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In the preceding lecture Dr Arnett has shown us how exciting the inner life of a star 
can be when during late stages of evolution higher nuclear reactions take place. But 
in order to enjoy the variety of different nuclear species formed there stellar material 
from the deep interior has to be brought up to the surface, where the observers can 
see it. 

When we produce evolutionary sequences of stellar models we simplify in many 
respects. In particular, we assume that nuclear material stays where it is being formed 
unless convection brings it to other places. 

But there are indications that material from the very interior is occasionally brought 
to the surface - the technetium stars are probably the most striking examples (Aller, 
1961, p. 159). How can material from a stellar core reach the surface? Maybe during 
more advanced evolutionary stages stars blow off their envelopes into space and the 
core material then becomes visible. Maybe convection brings the matter from the 
deep interior up to the surface of the stars. But it is also possible that other mixing 
processes become important. The most well known of these is meridional motion in 
radiative regions of rotating stars. This is a special case of a more common situation 
where, as a consequence of deviation from spherical symmetry in a star, hydrostatic 
equilibrium and thermal radiative equilibrium are incompatible, in which case merid­
ional motions always occur. In the first two chapters of this paper we will deal with 
meridional motions of this type. 

Since thermal conduction can be included in the stellar structure equation of ra­
diative transport our considerations also hold in degenerate regions of stars, where 
conduction is the leading transport mechanism. 

But also in the pure spherically symmetric case, where hydrostatic equilibrium and 
thermal radiative equilibrium can be fulfilled simultaneously meridional motion can 
occur. If in such a case a nonspherical perturbation is applied which is so slow that 
hydrostatic equilibrium is still a good approximation but which perturbs the thermal 
part of the stellar structure equations, then again circulation will occur which either 
enhances the perturbation or diminishes it. In the first case one has a secular instability 
which can give rise to meridional circulation. In Section 3 we give examples for this 
case of circulation. 

1. Meridional Circulation 

1.1. EDDINGTON-VOGT CIRCULATION 

In the following we deal first with slowly rotating stars. The ratio yr of centrifugal to 
gravitational acceleration in the equatorial plane at distance r from the center is 
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therefore assumed to be small. Then meridional motions occur in radiative regions 
with velocities of the order of 

Kir 
(1) <5(Vad-V) Mr AnrGg 

(see Al) with 
d l n T / d l n 7 \ (S\nq\ 
d l n P \ d l n P / a d \c In TJP 

while Mr, Ln r, G, Q have the usual meaning. 3 has to be determined from the equation 
of state. For the perfect gas one has <5= 1. With increasing degeneracy (5->0 which is 
of importance if Equation (1) is applied to degenerate regions in a star. 

The existence of meridional circulation in radiative regions has been postulated 
independently by Eddington (1925) and by Vogt (1925), by discussing von Zeipel's 
theorem. The first numerical estimate was given by Sweet (1950); therefore this type 
of motion is sometimes called Eddington-Sweet circulation. 

If we take the mean over the whole star Equation (1) yields 

1 L Yr 
vEW « — (3) 

<5(V a d -V)M0 
where bars indicate mean values over the star, while g=GM/R2 is the surface gravity 
at the equator. In Equation (3) we have neglected dimensionless factors of the order 
one. If we introduce the Kelvin-Helmholtz time scale TKH «EG/L of the star where 
EG&GM2/R is the absolute value of the gravitational energy of the star we find 

1 R _ 
VEV * Xr • ( 4 ) 

< > ( V a d - V ) T K H 

Connected with this mean velocity there is a characteristic time scale given by 

R ^<>(V a d -V) 
rEV ^ — « _ TKH . (5) 

The Eddington-Vogt circulation follows from the fact that hydrostatic equilibrium 
in a rotating star and thermal radiative equilibrium cannot be fulfilled simultaneously. 
Formally this can be seen if one writes down the equations for rotational perturbations. 
One then finds that the system is overdetermined until a new variable, the velocity 
of meridional motion is introduced {Kippenhahn, 1963). 

