the mean density
profiles in figure 8. Finally, as with the profiles of density, good agreement between the
profiles is observed for increasing mesh resolution, indicating that these simulations are
well converged at the highest resolutions.
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Figure 9. Comparison of profiles of r.m.s. density fluctuations at τ = 11.1 in the experiment and τ = 13.75 in
the simulation from (a) single realization and (b) ensemble averaged simulation data. The shaded areas indicate
the 95 % confidence interval of ensemble averaged data, and the associated ensemble mean value is indicated
by a dashed line of the same colour.

3.3.4. Velocity profiles
The profiles of horizontal (x) and vertical (z) r.m.s. velocity fluctuations are presented in
figure 10. Comparison plots are again presented at non-dimensional times of τ = 11.1
in the experiment and τ = 13.75 in the simulation in order to compare at a time when
the mixing layer widths are matched. The data are non-dimensionalized by A12

√
h0,2g to

facilitate comparison with the experimental data, with this scaling chosen as it worked
well to collapse the velocity profiles presented by Suchandra & Ranjan (2023). Good
agreement between the profiles of horizontal velocity fluctuations in the simulation and
experiment are observed. The experiment demonstrates a slightly flatter profile of u′

x,rms
than the simulation data, though the magnitudes of the data are well matched between
experiment and simulation.

A greater disagreement between experiment and simulation is observed for the vertical
component of the velocity fluctuations, with the peak values of u′

z,rms approximately
30 % greater in the simulation than the experiment at the time instant considered
here. An aspect of note in explaining this difference is that the vertical component
of the Reynolds stress anisotropy tensor, defined as bij = u′

iu
′
j/u

′
ku′

k − 1/3, has a value
of bzz ≈ 0.28 for the present simulations and a value of bzz ≈ 0.18 in the experiment.
Previous studies have shown that a typical value for a Rayleigh–Taylor mixing layer
is bzz ≈ 0.3, albeit with these results found for the two-layer configuration (Livescu
et al. 2009, 2010). On the other hand, a lesser degree of anisotropy of bzz ≈ 0.12
may be expected for a Kelvin–Helmholtz mixing layer (Bell & Mehta 1990; Morgan,
Schilling & Hartland 2018b; Morgan et al. 2023). An anisotropy between these two
values may be expected in a combined Rayleigh–Taylor/Kelvin–Helmholtz mixing layer
depending on the relative strength of the two mechanisms (Akula et al. 2017; Morgan
et al. 2018b). As discussed in § 3.3.3, while buoyancy effects are dominant in the
experiment, shear effects may also have an influence at this time. As a result, the
experimental anisotropy may include an influence from shear effects that are not
reproduced in the present simulations, and so a disagreement in the level of anisotropy may
be expected.
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rms at τ = 11.1 in the experiment together with τ = 13.75 in the simulation in the (a,b)

horizontal and (c,d) vertical axes from the (a,c) instantaneous and (b,d) ensemble averaged datasets.

4. Results: turbulence parameters

Now that reasonable confidence in the grid convergence and physical accuracy of the
present simulations has been established, the following sections focus on analysis of
additional turbulent quantities unavailable in the experimental data reported by Suchandra
& Ranjan (2023) and Jacobs & Dalziel (2005). Specifically, § 4.1 examines the size
and directional anisotropy of various turbulent length scales in this flow. Section 4.2
then evaluates potential statistical descriptions of three-component mixing in an RTI
mixing layer through analysis of the probability density functions (p.d.f.s) of species
concentration. While both of these analyses have been performed for a two-component
mixing layer, similar analysis has not been performed for the three-component case. It
it thus worthwhile to examine how the more well-understood results for two-component
systems may change in this three-component case.

This analysis is presented at a time instant corresponding to τ = 8.2, with this time
chosen as there is significant, although not complete, three-component mixing occurring,
with a peak value of the averaged middle layer mass fraction of Ỹ2,max ≈ 0.2. An image
depicting several x–z planes of data at the time instant was presented previously in figure 5.
Profiles of Ỹ1, Ỹ2 and Ỹ3, as well as corresponding second moments at this time are shown

in figure 11. It is interesting to note that the ˜Y ′′
1 Y ′′

2 mass fraction covariance undergoes a
sign change around z = 0. This is a behaviour not observed in two-component mixing
layers as a decrease in one component must necessarily correspond to an increase in the
other, and thus, the covariances must be strictly less than or equal to zero. The covariances,
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Figure 11. (a) Favre-averaged mass fraction and (b) Favre-averaged covariances at τ = 8.2.

including the impact of the observed sign change, will also be discussed in the context of
concentration probability in § 4.2.

4.1. Turbulent length scales
One metric of interest in this flow is the determination of turbulent length scales in both
the gravity-aligned and perpendicular axes. This has been examined in two-component
Rayleigh–Taylor flows (Cook et al. 2004; Ristorcelli & Clark 2004; Boffetta et al. 2010;
Cabot & Zhou 2013; Morgan et al. 2017; Zhou & Cabot 2019; Zhao, Betti & Aluie 2022),
but less analysis on length scales in three-component RTI flows has been conducted. The
size of the integral length scale, λL, the Taylor microscale, λT , the Batchelor scale, λB,
and the Kolmogorov scale, λη, are considered in the present work. Suchandra & Ranjan
(2023) also presents several length scale estimates in that work, which are useful for
comparison with the present simulations. Length scales in the present simulations are
calculated utilizing the Reynolds number, turbulent spectra and two-point correlations.
The following paragraphs outline the methodologies used to determine the turbulent
spectra and two-point correlations.

Spectra in the present work are found by following the procedure described by Tritschler
et al. (2014). The Fourier transform of the parameter of interest is taken over x–y planes
in the region where Ỹ2 ≥ 0.1, with this region chosen to represent the central part of the
mixing layer. These two-dimensional spectra are averaged over all planes in the central
mixing layer. The magnitude of the Fourier coefficients for the species mass fraction
spectra are then calculated as

EY ′′
i

=
〈√

Ŷ ′′
i Ŷ ′′

i
∗
〉

(4.1)

and, for the turbulent kinetic energy (TKE) spectrum, as

ETKE =
〈
û′′

x û′′
x
∗〉+ 〈û′′

y û′′
y
∗〉+ 〈û′′

z û′′
z
∗〉
, (4.2)

where 〈·〉 denotes an average over the region where Ỹ2 ≥ 0.1, (̂·) denotes the Fourier
transform and (·)∗ indicates a complex conjugate. The magnitude of each Fourier
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Figure 12. Radially binned spectra of (a) TKE, (b) Y ′′
1 , (c) Y ′′

2 and (d) Y ′′
3 at τ = 8.2 as a function of grid

resolution. A k−5/3 fiducial is indicated by the red dashed line.

coefficient is then radially binned to produce a single one-dimensional spectrum for each
variable at the chosen time instant. The average over the region where Ỹ2 > 0.1 is chosen
to consider only the central mixing layer, and to be similar to the region selected for the
two-point correlations, below.

The spectrum of the TKE, Y ′′
1 , Y ′′

2 and Y ′′
3 at τ = 8.2 for multiple grid resolutions is

presented in figure 12. These spectra do not exhibit a notable inertial range, which is
unsurprising given the relatively low Reynolds number of this flow. One notable aspect in
these plots is that the species spectra do not appear to collapse with increasing resolution
as may be expected, even though the spectra of the TKE do. There are a number of possible
explanations for this behaviour, though this is most likely due to persistence of very low
amplitude Gibbs’ oscillations of the order of the grid scale. Very little additional energy is
added at each subsequent refinement of the computational mesh however, indicating that
the solution is nevertheless well converged.

Another useful method by which a turbulent flow may be assessed is the two-point
spatial correlation. Pope (2000) defines the normalized two-point correlation, f , of a
fluctuating quantity, g, in one dimension as

f (r) = 〈g(x + r)g(x)〉
〈g(x)2〉 , (4.3)

where r is the correlation distance and 〈·〉 indicates an average over all x. Similar
definitions exist for data with greater than one dimension, in which case the correlation is
instead a function of the radial distance from the point x.
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Figure 13. Two-point correlation of the (red) Y ′′
1 , (green) Y ′′

2 , (blue) Y ′′
3 and (cyan) u′′

z fields at τ = 8.2 in
the (a) x–y plane averaged over planes where Ỹ2 ≥ 0.01 and (b) the z axis. Solid lines indicate the two-point
correlation value, dashed lines indicate an osculating parabola with a value of 1, a slope of 0 and a second
derivative found from the correlation values at r = 0, and open circles indicate the zero crossing of this curve,
denoting the Taylor microscale. The magnitude of the integral length scales and Taylor microscales found from
these correlations are summarized in table 3.