The estimates for i;EV, given here, are derived from a first order perturbation theory 
which holds only for small values of #r. This is sufficient for most applications, 
since #r is small in the interior of uniformly rotating stars, even if they rotate with 
break up velocity. In the case of differential rotation with high angular velocities 
in the interior of the stars, our estimates are no longer valid. But even in the case for 
which Xr~ 1 throughout the star, they may give the order of magnitude of the circula­
tion occurring. 
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1.2. ^-CIRCULATION 

Let us assume a chemically homogeneous region in a star mainly consisting of hydro­
gen and let us put a blob of pure helium somewhere in that region outside the center. 
If at the beginning the blob is not in hydrostatic equilibrium it first will expand or 
contract until the pressure inside is the same as outside. For any quantity y we 
define by Dy the difference between the value of y in the blob and the value of 
y in the immediate surroundings. Hydrostatic adjustment then means that for the 
pressure P we have DP=0. Then in general the density will not yet be the same in the 
blob as outside and the blob will rise or sink until there is no buoyancy force, i.e. 
until DQ = 0. For the sake of simplicity we assume a perfect gas inside and outside 
the blob. Then as a consequence of the different mean molecular weights p. we have 
D}i>0 and therefore DT>0. This means that the matter in the blob will be hotter 
than the surroundings. Therefore there is no thermal equilibrium. The blob will now 
try to adjust its temperature to the neighbourhood. It therefore will cool off, its density 
will increase and the blob will sink (Figure 1), with a velocity which is controlled by 
the thermal adjustment time. It is given by (see A2): 

<pHP \Dt*\ 
<HV a d-V)r*H ii 

(6) 

where (p = (d \ng/d \njx)P T follows from the equation of state. For the perfect gas 
cp—\. HP is the pressure scale height while T£H is the thermal adjustment time 
scale (Kelvin-Helmholtz time scale) of the blob. It is given by (see for instance 
Kippenhahn, 1969) 

Fig. 1. A blob of molecular weight //-!-- Dn (£>//> 0) in surroundings with molecular weight // in 
hydrostatic equilibrium undergoes a slow downward motion which is controlled by the thermal 

adjustment of the blob. 
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^ 3cPxg2£d2 

T K H * " 8 ^ 7 ^ ( 7 ) 

where d is a measure for the size of the blob while ( is a dimensionless factor which 
depends on the geometry. If Kand O are volume and surface of the blob respectively, 
then one has ( = V/Od. 

The time of thermal adjustment as it is defined in Equation (7) increases with the 
size of the blob. For blobs with a size comparable or even bigger than HP, for x, Q, T 
in Equation (7) mean values over the blob have to be taken. If the size becomes 
comparable with the radius of the star then T£H approaches the Kelvin-Helmholtz 
time scale of the star: T£ H -»T K H . 

1.3. MAGNETIC BUOYANCY 

We now consider a magnetic blob, that is a subregion in a star which is filled with 
magnetic field but whose magnetic field lines are entirely in that blob; i.e. no field 
lines connect the inside with the outside. Finzi and Wolf (1968) used the word 
'magnetic tangle' for such an element. Again if there is hydrostatic equilibrium between 
the magnetic tangle and the surroundings, we have DP = 0, DQ = 0. But in the blob 
the total pressure P consists of the gas pressure PG and the magnetic pressure PM. 
Therefore and if we again assume the perfect gas equation of state we find DT<0. 
This time the blob is cooler than its surroundings and it will try to adjust itself thermally 
and will rise. The upward velocity is this time given by (see A3) 

vM* Hp~* £ " , (P" = -DPG) (8) 
<>(Vad - V ) T K H PG 

c>, x, a, c again have the usual meaning, while a = (d \nqld \nP)T. 

1.4. NON-CONSERVATIVE ANGULAR VELOCITY DISTRIBUTION 

There is another, more complicated, case in which hydrostatic equilibrium and 
thermal radiative equilibrium are not compatible. Let us assume that in a rotating 
star the angular distribution co is not a function of the distance s from the axis of 
rotation only, but varies on coaxial cylinders s = const. If z is the coordinate in the 
direction of the axis of rotation, we have in this case dco/dz^O. Then the centrifugal 
acceleration 

c = co2s (9) 

is a non-conservative vector field; i.e. Vxc^O. The equation for hydrostatic equilib­
rium in the steady state is 