The two-point spatial correlation is calculated in the present work in the horizontal (x–y)
axis as well as the vertical (z) axis to examine the difference in length scales in the axis
perpendicular to and aligned with gravity. In the horizontal case, the two-point correlations
are calculated using x–y planes at each z position. The correlations are averaged across
all z locations where Ỹ2 ≥ 0.1 to represent the state of the middle of the mixing layer,
and to exclude the influence of intermittency of the large structures at the edge of the
layer (Watanabe & Gotoh 2004; Boffetta et al. 2010). In the vertical case, the two-point
correlations are computed along z at each x, y location, and the resulting correlations are
averaged together across all x and y.

Two-point correlations are calculated utilizing the Favre fluctuations of the three species
fractions, Y ′′

1 , Y ′′
2 and Y ′′

3 , as well as the fluctuating part of the vertical velocity, u′′
z , as an

approximation to the TKE. The results of these correlations are shown in figure 13. It can
be observed that the correlations of the three species fractions are generally similar to
each other in both axes. The vertical velocity correlation, on the other hand, demonstrates
slightly different behaviour than the species mass fraction correlations. This is particularly
notable in the vertical axis, where the velocity remains correlated for a longer distance than
the species mass fractions do. The velocity correlation in the horizontal axis however,
appears to demonstrate a similar correlation distance to the species mass fractions. The
change in the correlation distance of u′′

z between the horizontal and vertical axes is
consistent with the anisotropy observed in figure 10. Additionally, the difference in the
vertical correlation distances of the velocity and mass fractions is unsurprising as the
fluctuations in mass fraction will vanish rapidly outside the mixing layer, whereas the
velocity fluctuations are not constrained to vanish outside the mixing layer and will decay
more slowly. This also explains why the vertical correlation distance of the species mass
fractions is approximately one half of the mixing layer width, hc = 11.26 cm, at this time.

The Reynolds number calculated in § 3.3.2, as well as the spectra and two-point
correlations described in the previous paragraphs can now be used to estimate the size
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Method

Scale (cm) Reynolds No. Spectrum 2 pt. corr. (xy) 2 pt. corr. (z) Dissipation Experiment

λL TKE 2.32 2.32 1.49a 2.85a — —
Y ′′

1 1.73 1.99 1.77
Y ′′

2 1.50 1.75 1.47
Y ′′

3 1.76 1.90 1.51

λT TKE 1.47 — 1.06a 1.83a — 1.42
Y ′′

1 — 0.85 1.04
Y ′′

2 — 0.75 0.88
Y ′′

3 — 0.75 1.06

λB TKE 0.20 — — — 0.18 —
Y ′′

1 — — —
Y ′′

2 — — —
Y ′′

3 — — —

λη TKE 0.095 — — — 0.096 0.091
Y ′′

1 — — —
Y ′′

2 — — —
Y ′′

3 — — —

Table 3. Calculated values of various turbulence length scales at τ = 8.2 calculated from the single realization
dataset based on various methods. Also shown are the reported values from the experiments of Suchandra &
Ranjan (2023). The mixing layer width at the time of comparison is hc = 11.26 cm.

aValue based on vertical velocity, u′′
z , rather than TKE.

of various turbulent length scales utilizing the methods described in Appendix B. These
results are summarized in table 3. In general, all of the integral length scale values are
slightly less than the value estimated through the Reynolds number. Only the estimate of
the vertical integral length scale based on the two-point velocity correlation is greater than
this estimate, with this also being the greatest estimate of the integral length scale overall.
The size of the integral length scale determined through the spectrum generally agrees well
with the sizes found using the vertical two-point correlation. The integral length scales
based on mass fraction are all smaller than the integral length scale estimates based on
velocity. Also of note is that the integral length scale based on two-point correlation of
the vertical velocity increases from the horizontal to the vertical axis, but the opposite
behaviour is observed in the integral length scale based on the two-point correlation of
species mass fraction.

The size of the Taylor microscale from the present simulations tend to be smaller than
the estimates based on the Reynolds number or the experiment, though it should be noted
that the vertical Taylor microscale based on velocity is greater than values estimated from
the Reynolds number or from the experiment. This is similar to the behaviour of the
vertical integral length scale based on velocity noted in the previous paragraph. Also of
note is that all of the estimates of the Taylor microscale increase in size from the horizontal
to the vertical axis. The opposite trend was observed in the size of the integral length
scale based on species mass fraction, which demonstrates a decrease in size from the
horizontal to vertical axis. This indicates that the integral scales associated with species
mass fractions are greater in the horizontal than the vertical axis, while the magnitude of
the Taylor microscale is less in the horizontal axis as compared with the vertical axis.

Finally, good agreement is found between the size of the smallest scales of the flow
found based on dissipation, the estimates of those scales based on the Reynolds number
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and the reported values from experiment. The size of the Kolmogorov scale is between
3.2 and 3.5 grid cells in length on the R24 mesh, indicating that these simulations fully
resolve the flow down to the Kolmogorov scales of motion. Similarly, good agreement is
found for the estimate of the Batchelor length scale. This scale is between 6.5 and 6.9 grid
cells in size on the R24 mesh depending on the method used to find the scale size, similarly
indicating that these simulations fully resolve the scalar field down to the smallest motions
of the flow.

4.2. Statistical description of three-component mixing
Finally, it is worthwhile to examine statistical descriptions of the mixing in this three-layer
configuration as this can be useful for formulating models to describe this class of flows.
Probability density functions have been used to describe mixing in turbulent flows (Pope
1985; Juneja & Pope 1996; Wilson & Andrews 2002; Sawford & de Bruyn Kops 2008; Cai
et al. 2011). Approaches utilizing p.d.f.s have also proven to be useful in the modelling
of turbulent mixing. Two-component mixing can reasonably be modelled using a beta
distribution to describe the mixture fraction p.d.f. (Girimaji 1991; Cook & Riley 1994;
Ihme & See 2011; Ristorcelli 2017). The treatment of greater than two components is more
complicated however, and less analysis on potentially suitable p.d.f.s has been conducted.

Perry & Mueller (2018) consider four unique p.d.f.s to describe three-component
mixing, including the three parameter Dirichlet distribution, the four-parameter
Connor–Mosimann (CM) distribution (Connor & Mosimann 1969), a five-parameter
bivariate beta (BVB5) distribution (Doran 2011) and a six-parameter bivariate beta (BVB6)
distribution (Perry & Mueller 2018). They also considered the influence of the neutrality
of these p.d.f.s or the sensitivity of these distributions to whether there is favoured mixing
between different pairs of components, and present variations of each p.d.f. that allows for
neutrality of different mixing components. They also present a set of recommendations
to guide the most appropriate choice of p.d.f. for a given configuration. More details on
the p.d.f.s considered in the present work are presented in Appendix C. Notably, these
analyses considered isotropic turbulence, while the present configuration is not isotropic.
It is therefore useful to also consider the p.d.f.s suggested by Perry & Mueller to examine
how well they may describe this flow. Thus, this section will focus on determining the
p.d.f. of species mass fraction from the DNS data, and comparing against the model p.d.f.s
proposed by Doran and Perry & Mueller.

An approximate p.d.f. representing the DNS data is found by first calculating the
histogram of the DNS data by binning according to the amount of Y1 and Y2 in each
zone on the computational mesh, noting that Y3 = 1 − Y1 − Y2. The histogram is then
normalized by

∫∫
C(Y1, Y2) dY1 dY2, where C is the number of samples in each bin to

calculate an approximate p.d.f. of the data.
The parameters for each model distribution are calculated by first finding the values of

the moments to be enforced from the DNS data. A nonlinear least squares minimization
routine is used to minimize the L2 norm of the difference between the values of the
means and covariances from the data and p.d.f. descriptions. The error associated with a
given moment is calculated as Mpdf /MDNS − 1, where M is the enforced moment and the
subscripts indicate the source of the moment value. This method is chosen to ensure that
all enforced moments are equally weighted regardless of their relative magnitudes. In all
cases, the first moments Ỹ1 and Ỹ2 are enforced. In the cases where a p.d.f. cannot specify
all of the unique first and second moments simultaneously, such as with the Dirichlet
and CM distributions, the moments to be enforced must be selected. For the Dirichlet
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Figure 14. Comparison of p.d.f.s from the DNS and the various p.d.f.s that may describe a turbulent flow.
Each row indicates the p.d.f.s calculated from a subset of the mixing layer data, representing (z = 1) a single
plane of data at z = 1, (Full) the entire mixing layer, (Upper) the upper portion of the mixing layer, (Middle)
the middle portion of the mixing layer and (Lower) the lower portion of the mixing layer. Also indicated are an
axis legend and colour scale.

distribution, the ˜Y ′′
2 Y ′′

2 variance is additionally enforced. For the CM distributions, the
˜Y ′′

1 Y ′′
2 and ˜Y ′′

2 Y ′′
3 covariances are the second moments that are enforced, with these chosen

due to their relationship to the Y2 variance used for the Dirichlet distribution while
retaining information on the covariances (Morgan 2022b). Finally, the BVB6 distribution

requires enforcement of a third moment and ˜Y ′′
1 Y ′′

2 Y ′′
3 is chosen for this purpose.

Each model p.d.f. is evaluated on five subsets of data within the simulation at a
non-dimensional time of τ = 8.2. The results of these evaluations is shown in figure 14.
Each row in this figure corresponds to one subset of data, with the text at the left of the
row indicating which subset is shown in that row.

The first subset corresponds to a single x–y plane of data at z = 1 cm, with this location
chosen to be at the approximate location of the maximum value of Ỹ2 at this time.
The approximate p.d.f. arising from the DNS data, as well as each of the candidate
distributions, is calculated according to the method described above. The result of this
process is shown in figure 14(a). Generally, it appears that the BVB5, particularly −12
and −23, and BVB6 distributions perform best for this case. The Dirichlet and CM-1
distributions appear to approximately capture the Y3 ≈ 0 behaviour in the data, though
they do not qualitatively capture the shape of the distribution. Finally, the CM-2 and CM-3
distributions do not appear to describe this case well, with the generated p.d.f.s having
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||Yi|| = (1.00, 0.31, 1.00)Yi
∗ = Yi/||Yi|| ||Yi|| = (1.00, 0.38, 0.80) ||Yi|| = (1.00, 0.42, 0.43)

(a) (b) (c)

0

1

Y1
∗ Y2

∗ Y3
∗

0

1

0

1

Figure 15. The x–y planes of data at (a) z = −2 cm, (b) z = 1 cm and (c) z = 8 cm. Each species fraction is
normalized by its maximum value in the plane, ‖Yi‖ = max(Yi), to improve visualization.

little similarity to the DNS data. It should be noted that the CM-2 and CM-3 cases also
have a relatively high L2 error, suggesting that they could not accurately capture all of the
enforced moments as well.

Second, each of these p.d.f.s is evaluated across the entire mixing layer where Ỹ2 ≥
0.01. Each p.d.f., as well as the approximate p.d.f. from the DNS data, are generated at
each z position within the layer using the procedure outlined for the single plane data.
Each of the p.d.f.s are then summed over the mixing layer and the result renormalized
such that

∫∫
P(Y1, Y2) dY1 dY2 = 1. In this case, the Dirichlet distribution appears to do

reasonably well to describe this case, as do the BVB5 and BVB6 distributions. None of
the CM distributions appear to describe this data well. Only the CM-1 distribution roughly
captures the shape of the data, though with notable differences, while the CM-2 and CM-3
cases bear little resemblance to the data.

The last three subsets of data to be considered here arise by noting that the
heavy-light-heavy configuration considered in the present work suggests that the mixing,
particularly in terms of the distribution of mixing components, may be different depending
on the location within the mixing layer. Figure 15 depicts x–y planes of the mixing layer
at z = −2 cm, z = 1 cm and z = 8 cm, with the red, green and blue values in the image set
by the normalized mass fraction of each of the three species present in a given zone. These
planes of data demonstrate that different relative proportions of Y1, Y2 and Y3 are present
depending on the position within the mixing layer, which suggests the p.d.f. that best
describes the data may also be a function of position within the mixing layer. To examine
this possibility, the mixing layer is broken into three regions representing the upper, middle
and lower portions of the layer, and the model p.d.f.s are evaluated in each of these regions.
The upper part of the mixing layer is defined as the region where 0.01 ≤ Ỹ2 < 0.1 and
z ≥ zmax, where zmax is the location of the maximum value of Ỹ2. The middle part of
the mixing layer is defined as the region where Ỹ2 ≥ 0.1. Finally, the lower part of the
mixing layer is defined as 0.01 ≤ Ỹ2 < 0.1 and z ≤ zmax. These comparisons are depicted
in figure 14(c–e).

All of the candidate p.d.f.s struggle to describe the upper layer data, with qualitative
disagreements observed between the DNS data and each of the p.d.f.s. The BVB5-12
and BVB5-13 distributions appear to best capture the Y3 ≈ 0 behaviour from the data,
though these p.d.f.s also predict a greater than observed amount of Y2 and underpredict
Y1. The BVB6 distribution also appears to capture the general trends of the data, though
it appears to overpredict the amount of Y3 present in the data. The CM-1 distribution also
qualitatively captures the data trends, though again appears to overestimate the amount of
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DNS of three-component Rayleigh–Taylor mixing

Y3 and underestimate the amount of Y2 present in the data, as well as overpredicting the
variance in Y1.

The middle layer data appears to be reasonably described by the Dirichlet distribution,
as well as all of the BVB5 and BVB6 distributions. The Dirichlet distribution appears to
overestimate the amount of Y1 present, while the BVB5 and BVB6 distributions appear
to better match this behaviour. The CM-1 distribution does not appear to predict the data
well, generally overpredicting Y1 and Y3, though it appears to capture the range of Y2
relatively well. The CM-2 and CM-3 distributions better capture the range of Y1 and Y2,
though they appear to predict more variance in Y3, with an increased amount of Y3 = 0
and Y3 = 1 predicted versus the data.

Finally, the lower layer data appears to be best described by the BVB5 and BVB6
distributions, with the BVB5-13 and BVB5-23 distributions matching particularly well.
The CM-3 distribution also appears to do well in describing the DNS data. The Dirichlet
and CM-1 distributions appear to capture the location of maximum probability relatively
well, though they do not appear to capture the shape of the distribution. Lastly, the CM-2
distribution does not appear to accurately describe the data.

In summary, these results suggest that there is considerable complexity in describing
three-component mixing in a non-isotropic mixing layer using p.d.f.s. First, the Dirichlet
distribution does not appear to accurately describe this case in general, suggesting that the
marginal distributions of this case do not conform to a beta distribution. This represents a
notable change from the two-component case where a beta distribution has been previously
shown to work well. Second, the BVB5 and BVB6 p.d.f.s generally appear to perform the
best overall of all the model p.d.f.s considered. Within the BVB5 case, the location within
the mixing layer appears to influence which neutral permutation (−12, −13 or −23) best

matches the data. This is likely related to the observed sign change of ˜Y ′′
1 Y ′′

2 observed in
figure 11. Some of the model distributions require that some or all of the covariances are
negative (Perry & Mueller 2018). Furthermore, the neutral variations of each model p.d.f.
alter which covariances are required to be negative, and so different neutral variations of
the same p.d.f. may also better match the data depending on the location within the mixing
layer. These results also do not consider the influence of the choice of enforced means and
covariances, and the optimal choice of means and covariances may also be a function of
location within the mixing layer. Finally, it is also noteworthy that no single p.d.f. appears
to be able to accurately describe the mixing through the entire mixing layer. This suggests
that a p.d.f.-based model to describe three-component RT mixing must consider not only
which p.d.f. best describes the data, but also the neutrality of that p.d.f. and how these
choices should change through the mixing layer.