1 VP + V(/> = c, (10) 
o 
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where </> is the gravitational potential. If the temperature were constant on surfaces of 
equal pressure then the density would also be constant there and VP/Q would be a 
conservative vector field 

V x l 1 VPJ = 0; (11) 

then the left hand side of Equation (10) would be conservative, but the right hand 
side would not. Therefore hydrostatic equilibrium demands that the temperature is 
not constant on pressure surfaces. Therefore a special temperature distribution is 
necessary to maintain hydrostatic equilibrium. This temperature distribution is not 
that of thermal radiative equilibrium and consequently meridional motions ensue. 
This is a type of motion which comes from the Goldreich-Schubert-Fricke instability 
(Goldreich and Schubert, 1967; Fricke, 1968) of all angular velocity distributions with 
dco/dz^O. 

1.5. LIMIT TOWARDS SMALL LENGTH SCALES 

In the formulae (6) and (8) the velocity of the blob is higher for smaller blobs. This 
is due to the shorter time scale for thermal adjustment. For smaller scales these 
formulae are no longer valid since other effects become important, for instance 
friction. The smaller the blob, the more important the friction. A rough estimate for 
the lower limit of sizes of blobs can be obtained if one assumes that for the smallest 
sizes the Stokes velocity becomes comparable with the blob velocity. One then 
finds that for the order of magnitude of the smallest blobs (see A4) 

cpoo 
i 1 * 

Q 

Fig. 2. Since smaller blobs sink faster there is a tendency of fragmentation. 
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Wz- (,2) 

where vK is the local kinematic radiative viscosity and gr the local gravitational 
acceleration. As a consequence, big blobs undergo fragmentation during their 
motions (see Figure 2). 

Sometimes when viscosity is small the velocity for small blobs becomes of the 
order of the velocity of sound before friction effects set in. Then the assumption used 
in deriving the velocities is no longer valid. 

For magnetic tangles d cannot be too small, in order to avoid a decay of the mag­
netic field before the element has moved over an appreciable distance. 

In the case of non-conservative angular velocity distribution discussed in sub-
Section 1.4 the motions which occur will also be small scale motions, since these 
modes can transport energy more effectively than large scale motions. Indeed in a 
normal star one should expect sizes of the order of 1 km. Some simple estimates of 
velocities and time scales of this type of motion have been given by Kippenhahn( 1969). 

2. Applications 

2.1. MIXING IN CHEMICALLY HOMOGENEOUS REGIONS 

Since on the main sequence the nuclear time scale is roughly 100 times longer than 
the Kelvin-Helmholtz time-scale with <5«1, Vad — V^0.15 one can estimate that TEV 

will be comparable with the time scale rnucl of nuclear evolution if #r>0.015. Indeed 
for main sequence stars earlier than F5 the Eddington-Vogt time scale is shorter 
than the main sequence life-time. This has already been found by Sweet (1950). 
But there is observational evidence that even early type main sequence stars undergo 
unmixed evolution. For mixed evolution the stars would move to the upper 
left of the HR diagram while consuming their hydrogen but we are certain 
that they normally become red giants which is typical for unmixed evolution. 
Mestel (1953) found the way out of this difficulty. That there is no mixing of 
hydrogen and helium during the main sequence stage - not even for the fastest 
rotators - is due to the fact that with the same time-scale a gradient of molecular 
weight fx is being built up which prevents circulation, as we will later see. But the 
regions in these stars which remain chemically homogenous will indeed be mixed by 
the circulation. The flow pattern is rather complicated. Let us start say with rigid 
body rotation. For this type of motion the Eddington-Vogt circulation is a large 
scale motion rising at the poles and sinking at the equator. But since friction can be 
neglected each mass element conserves its angular momentum. Therefore after a 
while there will be a deviation from solid body rotation and co will not be constant 
on cylinders s = const, any more. As a consequence small scale motions will occur 
since the centrifugal acceleration is not conservative. Therefore a new, rather complicated 
co-distribution will be established. The Eddington-Vogt circulation of this complicated 
circulation pattern will be even more complicated. One therefore should expect a 
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kind of irregular small scale motion comparable with convection but smaller in 
scale and much slower. Probably the formula (1) will still give a good estimate for 
that type of small scale motion which sometimes is called random circulation. This 
circulation will mix angular momentum throughout the star. Although we do not 
know what the mean properties of that randomly fluctuating circulation field will 
be, we would expect that large differences in angular velocity would be smeared out 
although solid body rotation is not a solution. 