5. Results: an improved model for the impact of turbulence on TN reaction rate

In previous work by Morgan (2022b), a model was developed to predict the impact
of turbulence on average reaction rate in a reacting N-component mixture. This 2022
model was developed to be used in conjunction with RANS models in which reactant

mass fraction covariances Cαβ ≡ ˜Y ′′
αY ′′

β are transported as a model turbulence variable.
A shortcoming of the 2022 model however, is that it only considers second-moment
closures in the expansion of the average reaction rate and higher-moment contributions
are neglected. As a result of this simplification, it can be shown that the 2022 model does
not reproduce the correct physical behaviour in the so-called ‘no-mix’ limit of perfectly
segregated materials. Consider the instantaneous rate of reaction for the production of
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species γ from the binary reaction of species α and β,

ṙγ,αβ = 〈σv〉αβ nαnβ. (5.1)

In (5.1) the instantaneous reaction rate ṙγ,αβ is given in terms of the reaction cross-section,
〈σv〉αβ , and the particle number densities, nα and nβ . The expressions mαnα = ρYα
and mβnβ = ρYβ are then utilized to relate number densities to mass fractions through
the species masses mα and mβ . By substituting into (5.1) and performing a Reynolds
decomposition, (5.1) is then expanded as

ṙγ,αβ = 〈σv〉αβ ỸαỸβρ̄2

mαmβ⎛⎜⎜⎜⎝1 +
˜Y ′′
αY ′′

β

ỸαỸβ︸ ︷︷ ︸
Term 2

+ ρ′ρ′

ρ̄2︸︷︷︸
Term 3

+ ρ′Y ′′
α

ρ̄Ỹα︸ ︷︷ ︸
Term 4

+
ρ′Y ′′

β

ρ̄Ỹβ︸ ︷︷ ︸
Term 5

+ ρ′2Y ′′
α

ρ̄2Ỹα︸ ︷︷ ︸
Term 6

+
ρ′2Y ′′

β

ρ̄2Ỹβ︸ ︷︷ ︸
Term 7

+
ρ′Y ′′

αY ′′
β

ρ̄ỸαỸβ︸ ︷︷ ︸
Term 8

+
ρ′2Y ′′

αY ′′
β

ρ̄2ỸαỸβ︸ ︷︷ ︸
Term 9

⎞⎟⎟⎟⎠ .
(5.2)

Note that in deriving (5.2), a homogeneous 〈σv〉αβ has been assumed. Since TN reaction
rates are typically strong functions of temperature, this approximation will only be valid
for reactions in a homogeneous temperature field, such as within a mixing layer with tight
coupling to the radiation field. Such coupling might be expected in igniting ICF capsules
and in other situations with high gas opacity such as the argon–tritium filled capsules of
the MARBLE campaign (Albright et al. 2022). Recall, it is assumed that a closure model
for the fluctuating moments in (5.2) is to be used in conjunction with a RANS model
that solves a transport equation for the mass fraction second moments. Thus, to derive an
improved reaction rate model, the task remains to close the remaining moments in (5.2)
in terms of the mass-fraction covariances and lower-order moments. In this regard, it is
relatively straightforward to show for a variable-density, N-component mixture

ρ′Y ′′
α = −ρ̄2

N∑
k=1

˜Y ′′
αY ′′

k
ρk

(5.3)

and

Y ′′
α = −ρ

′Y ′′
α

ρ̄
. (5.4)

To close the remaining moments, the approach of Ristorcelli (2017) is adopted in which
higher-order moments are approximated using products of lower-order moments and then
scaled to conform to the no-mix limit. For instance,

ρ′Y ′′
αY ′′

β ≈

(
ρ′Y ′′

αY ′′
β

)
nm(

ρ′Y ′′
α

)
nm

(
Y ′′
β

)
nm

(
ρ′Y ′′

α

) (
Y ′′
β

)
(5.5)

and

ρ′ρ′Y ′′
αY ′′

β ≈

(
ρ′ρ′Y ′′

αY ′′
β

)
nm(

ρ′Y ′′
α

)
nm

(
ρ′Y ′′

β

)
nm

(
ρ′Y ′′

α

) (
ρ′Y ′′

β

)
. (5.6)

In (5.5) and (5.6), the notation (·)nm is used to indicate the no-mix value of a given statistic,
which can be derived exactly, even for higher-order moments such as those in (5.5) and
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(5.6). Appendix D discusses how these moments are derived and provides expressions for
the no-mix statistics appearing in this section.

Through extensive algebra, it is possible to write the density variance term in (5.2) as

ρ′ρ′

ρ̄2 =
−ρ̄3∑N

i=1
∑N

j=1
∑N

k=1

˜YiYjYk

ρiρjρk
+ 1 + 4b + 2b2

(1 + b)2
+ ρ′ρ′v′v′

(1 + b)2
, (5.7)

where v ≡ ρ−1 is the specific volume and b is the density-specific-volume covariance,

b ≡ −ρ′v′ = −
N∑

k=1

ρ′Y ′′
k

ρk
. (5.8)

One approach to closing the density variance that would follow the beta p.d.f. approach
of Ristorcelli (2017) would be to assume the mixture conforms to a Dirichlet distribution,
which then would allow the third moments ˜YiYjYk to be expressed in terms of lower-order
moments through the Dirichlet distribution moment generating function. However, as
shown in § 4.2, this p.d.f. may not accurately describe the mixing in this case, and in
fact the correct choice of p.d.f. may be quite complicated. Additionally, the fourth moment
in (5.7) would then still require further closure in a manner similar to (5.6). An alternative
approach that does not require an assumption about the form of the mixing distribution
would be to simply approximate

ρ′ρ′

ρ̄2 ≈

(
ρ′ρ′

)
nm

ρ̄2
b

bnm
. (5.9)

Equation (5.9) is motivated by the observation that for an incompressible, variable-density
mixing layer, the non-dimensional density variance is simply approximated by b. Indeed,
this simple approximation is utilized to close density variance in the 2022 model by
Morgan (2022b). Additional scaling in (5.9) is included to ensure the model conforms
to the no-mix limit. For the results presented in the remainder of this work, (5.9) will be
the closure utilized. Then, the model can be completed by writing the final third-moment
closure:

ρ′ρ′Y ′′
α ≈

(
ρ′ρ′Y ′′

α

)
nm(

ρ′ρ′
)

nm

(
Y ′′
α

)
nm

(
ρ′ρ′

) (
Y ′′
α

)
. (5.10)

Equations (5.2), (5.3), (5.4), (5.5), (5.6), (5.9) and (5.10), along with the no-mix relations
contained in Appendix D thus constitute a complete and improved model for the impact
of turbulence on TN reaction rate that is expected to reproduce the correct physical
behaviour in the no-mix limit. In the no-mix limit, mixing components are considered
completely separated, no molecular mixing has occurred and mass fraction covariances
achieve maximum magnitude, (Cαβ)nm = −ỸαỸβ . To illustrate expected behaviour and
how this represents an improvement over previously proposed models, consider that a
general reaction rate model may be written as

ṙγ,αβ = Ratomic (1 + Rmodel) . (5.11)

In (5.11), Rmodel indicates the modification to the TN reaction rate provided by the
model, while Ratomic is the reaction rate that would be computed for fully atomically
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Figure 16. Comparison of reaction rate models in the no-mix limit for an At = 0.4 mixture in the case of (a)
premixed reactants in the light component and (b) non-premixed reactants. New model is compared against the
binary mixing model of Morgan et al. (2018a) and the multicomponent mixing model of Morgan (2022b).

mixed materials in which the magnitude of turbulent statistics in (5.2) is identically 0.
Furthermore, for binary premixed reactants in a light material, the no-mix limit of the
reaction rate can be expressed in terms of the heavy and light volume fractions V̄α ,

Rnm = Ratomic

(
1 + V̄H

V̄L

)
. (5.12)

Figure 16 compares behaviour of the new model against older models for a hypothetical
At = 0.4 mixture in the no-mix limit. In this figure, Rmax is the average reaction rate
predicted using each model mass fraction covariance Cαβ = (Cαβ)nm. As observed in
figure 16(a), the new model appropriately goes to Rnm for premixed reactants at all
magnitudes of light mass fraction, while the 2022 and 2018 models are shown to diverge,
particularly as ỸL approaches 0. In figure 16(b) the new model is additionally shown to
reduce the reaction rate to zero for completely separated non-premixed reactants, while
the older models shownon-physical divergence away from zero.

5.1. Evaluation of closure relations
Figure 17 presents a comparison of each of the higher-order terms in (5.2) between data
extracted from the present DNS calculations and the model proposed in the previous
section. The circles indicate the value of each term as found from the DNS data, and
the solid lines refer to the value as calculated from the proposed closures as shown
in (5.5), (5.6), (5.9) and (5.10). Each term is plotted with a constant colour, with red,
green, blue, cyan, magenta, orange and black referring to terms 3, 4, 5, 6, 7, 8 and 9
in (5.2), respectively. For plotting, each term is pre-multiplied by a factor of ρ̄2ỸαỸβ ,
representing the leading factor in (5.2), and additionally pre-multiplied by another factor
of ỸαỸβ to restrict the model comparison to the regions where the two fluids are present.
These comparisons are presented for all combinations of α and β that result in a unique
comparison.

The comparison presented in figure 17 is generally favourable, with good agreement for
the largest terms in each case observed between the DNS and model closures, particularly

999 A88-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.958


DNS of three-component Rayleigh–Taylor mixing

−1

(ρ̄
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Figure 17. Comparison between the terms in (5.2) evaluated from the DNS (open circles) and model closures
(solid lines) plotted as a function of a non-dimensional vertical coordinate (z − zc)/hc, where zc is the centroid
of the mixing layer as determined using Ỹ2 and hc is the mixing layer width. Each figure corresponds to a
different combination of reactant indices α and β. All terms are pre-multiplied by a factor of (ρ̄Ỹα Ỹβ)2 to
restrict analysis to the region where the fluids are present.

in the α = β = 1 and α = β = 3 comparisons that represent the greatest contributions to
the total reaction rate. The most notable disagreement observed between the DNS data and
proposed model closures is observed in the orange line, representing the ρ′Y ′′

αY ′′
β term, with

this disagreement particularly visible in the α = 1, β = 3 and α = β = 2 comparisons.
However, it should be noted that this term is generally small versus the largest terms in each
comparison and so the influence of this disagreement is generally small. One exception is
the α = 1, β = 3 case, where the model significantly overpredicts ρ′Y ′′

αY ′′
β . This suggests

that the greatest model error may be for the non-premixed case of separated reactants
in materials one and three. However, as will be shown in § 5.2, good agreement in the
reaction rate between the model and the DNS data is found for this case, suggesting that
the influence of this disagreement is small.

999 A88-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.958


K. Ferguson and B.E. Morgan

5.2. Model/DNS comparison
The simulation presented in §§ 3 and 4 is now used to assess the model proposed in § 5.
This exercise is performed by exporting the full simulation state of the run on the R24 mesh
from Miranda at a time corresponding to τ = 8.2. This time is chosen as earlier times in
the simulation do not have enough three-component mixing to assess the multicomponent
aspects of the model while also being too diffuse to adequately test the no-mix limit
behaviour of the model. The middle layer is significantly mixed through at later times
and, thus, does not provide a good test case to verify that the model functions as expected
for multiple components. Therefore, the chosen time instant corresponds to significant,
though not complete, mixing of the three layers such that the model’s behaviour in the
presence of multiple components may be suitably tested.

The simulation state is imported into Ares, where several modifications are performed
to transform it into a test case for reacting turbulence. First, the species mass fractions,
densities and mesh resolution in the second stage are kept identical to their values in the
first stage. Next, the material compositions and equations of state are changed from ideal
gas properties to more closely represent materials found in ICF capsules. Specifically,
two different configurations are considered. The first, called the ‘premixed’ configuration,
involves the upper and lower layers of fluid being replaced with non-reactive CH plastic,
and the middle layer being replaced with a DT mixture. This is equivalent to the α = 2,
β = 2 case in figure 17. The second, called the ‘non-premixed’ configuration, entails the
upper layer being replaced with CD, the middle layer replaced with non-reactive CH plastic
and the bottom layer replaced with tritium gas. This is equivalent to the α = 1, β = 3 case
in figure 17. Finally, hydrodynamic evolution is disabled, the temperature in the problem
is set to a uniform 5 keV and TN burn physics are enabled.

As noted in § 5, the model considered in this work assumes a homogeneous temperature
field. To enforce this constraint, the burn phase of these calculations is run twice. The
first run is conducted without any constraints in order to obtain a realistic temperature
history for the problem. These temperature profiles are shown in figure 18. Once the
mass-weighted average temperature as a function of time is obtained, the problem is then
run a second time with this temperature profile enforced uniformly over the whole domain
as a function of time. Both the DNS calculation as well as the RANS model calculation
are run using an identical temperature profile to compare results.

The number of moles of TN neutrons produced as a function of time from the DNS
data as well as the RANS model is plotted in figure 19 for the (a) premixed and (b)
non-premixed configurations. To examine the influence of the improved RANS model, the
RANS portion of the calculation is run with no model active, representing the expected
result for a fully atomically mixed layer, with the model introduced by Morgan (2022b)
and with the model proposed in § 5. As can be observed in these figures, the improved
model significantly reduces the RANS model error with respect to the fully mixed (i.e. ‘no
model’) case. Relatively little difference between the 2022 model and newly proposed
model is observed in the non-premixed case, with both models agreeing quite closely
with the DNS data. The newly proposed model demonstrates a clear improvement over
the 2022 model in the premixed case however, with a clear convergence towards the DNS
data observed between the no model, 2022 model and newly proposed model cases. The
mixing layer is fairly well mixed at this time, and so the source of the improved agreement
is most likely due to the retention of the previously neglected higher-order terms rather
than the preservation of the no-mix limit. Greater differences between the 2022 model
and the newly proposed model would be expected in a problem with less diffusive mixing
(i.e. closer to the no-mix limit) as shown in figure 16. The newly proposed model would
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Figure 18. Time history for electron (Te), ion (Ti) and radiation (Tr) temperatures of the (a) premixed and
(b) non-premixed cases.

0.1 0.2 0.3 0.40

0.5

1.0

1.5

2.0

Time (μs)

T
N

 n
eu

tr
o
n
s 

p
ro

d
u
ce

d
 (

m
o
l)

DNS

RANS, no model

RANS, 2022 model

RANS, new model

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

Time (μs)

DNS

RANS, no model

RANS, 2022 model

RANS, new model

(a) (b)
(×10–5) (×10–4)

Figure 19. Thermonuclear neutrons produced versus time from DNS data, RANS with no reaction rate model,
RANS with the model of Morgan (2022b) and the new reaction rate model for the (a) premixed and (b)
non-premixed cases.

also most likely demonstrate better agreement with the data than the 2022 model in this
case due to the new model’s ability to return to the correct behaviour in this limit.

6. Conclusions

The present work has performed a DNS of a three-layer Rayleigh–Taylor mixing
problem. Direct numerical simulation was validated through a rigorous convergence study,
examination of artificial contributions to fluid parameters and length scale analysis. While
DNS of three-layer RTI have been performed previously (Youngs 2009, 2017), to the best
of the authors’ knowledge, the present work represents the first examination of the physics
of the three-layer RTI through simulation.
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The mixing layer width was found to have a linear growth over time beginning at a
non-dimensional time of τ ≈ 11. Linear growth of an RTI mixing layer in the configuration
considered in the present work was predicted by the theory of Jacobs & Dalziel (2005) and
measured experimentally by Jacobs & Dalziel (2005) and Suchandra & Ranjan (2023). To
the best of the author’s knowledge, the present simulations represent the first time this
has been measured in simulation. The present simulations find a slope of linear growth
of γ = 0.46 ± 0.006, which is in agreement with the value of γ = 0.49 ± 0.03 found
by Jacobs & Dalziel (2005), and slightly greater than the value of 0.41 ± 0.01 found by
Suchandra & Ranjan (2023).

An interesting change in the behaviour of the mass fraction covariances was observed

for this three-layer case. Specifically, the ˜Y ′′
1 Y ′′

2 covariance was observed to undergo a
sign change through the mixing layer. This is a behaviour that is not observed in a
two-component mixing layer and represents an important way that the three-layer case
differs from the two-layer one. This occurs due to the fact that, while an increase in one
species must mean a corresponding decrease in the other for a two-species problem, such
a constraint does not exist for more than two species. This may have several implications,
perhaps most notably for models describing three-layer mixing such as the case considered
here. Models to describe this case must account for the potential sign change of the
covariances in order to accurately model the mixing process.

Two-point autocorrelation-based length scales were estimated in the vertical and
horizontal directions separately to examine the differences in length scales in the
axes aligned with, and perpendicular to, the direction of gravity. Notably, while the
velocity-based integral length scales demonstrate a clear anisotropy with the vertical
length scale larger than the horizontal one as may be expected for a Rayleigh–Taylor driven
mixing layer, such an anisotropy was not observed in the species fraction fields. In fact, the
species fraction-based integral length scales were generally smaller in the vertical axis than
the horizontal, which is a notable difference from the velocity-based length scale. The size
of the velocity-based Taylor microscale demonstrates a similar anisotropy as the integral
length scale. The species fraction-based length scales however, are general either similar
in size or slightly larger in the vertical axis than the horizontal one, representing a notable
change from the integral scale behaviour. This suggests that models for configurations
such as the one considered in this work should be aware of these differences, and how the
field and scale size considered change the horizontal-to-vertical anisotropy.

Potential statistical descriptions of three-component, non-isotropic turbulent flow at
several regions within the mixing layer were also considered based on the model p.d.f.s
presented by Perry & Mueller (2018). Interestingly, the Dirichlet distribution did not
appear to accurately describe the data, suggesting that the three-layer case does not have
marginal beta distributions. This represents a notable change from the two-layer case
where a beta distribution has been shown to work well (Girimaji 1991; Cook & Riley
1994; Ihme & See 2011; Ristorcelli 2017). Generally, a five- or six-parameter bivariate
beta distribution was found to be necessary to reasonably describe the flow over multiple
regions of the mixing layer, in agreement with the decision tree proposed by Perry &
Mueller. The BVB6 distribution may describe this flow best of all p.d.f.s considered in
the present work, but the requirement of enforcing a third moment limits its utility for
modelling purposes and adds additional complexity in terms of the correct third moment
to enforce.