Random circulation would also mix chemical elements as long as they do not 
effect the molecular weight considerably. This might be of some importance for the 
distribution of lithium through the envelopes of the stars. Recently Paczynski (1973) 
has suggested that the anomalous ratio of carbon to nitrogen in some early type 
stars can be explained by mixing. In his picture carbon is being transformed into 
nitrogen above the convective core in a region where helium is not enriched and 
therefore the molecular weight is practically constant. Random circulation could 
bring carbon from the outer layers into that region in which it is destroyed and con­
sequently a large fraction of the carbon in the envelope can be transformed into 
nitrogen. Demarque and McClure (1973) have given arguments which favour this 
hypothesis. 

Also in degenerate cores of evolved stars circulation might be important. Let us 
for instance take a degenerate carbon core in an evolved star before the onset of 
carbon burning. If this core were strictly isothermal, which means energy is neither 
created nor swallowed in the core, then we would have Lr = 0 for the core and vEX 

would therefore vanish. But while the core mass is increasing due to helium burning 
at its surface, the core contracts and contraction energy is released, giving rise to a 
non-vanishing Lr and therefore a non-vanishing circulation. Neutrino-processes on 
the other hand take energy away and therefore energy has to be transported from one 
part of the core to the other, giving rise again to a non-vanishing Lr and therefore to 
circulation. It has been shown by Kippenhahn and Mollenhoff (1974) that the con­
traction energy released and the energy carried away by neutrinos in a rotating core 
cannot compensate each other. Therefore there will always be a conductive flux 
through the core, giving rise to a non-vanishing Eddington-Vogt circulation. By 
extrapolating the expressions for the circulation velocity derived for slow rotation 
to the case of xr~ 1 Kippenhahn and Mollenhoff (1974) have estimated that in rapidly 
spinning cores circulation can redistribute angular momentum within the time-scale 
of evolution. But this is only the case if the cores are spinning so rapidly that they are 
very flat and that / r is of the order 1. This might be of importance if one discusses 
the effect of rotation on the conditions for the onset of carbon burning (Sackmann 
and Weidemann, 1972). 

Kippenhahn and Mollenhoff (1974) have also estimated the time-scale for mixing 
in rapidly rotating white dwarfs. Although white dwarfs can be roughly described 
as isothermal bodies due to their cooling, Lr does not vanish and if %r = 1 then the 
mixing time-scale is comparable with the cooling time. This might be of impor 
tance for the discussion of rapidly rotating white dwarfs with masses far above the 
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Chandrasekhar limit. The random circulation which then would occur would 
redistribute the angular velocity in a way similar to friction. 

2.2. /^-BARRIERS 

If, say, a helium core in a hydrogen rich envelope has been formed, then, in a transition 
region, the mean molecular weight \i increases inwards. If the Eddington-Vogt 
circulation tries to build up a circulation which, say, rises at the pole and sinks at the 
equator, then helium rich material is brought up along the polar axis while hydrogen 
rich material is brought inwards at the equator. This creates a situation where 
//-currents try to reestablish spherical symmetry of the //-distribution and act against 
the Eddington-Vogt circulation. For a rough estimate we describe the situation given 
in Figure 3 by a blob of the diameter d^r where r is the core radius, we assume 

Fig. 3. In the case of a core of molecular weight // } Dn surrounded by an envelope of molecular 
weight n meridional motions (black arrows) produce a non-spherical //-distribution. Then //-currents 

occur which try to reestablish spherical symmetry. 