In general, the model p.d.f. that most accurately describes the probability distribution of
mixing components appears to be influenced by not only the problem configuration, but
also other factors such as the location within the mixing layer and the ability for different
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components to preferentially mix. This suggests that the most appropriate choice of p.d.f.
to model the distribution of species concentration in a non-isotropic turbulent mixing
problem, such as an RTI mixing layer, is complicated. The decision tree for selecting a
suitable model p.d.f. a priori as proposed by Perry & Mueller appears effective in general;
however, they do not similarly suggest a method to select a neutral permutation of that
p.d.f. This is particularly relevant to the present results, as the neutrality of the species
concentration distribution appears to change throughout the mixing layer. Qualitative
arguments based on physical intuition are useful to select a neutral variation of a p.d.f.
in general, but a quantitative method to select a distribution and neutral permutation either
a priori or as a function of the first and second moments of the simulation, as would be
required for modelling efforts, is not apparent from the present results.

Finally, an improved model for the influence of turbulent mixing on average reaction
rates based on the models of Ristorcelli (2017) and Morgan (2022b) was presented.
Notably, this model allows for an arbitrary number of mixing components and also
preserves the no-mix limit, representing improvements over these previous models.
A single time instant from the present simulations corresponding to a non-dimensional
time of τ = 8.2 was selected to assess this model. Comparison between the model closures
and DNS data demonstrate good agreement, indicating that the model closures reasonably
approximate the DNS data. The configuration studied in the first part of the present
work was transformed into an ICF-relevant configuration in order to directly compare
the reaction rates from the DNS against the model predictions. Two configurations
were considered, corresponding to a ‘premixed’ and ‘non-premixed’ configuration. The
improved model demonstrated greatly improved agreement with the DNS results in both
configurations compared with RANS simulations that neglect the impact of mixing
heterogeneity on the average reaction rate. Improvement over the model of Morgan (2022b)
was also observed, particularly in the premixed configuration. The present work considers
a relatively well-mixed case with significant diffusive mixing, and so the observed
improvements over the 2022 model are attributed to previously neglected higher-order
terms being retained in the new model, rather than the preservation of the no-mix limit.
The influence of preserving the no-mix limit is expected to be more significant in cases
with less diffusive mixing.
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Appendix A. Numerical methods

A.1. Miranda
Miranda is an artificial fluid LES code used to simulate hydrodynamic evolution in the
present work (Cook 2007, 2009; Cabot & Cook 2006; Morgan et al. 2017). The governing
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equations solved by Miranda, as well as the spatial and temporal integration schemes
utilized, were outlined in § 2.1. This appendix adds additional detail regarding the details
of Miranda’s numerical methods. As noted in § 2.1, Miranda solves the compressible
Navier–Stokes equations for a non-reacting, multicomponent mixture,

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (A1)

∂(ρYα)
∂t

+ ∂(ρYαui)

∂xi
= −∂Jα,i

∂xi
, (A2)

∂(ρuj)

∂t
+ ∂(ρuiuj)

∂xi
= − ∂p

∂xj
+ ∂σij

∂xi
+ ρgj, (A3)

∂E
∂t

+ ∂[(E + p)ui]
∂xi

= ∂(σijui)

∂xj
− ∂qi

∂xi
+ ρgiui, (A4)

where ρ is the density, t is the time, ui is the velocity along axis i, xi is the spatial coordinate
in axis i, Yα is the mass fraction of species α, Jα,i is the diffusive mass flux of species α,
p is the pressure, σij is the viscous stress tensor, gj is the gravitational body force in axis j,
E is the total energy and qi is the heat flux in axis i. The diffusive mass flux is given by

Jα,i = −ρ
(

Dα
∂Yα
∂xi

− Yα
N∑

k=1

Dk
∂Yk

∂xi

)
(A5)

for k = 1, 2, . . . ,N total species, where Dk is the Fickian diffusivity. The viscous stress
tensor is

σij = 2μSij +
(
β − 2

3
μ

)
∂uk

∂xk
δij, (A6)

where μ is the shear viscosity, β is the bulk viscosity and δij is the Kronecker delta. Here
Sij is the strain rate tensor, expressed as

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (A7)

The heat flux vector, qi, is given as

qi = −κ ∂T
∂xi

+
N∑

k=1

hkJk,i, (A8)

where κ is the thermal conductivity and hk is the enthalpy of species k, where k is in
the range 1, 2, . . . ,N for N fluids. The pressure, temperature and enthalpy of each fluid
component are obtained using an ideal gas equation of state,

pk = (γk − 1)ρkek, (A9)

Tk = ek

cv,k
, (A10)

hk = γkek, (A11)

where cv,k is the specific heat at constant volume and γk is the ratio of specific heats for
component k. An assumption of pressure and temperature equilibrium between the species
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allows an iterative process to be used to solve for component volume fractions, Vk. This,
in turn, allows the determination of partial densities and energies according to

ρk = Ykρ

Vk
, (A12)

e = E
ρ

− 1
2

uiui =
N∑

k=1

Ykek. (A13)

Total pressure is then calculated according to the mixture relationship

p =
N∑

k=1

Vkpk. (A14)

The subgrid transfer of energy is modelled using an AFLES approach in which artificial
transport terms are added to the fluid viscosity, bulk viscosity, thermal conductivity and
molecular diffusivity (Cook 2007, 2009). These are added according to

μ = μf + μa, (A15)

β = βf + βa, (A16)

κ = κf + κa, (A17)

Dα = Df ,α + Da,α, (A18)

where the subscript f denotes the molecular contribution to the property from the fluid and
subscript a denotes the artificial contribution. The present study is focused on a relatively
low-Reynolds-number regime and so the fluid contributions to these parameters cannot be
neglected. These are found from the properties of the fluids used in this problem together
with Miranda’s mixture equation of state (Cook 2009). The specific values used in the
present work are discussed in § 2. The artificial contribution to these terms are computed
according to the method described by Campos & Morgan (2019) as well as Morgan et al.
(2018a). Each of these terms has a functional form according to

ψa = CψFG(φ)
2, (A19)

where ψ is the artificial fluid property, Cψ is a tuning coefficient, 
 = (
x
y
z)1/3 is
the local grid spacing, G is an eighth-order derivative such that, for a scalar,

G(φ) = max
(∣∣∣∣∂8φ

∂x8 
x8
∣∣∣∣ , ∣∣∣∣∂8φ

∂y8 
y8
∣∣∣∣ , ∣∣∣∣∂8φ

∂z8 
z8
∣∣∣∣) (A20)

and, for a vector,

G(φ) = max
(
G(φx),G(φy),G(φz)

)
. (A21)

The overbar indicates the application of a truncated-Gaussian filter. The values of each
of the tuning parameters, as well as F and φ, for each artificial component are outlined
in table 4. In this table, cv is the specific heat at constant volume of the fluid and 
t is
the time step. This form of the artificial terms is chosen to ensure that the artificial terms
are biased towards the high wavenumber components of the flow and to have very low
influence at resolved scales (Cook et al. 2004; Cook 2007; Campos & Morgan 2019).
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ψa Cψ F φ

μa 1.0 × 10−4 ρ



ui

βa 7.0 × 10−2 ρ
∂ui

∂xi

κa 1.0 × 10−3 ρ

T
t
cv T

Da,α 1.0 × 10−2 1

t

Yk

Table 4. The parameters used for the artificial transport terms in (A19).