TKH~TKH a n d we consider the matter in the equatorial plane as the 'surroundings' 
of the blob. In this very crude picture we can determine v^ from Equation (6). No 
mixing will occur if vEy< ty This gives (with cp= 1): 

(2HP\\D»\ 
* < ( — ) - ^ - ( 1 3 ) 

The factor 2HP/r may be of the order 1, and since we have pure helium in the blob 
and a hydrogen rich mixture ( ^ = 0.7, ^ = 0.3) outside, Dfi/fi is roughly 0.74. Thus 
one finds that there will be no mixing as long as #r<0.74. Meridional circulation will 
occur in the homogenous regions outside and inside the transition region. The region 
of variable molecular weight acts as a barrier, it prevents the Eddington-Vogt circula­
tion from penetrating and mixing. For higher nuclear burning the differences in 

https://doi.org/10.1017/S0074180900017666 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900017666


28 R.KIPPENHAHN 

molecular weight which are being built up become smaller. For the transition from 
helium to a carbon-oxygen mixture one already has £>/////«0.27. Therefore pene­
tration of these // barriers is more probable for higher nuclear burning. But even then 
rotation would have to be rather fast. 

2.3. FORMATION OF //-BARRIERS 

In the foregoing we have discussed the problem of mixing through a //-barrier which 
is already there - but in the star //-barriers are being built up from homogenous 
regions by nuclear burning. There is no //-barrier at the beginning. The question is 
whether mixing is strong enough to prevent the formation of a //-barrier. This problem 
has first been investigated by Mestel (1957). At the beginning there is only Eddington-
Vogt circulation. If a blob rises along the polar axis is still has the original chemical 
composition. After the time TEV it might sink towards the equatorial plane (Figure 4). 

Fig. 4. Meridional circulation in the central region of a star with convective core. Since the molec­
ular weight in the core increases with time the molecular weight varies along the stream lines of the 
meridional velocity field. Again a non-spherical //-distribution occurs which gives arise to //-currents. 

At the same time new material is coming up at the pole, enriched in ashes. If we 
define the rising material as the blob and the sinking material as its surroundings 
then we have (T£ H ~TKH) 

<pHP |Z)//| 
<HVad-V)TKH // 

where again D\i is the difference in molecular weight between the blob and the 
surroundings. D\i has now to be distinguished from A\i which is the difference of 
molecular weight before the onset of nuclear burning and after nuclear burning has 
been completed. One has 

Sii 
dtTEV' 

1 dfi 1 A\x 

VOt Tnucl H 
Dfl K---TEy, -■= — (15) 
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where rnucl is the time scale of nuclear burning. Therefore £>/* = TEVJ///Tnucl. With this 
expression for D\x Equation (6) gives an estimate for the velocity with which the 
//-currents try to reestablish spherical symmetry of the //-distribution. No mixing 
will occur if vEW< v^. In order to estimate i;EV in the neighbourhood of the interface 
we find from Equation (1) 

= Vad Wtr 3 = Vad _ zs^ 
VEW * (Vad - V) Mr AnrGq 6 (V a d ~V) « T * „ ' 

where we have introduced the dimensionless quantities £ and ( by 

q = 4nr3Ql3Mr9 C = GMr
2/rLrr*„. 

For the characteristic time connected with these motions near the interface we define 

r 5(V.d-V)«tfH TEV = — = . (17) 

Here occurs a difficulty since Vad — V vanishes at the interface between a convective 
core and a radiative envelope and Equation (16) gives infinite velocities. Mestel 
(1953) has clarified the situation. In our problem it is sufficient to make clear that 
for Vad — V in Equation (17) a value has to be taken which is typical for the whole 
area through which matter coming out from the core is moving. From Equations (6), 
(16) and (17) we now obtain the condition that no mixing will occur if 

2 " P . 2 T* H <5(V a d -V)J / i 
Xr < — <p£t — ~ 2 ' (18) 

r Tnucl Vad // 
For any given stellar model the right hand side of Equation (18) can be determined 
and critical values of xr can be obtained. In order to give a rough idea we use some 
typical values and obtain from Equation (18) # r<0.1 (J/////)1/2 and conclude that 
between a helium core and a hydrogen-helium envelope (zl////z = 0.74) no mixing will 
occur as long as #r<0.09 at the interface. For a carbon oxygen core in a helium 
envelope (J////z = 0.27) one obtains / r<0.05. As an example we can take an early 
type main sequence star in uniform rotation which is fully rotating - that is rotating 
at an angular velocity so high that centrifugal force and gravitational force cancel 
each other at the equator. The value of Xr a t t r i e interface between convective core 
and envelope is then about 1/30 and no mixing will take place (Mestel, 1953). It 
should be kept in mind that in deriving and in using the condition (18) many dimen­
sionless factors have been dropped in order to give some very simple estimates. 
For any given stellar model the criterion (18) can be derived in a more careful way 
following our procedure. 

It seems surprising that main sequence stars are not too far from mixing and they 
might even mix if the angular velocity were to increase inwards sufficiently. On the 
other hand there is the well established fact that main sequence stars evolve to the 
right in the HR diagram which is typical for an unmixed evolution. Probably Equation 
(18) still exaggerates the danger of mixing. Indeed, in deriving this equation it was 
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assumed that the Eddington-Vogt circulation is a large scale motion, where the 
characteristic lengths are given by the radius of the star. But as we have already seen 
Eddington-Vogt circulation by itself, starting from rigid body rotation, would very 
soon produce random circulation. Therefore, if in a main sequence star, helium 
enriched material would be brought out by circulation, say, at the polar region, then 
it would not move with the velocity vEW but a random walk process would determine 
the diffusion of helium into the outer layers. Thus, the velocity by which helium is 
brought outwards is slower, and from this one might expect that even values of xr 

which are higher than the limit given by Equation (18) would still not cause mixing. 
As we have seen in the case of the already fully developed //-barrier for higher 

nuclear reactions the /i-effect becomes less and less important. For highly developed 
stars it therefore depends on the angular velocity of the cores whether mixing can 
take place or not. Unfortunately, there is practically no information whether the 
material in the very interior of a star conserves its angular momentum, whether the 
core which contracts during the evolution will rotate faster and faster or whether 
angular momentum is being exchanged between core and envelope. Since ^-barriers 
cannot be penetrated by circulation the only mechanism which brings angular 
momentum across the /x-barriers are magnetic fields with the appropriate topology. 
Fricke and Kippenhahn (1972) have used the angular velocities of pulsars in order to 
estimate that the cores of evolved stars at least rotate faster than the envelopes. But 
it is not clear whether the cores are really spinning rapidly. 

2.4. MAGNETIC MIXING 

If, as suggested in the last section, magnetic fields would transfer angular momentum 
from the cores to the envelopes, then rather strong magnetic fields are necessary, 
even if the initial poloidal field were small. Differential rotation between core and 
envelope would form a fairly strong toroidal field in the transition region and the 
question arises whether magnetic tangles are being formed, which would rise into the 
envelope. In the rotating convective cores of the stars one might expect dynamo 
effects similar to those discussed by Parker (1970), Krause and Radler (1971), Kohler 
(1973) in connection with the solar cycle. One therefore can ask whether magnetic 
fields created in the very interior of the stars cannot mix the stars and maybe even 
bring nuclear material from the very interior to the surface. Gurm and Wentzel 
(1967) and Finzi and Wolf (1968) have discussed the effect of magnetic mixing. 
Gurm and Wentzel found that the velocity of the rising blobs should be sufficient to 
bring material from the core to the surface of a main sequence star in a time shorter 
than the time of nuclear evolution if the ratio of magnetic to gas pressure exceeds the 
value 10 ~4 (in order to get sufficient buoyancy) and if the diameter of the tangles 
is smaller than 1010 cm (in order to get a sufficiently short time of thermal adjustment). 
Finzi and Wolf even suggest that blue stragglers observed in the HR diagrams of 
globular clusters might be stars which undergo mixed evolution due to magnetic 
mixing. 

The problem of magnetic fields in the very interior is also of importance for the 
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problem of the solar neutrinos. Magnetic fields can reduce the observable solar 
neutrino flux considerably if they are strong enough. On the other hand strong mag­
netic fields in the very interior of the Sun would rise to the surface due to 
magnetic buoyancy. One has to keep in mind that the enrichment in helium in 
the central region of the Sun provides //-currents which act against magnetic mixing. 
Equating the two expressions (6) for //-currents and (8) for the velocity of magnetic 
blobs indicates that the magnetic fields would stay in the central region as long as 

For \i and \i+D\i we take the values for the envelope and the center of the present 
Sun and find £>/*//* = 0.3. With the central pressure of 2.2 x 1017 we find that the 
magnetic fields up to 1.3 x 109 G can be kept in the very interior of the Sun by the 
heavier molecular weight there. 