A.2. Ares
The second stage of the simulations in the present work is performed using Ares.
Ares utilizes an arbitrary Lagrangian–Eulerian method with a second-order remap and
a second-order predictor–corrector scheme for time integration (Sharp 1978; Darlington
et al. 2001). In the present work, Ares is used to simulate the TN burn of the mixing
layer in an ICF-relevant configuration. Coupling between hydrodynamics and radiation is
performed using a Planckian non-equilibrium radiation diffusion model. In this approach,
a single opacity, ω, is used to characterize the energy absorbed from the radiation field, as
well as the energy contributed from the material to the radiation field via emission. The
radiation energy, Er, is evolved according to

∂Er

∂t
= ∂

∂xi

(
c

3ωρ
∂Er

∂xi

)
+ cωρ(arT4

e − Er), (A22)

where c is the speed of light in a vacuum, Te is the electron temperature and ar is the
radiation constant. This is given in terms of the Stefan–Boltzmann constant, σSB, by

ar ≡ 4
c
σSB. (A23)

Electron and ion energies are allowed to evolve separately. The ion energy, Ei, is given by
∂Ei

∂t
+ ∂[(Ei + p)uj]

∂xj
= ∂(σjkuj)

∂xk
− ∂qj

∂xj
+ ρgjuj + Q̇. (A24)

The electron energy, Ee, is given by
∂Ee

∂t
+ ∂Eeui

∂xi
= −∂qe,i

∂xi
+ Q̇e, (A25)

where qe,i is the electron heat flux vector and is given in terms of the electron conductivity,
κe, by

qe,i = −κe
∂Te

∂xi
. (A26)

The ion and electron fields are coupled to the radiation field through the source terms in
(A24) and (A25). These source terms are given by

Q̇ = ρcvKie


t
(Te − Ti)+ Q̇TN,i, (A27)

Q̇e = ρcvKie


t
(Ti − Te)+ cωρ

(
Er − arT4

e

)
+ Q̇TN,e, (A28)
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where Kie is the ion–electron coupling coefficient and Ti is the ion temperature; Q̇TN,i

and Q̇TN,e are source terms due to the local deposition of energy from TN reactions. The
specific heat, electron and ion temperatures are determined from the equation of state. The
radiation temperature is related to the radiation energy by

Er = arT4
r . (A29)

Only a single TN reaction is considered in the present work,

D + T → n0 + 4He. (A30)

The rate of reaction with products γ and reactants α and β is described by

ṙγ,αβ = 〈σv〉αβ nαnβ, (A31)

where 〈σv〉αβ is the reaction cross-section, and nα and nβ are the particle number
densities. The reaction cross-section is interpolated using the TDFv2.3 library (Warshaw
2001). Additionally, each reaction has an average thermal energy, QTN , which is QTN =
17.59 MeV for the D + T reaction considered here. Local deposition of this energy is
assumed such that the average thermal energy is removed from the ion energy field.
Charged particle energy is deposited in the same volume with a split between the ion
and electron energies, with this split determined according to the Corman–Spitzer model
(Corman et al. 1975). Neutrons are assumed to immediately escape the problem and
energy carried by neutron products is removed from the system. Thermal effects and the
apportionment of average thermal energy between reactants is determined following the
method of Warshaw (2001), and the ion–electron coefficient, Kie, is determined via the
method of Brysk (1974).

Appendix B. Length scales

Section 4.1 presents the size of various turbulent length scales as determined from the
Reynolds number, turbulent spectra and two-point correlations. This appendix outlines the
relationships utilized to find these length scales from the simulation data.

The integral length scale is approximated through the Reynolds number found in § 3.3.2
using the relationship provided by Dimotakis (2000) as

λL � 5Re−1/2hc. (B1)

The integral length scale may also be found from the spectra of the flow. Pope (2000)
shows that the size of the integral length scale for a quantity f may be found from the
spectrum of f as

λL =
∫∞

0 k−1Êf dk∫
Êf dk

. (B2)

Notably, this definition allows for determination of integral length scales based on the
spectra of TKE, Y ′′

1 , Y ′′
2 and Y ′′

3 . Finally, Pope also notes that the integral length scale is
related to the two-point correlation through

λL =
∫ ∞

0
f (r) dr, (B3)

where this length scale can be determined for u′′
z , Y ′′

1 , Y ′′
2 and Y ′′

3 in both the axis aligned
with, as well as perpendicular to, gravity.
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The size of the Taylor microscale may similarly be estimated from the results presented
in the previous sections in several ways. Pope (2000) provides a relationship between the
Reynolds number and the Taylor microscale as

λT �
√

10Re−1/2hc. (B4)

Pope also notes that the two-point spatial correlations may also be related to the size of
the Taylor microscale through

λT =
√

−1
2

d2f
dr2 (0), (B5)

where f is the correlation function found using (4.3) and this equation represents the zero
crossing of a parabola osculating f (r)with a value of f (0) = 1 and a slope (df /dx)(0) = 0.

Finally, the smallest scales of a turbulent flow may also be estimated from the present
simulations. For velocity fields, this scale is the Kolmogorov scale and, for scalar fields,
this scale is the Batchelor scale (Batchelor 1959; Kolmogorov 1991). Dimotakis (2000)
provides an estimate of the Kolmogorov scale from the Reynolds number as

λη � Re−3/4hc. (B6)

The work of Dimotakis does not provide a similar estimate for the Batchelor length scale
based on the Reynolds number. However, the Batchelor scale may be estimated from the
Kolmogorov scale through the relationship

λB = λη√
Sc
. (B7)

The Kolmogorov length scale may also be found from the dissipation rate, and this is
defined by Pope (2000) as

λη =
(
ν3

ε

)1/4

, (B8)

where ν is the fluid viscosity and ε is the dissipation rate. The Batchelor scale can then be
defined in terms of the Kolmogorov scale as (Batchelor 1959)

λB =
(
νD2

ε

)1/4

, (B9)

where D is the fluid mass diffusivity. It should be noted that in both (B8) and (B9) that
the assigned fluid values of ν and D were used, as opposed to the total values as discussed
in § 3.1. This was done to ensure that the Kolmogorov and Batchelor length scales were
calculated based on real fluid properties and do not include the influence of the artificial
fluid terms. However, as shown in figure 3, the artificial contributions to the fluid properties
are small for the highest resolution meshes, and so there is likely negligible influence from
this approach. The minimum values of λη and λB as a function of z are chosen to calculate
a single value for the length scales found from (B8) and (B9).

Appendix C. Summary of p.d.f.s

A number of p.d.f.s that may be suitable to describe three-component mixing were
presented in § 4.2. This appendix presents the concept of independence with regards to
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these density functions, as well as the functional form of the distributions themselves and
assumptions in their derivations.

At the outset, it is worthwhile to discuss the concept of neutrality with regards to the
p.d.f.s that will be discussed in the following paragraphs. This concept was introduced by
Connor & Mosimann (1969), and is also discussed by Perry & Mueller (2018). First, it is
useful to define the remainder fraction, Fij, as the proportion of the jth component of the
mixture after removing all of the ith components. For a three-component mixture, this can
be written as

Fij = Yj

1 − Yi
= Yj

Yj + Yk
, (C1)

where Yk is the third component. With this in mind, a vector of mixture fractions
(Yi, Yj, Yk) is said to be neutral if Yi is independent of Fij. In a physical sense, this can
be viewed as saying that the amount of Yi in a mixture is independent of whether the
remainder of the mixture is composed entirely of Yj, Yk or some mixture of the two.
Non-neutrality can, in turn, be viewed as stating that there is an asymmetry in the mixing of
certain components, with the ith component mixing more or less readily with the others.
This results in three unique (potentially) neutral vectors for three components (Perry &
Mueller 2018).

Perry & Mueller (2018) examined several joint p.d.f.s to describe their multicomponent
mixing flow. The first is the Dirichlet distribution, which is a multivariate generalization
of the beta distribution, and may be written for three components as

P(Y1, Y2) = KNYα1−1
1 Yα2−1

2 (1 − Y1 − Y2)
α3−1, (C2)

where Y1 and Y2 are the mass fractions of the first and second species. The p.d.f. has
the constraint that

∑3
k=1 Yk = 1, and so Y3 = 1 − Y1 − Y2. KN is a normalization factor,

defined as

KN = Γ (α1 + α2 + α3)

Γ (α1)Γ (α2)Γ (α3)
, (C3)

where Γ is the gamma function. Finally, αi > 0 are the shape parameters that describe the
distribution. These shape parameters may be related to the means and covariances of the
p.d.f. as

Ỹ i = αi

α0
, ˜Y ′′

i Y ′′
j = αi(α0δij − αj)

α2
0(α0 + 1)

, (C4a,b)

where α0 =∑i αi, ˜Y ′′
i Y ′′

j is the (co)variance of the mass fractions of species i and j, δij

is the Kronecker delta and summation notation does not apply. There are a few notable
aspects of the Dirichlet distribution worth mentioning here. First, this distribution is a
three parameter distribution, and two of the three parameters must be used to specify
the mean values, meaning that only a single variance or covariance may be enforced.
Additionally, it can be shown through (C4a,b) that all components must be negatively
correlated. Third, the Dirichlet distribution is neutral for all permutations of (Yi, Yj, Yk)
(Perry & Mueller 2018). This suggests that the Dirichlet distribution is not likely to be
descriptive in cases where there is preferential mixing between certain components. These
are significant limitations on the usefulness of the Dirichlet distribution, and has motivated
the consideration of other p.d.f.s that may describe multicomponent mixing.

A second model proposed by Perry & Mueller is the generalized Dirichlet p.d.f.
introduced by Connor & Mosimann (1969). The CM p.d.f. was derived based on the
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assumption that Y1 has a marginal beta distribution and that (Y1, Y2, Y3) is neutral, though
they did not assume anything about the other two permutations. This p.d.f. may be written
for three components as

P(Y1, Y2) = KNYα1−1
1 Yα2−1

2 (1 − Y1 − Y2)
β2−1(1 − Y1)

β1−α2−β2, (C5)

where KN is again the normalization factor, given by

KN = Γ (α1)Γ (β1)

Γ (α1 + β1)

Γ (α2)Γ (β2)

Γ (α2 + β2)
, (C6)

where the parameters αi and βi are the shape factors. In the three-component CM
distribution, there are three parameters for each α and β, where αi, βi ≥ 0 and α3 = 1,
β3 = 0 (Connor & Mosimann 1969). Thus, there are four free parameters in total. This
represents an improvement over the Dirichlet distribution discussed previously as now two
variances or covariances may be enforced instead of just one. Connor & Mosimann (1969)
provides relationships that relate the parameters of the p.d.f. to the means of the species
mass fractions as

Ỹ i = αi

αi + βi

i−1∏
k=1

βk

αk + βk
, (C7)

to the variances as

˜Y ′′
i Y ′′

i = Ỹ i

(
αi + 1

αi + βi + 1

i−1∏
k=1

βk

αk + βk + 1
− Ỹ i

)
, (C8)

and, finally, to the covariances as

˜Y ′′
i Y ′′

j = Ỹ j

(
αi

αi + βi + 1

i−1∏
k=1

βk

αk + βk + 1
− Ỹ i

)
, (C9)

where α3 = 1 and β3 = 0 (Connor & Mosimann 1969). Notably, this formulation requires
˜Y ′′

1 Y ′′
2 ≤ 0 and ˜Y ′′

1 Y ′′
3 ≤ 0 since αi, βi ≥ 0, though ˜Y ′′

2 Y ′′
3 can be positive or negative. Perry

& Mueller (2018) notes that analogous distributions where (Y2, Y1, Y3) or (Y3, Y1, Y2)
are neutral can also be constructed by replacing the term (1 − Y1)

β1−α2−β2 with similar
expressions involving Y2 or Y3. These three p.d.f.s are denoted CM-1, CM-2 and CM-3,
respectively, where the integer indicates the first component in the neutral permutation.

Perry & Mueller also considers the BVB5 distribution introduced by Doran (2011). The
p.d.f. for this distribution is given by

P(Y1, Y2) = KNYα1−1
1 Yα2−1

2 (1 − Y1 − Y2)
α3−1(1 − Y1)

α4(1 − Y2)
α5, (C10)

where KN is again a normalization factor and αi is the shape parameters of the distribution.
The fact that there are five parameters in this distribution mean that all of the unique
first and second moments may be enforced, representing a further improvement over the
previously discussed distributions. However, there are no closed-form relationships for KN
and αi in terms of the means and variances. Doran (2011) notes that, while it may be
possible to express these moment relationships in terms of hypergeometric functions, it is
most efficient to solve for the shape parameters in terms of a desired set of moments in an
iterative fashion. Thus, the BVB5 distribution represents an improvement in that all of the

999 A88-46

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.958


DNS of three-component Rayleigh–Taylor mixing

unique first and second moments of a three-component distribution may be enforced, but
with the caveat that the solution process is more intensive.

Finally, Perry & Mueller introduces a BVB6 distribution, allowing for maximum
generality in terms of neutrality of the distribution. The p.d.f. for this distribution is defined
as

P(Y1, Y2) = KNYα1−1
1 Yα2−1

2 (1 − Y1 − Y2)
α3−1(1 − Y1)

α4−1(1 − Y2)
α5−1(Y1 + Y2)

α6−1,

(C11)

where KN is again a normalization factor. Notably, all of the BVB5, CM and Dirichlet
distributions discussed previously are special cases of this distribution (Perry & Mueller
2018). The addition of the sixth parameter in this distribution requires the enforcement of a
third moment. This is undesirable from a modelling perspective as higher-order moments
are not frequently known, but this distribution is still worth considering to establish its
descriptive capability for this flow. As with the BVB5 cases, no closed-form relationships
between the shape parameters and the moments of the distribution can be found. Thus, the
solution method for finding the shape parameters of this distribution is to iteratively solve
for a desired set of moments as with the BVB5 case.

The p.d.f.s described in the previous paragraphs demonstrate a clear hierarchy of
increasing generality and complexity as additional parameters are added. Increasing the
number of parameters in the distribution has the advantage of allowing additional first and
second moments to be enforced, and allows for more freedom in terms of the neutrality
of the p.d.f.s. This means that simple expressions relating the moments of a p.d.f. to
its parameters may not exist in the more complicated cases however, and numerical
integration of the p.d.f. must be utilized to find these moments instead (Doran 2011; Perry
& Mueller 2018). Perry & Mueller note that the optimal choice of distribution is the one
that adequately captures asymmetries in the mixing with the fewest parameters.

Appendix D. No-mix statistics

In order to derive the no-mix statistical relationships necessary to complete the model
described in § 5, we treat our mixture as a stochastic material where the composition
of the species mass fractions Yα = {Y1, Y2, Y3, . . . , YN} is described by the multivariate
probability distribution function P(Yα). To describe the mixture p.d.f. in the no-mix limit,
the mutivariate delta function is introduced:

δ (Yα) =
{

∞, Yα = 0,
0, Yα /= .0 (D1)

Then, the p.d.f. of the composition is given by the sum of deltas:

Pδ (Yα) = C1δ (1 − Y1, Y2, . . . , YN)+ C2δ (Y1, 1 − Y2, . . . , YN)

+ · · · + CNδ (Y1, Y2, . . . , 1 − YN) . (D2)

Thus, in the no-mix limit,

Ȳα =
∫

ŶαPδ
(

Ŷα

)
dŶα = Cα (D3)
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and

ρ̄Ỹα =
∫
ρ
(

Ŷα
)

ŶαPδ
(

Ŷα

)
dŶα =

∫
Ŷα∑N

k=1
Ŷk

ρk

Pδ
(

Ŷα

)
dŶα =

∫
CαYα

Yα
ρα

dŶα = ραCα.

(D4)
Combining (D3) and (D4) yields the useful relationship for a mixture in the no-mix limit:

Ȳα = ρ̄

ρα
Ỹα. (D5)

The no-mix specific volume and density-specific-volume covariance can then be solved:

(v̄)nm =
∫ N∑

k=1

Ŷk

ρk
Pδ
(

Ŷα

)
dŶα =

N∑
k=1

Yk

ρk
, (D6)

bnm = ρ̄ (v̄)nm − 1 = ρ̄2
N∑

k=1

Ỹk

ρ2
k

− 1. (D7)

Following a similar procedure of integrating the p.d.f., after considerable algebra, the
remaining no-mix statistics can be solved as well:(

ρ′ρ′
)

nm

ρ̄2 =
N∑

k=1

ρk

ρ̄
Ỹk − 1, (D8)

(
ρ′Y ′′

α

)
nm

ρ̄
= −

(
Y ′′
α

)
nm

=
(

1 − ρ̄

ρα

)
Ỹα, (D9)(

ρ′2Y ′′
α

)
nm

ρ̄2Ỹα
= ρα

ρ̄
+ ρ̄

ρα
−
(

1 +
N∑

k=1

Ỹk
ρk

ρ̄

)
, (D10)

(
ρ′Y ′′

αY ′′
β

)
nm

ρ̄ỸαỸβ

∣∣∣∣∣∣∣
α /=β

= ρ̄

ρα
+ ρ̄

ρβ
− 2, (D11)

(
ρ′Y ′′

αY ′′
α

)
nm

ρ̄Ỹ2
α

=
(

1

Ỹα
− 2
)(

1 − ρ̄

ρα

)
, (D12)(

ρ′2Y ′′
αY ′′

β

)
nm

ρ̄2ỸαỸβ

∣∣∣∣∣∣∣
α /=β

= 3 +
N∑

k=1

Ỹk
ρk

ρ̄
−
(
ρα

ρ̄
+ ρβ

ρ̄
+ ρ̄

ρα
+ ρ̄

ρβ

)
, (D13)

(
ρ′2Y ′′

αY ′′
α

)
nm

ρ̄2Ỹ2
α

=
(

1

Ỹα
− 2
)(

ρα

ρ̄
+ ρ̄

ρα
− 2
)

+
N∑

k=1

Ỹk
ρk

ρ̄
− 1. (D14)
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