If the magnetic field in the interior is stronger than that given in inequality (19), 
then tangles containing heavier material can move upwards bringing the heavier 
material into the outer regions. But this transport mechanism is not very effective. If 
at the beginning the magnetic buoyancy exceeds the extra weight of the heavier 
material, then while the tangle is rising it is expanding, the magnetic pressure is being 
reduced in such a way that PM/P is getting smaller. After a finite path the tangle will 
come to an equilibrium position where the reduced magnetic buoyancy just balances 
the extra weight of the heavier material (see A5). In this position the tangle will not 
only be in hydrostatic but also in thermal equilibrium with its surroundings. Then 
with the decay time of the magnetic field the blob will sink again. 

3. Nonspherical Instabilities in Circularly Symmetric Stars 

Up to now we have always discussed cases where the star shows some deviation from 
spherical symmetry and where hydrostatic equilibrium and thermal radiative 
equilibrium cannot be fulfilled at the same time. Now we discuss spherically sym­
metric stars where indeed both equilibria can be fulfilled but where small deviations 
from symmetry will grow, giving rise to meridional motion which might mix the 
star. In accordance to the foregoing procedure we assume perturbations which are 
sufficiently slow so that hydrostatic equilibrium is fulfilled and the instability is of 
purely thermal origin. This type of instability is normally called secular instability. 
We do not mean that the fully developed motions which occurs from this type of 
instability must be slow and that hydrostatic equilibrium must always be fulfilled. 
But since we are only discussing the onset of this instability, we can work with 
hydrostatic equilibrium, which simplifies the problem extremely and which also 
gives us the possibility to use some of the formalisms given in the preceding chapters. 

3.1. CARBON FINGERS 

If neutrino losses are taken into account the helium flash of a 1.3 MQ star occurs in a 

(19) <p — > ■ — . 
A* Pa 

r? .. i .. i r» ~ * ~ i — 4.L~ i . . -
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shell (Thomas, 1967). Therefore the carbon is being formed outside the center while 
the central region still contains the helium with the original low carbon content. 
After the helium flash helium burning continues to take place in a shell. Therefore a 
configuration occurs which is given in Figure 5. Consequently, we now discuss the 
case of a layer enriched in helium, which is above a helium layer as indicated in 
Figure 6. If one makes a small perturbation of the interfaces, then a drop of carbon 
which is hanging into the carbon region will, after reestablishing hydrostatic equilib­
rium, be hotter than the helium at the same level and we have the problem of/i-motion 
as discussed in sub-Section 1.2. Therefore the carbon enriched blob will sink even 
further and one has a situation similar to the salt finger experiment. The carbon will 
mix with the helium region below. From Thomas's models one obtains the following 
numerical values (in cgs units): 

HP = 6x 106, J = 24, r* TKH 1.5 
1 dpi 

fidt 
10' 

0.5 
Mr 
M 

m 
0.3 

0.2 

0.1 

""""**+***SSjrsA^ '**M*JMFJ 

He 

0 5000 10000 q 15000 
Age minus 7.474 * 10s (in years) 

Fig. 5. Helium burning in a shell after the helium flash of a star of 1.3 M Q (Thomas, 1967). The 
cloudy regions indicate convection. The hatched region indicates shell burning. The regular variations 
of the shell including the small, short living convective zones just above the shell are due to thermal 
pulses. In the shell a layer is being built up where the molecular weight is higher than in the layers below. 

where d again is determined by Equation (12). After the first second the velocity of 
the carbon enriched blobs will therefore be some 10 c m s - 1 . Elements which start 
later will have higher velocity and will pass the earlier ones. This mixing problem has 
not yet been treated in detail. Thomas (1967) has assumed for his calculations com­
plete mixing of the carbon enriched shell with the interior. 
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Fig. 6. The situation described in Figure 5 now in a simplified picture. The carbon enriched shell is 
secularly unstable and carbon fingers will move downwards. 

3.2. CIRCULATION AND SHELL BURNING 

In a non-rotating star pressure and density are constant on equipotentials, i.e. they 
are constant on spheres and from the equation of state, say, in the case of the perfect 
gas one can conclude that T/fi is also constant on spheres. 

Let us now consider nuclear shell burning. Above the shell is the fuel, below are 
the ashes of higher molecular weight. The transition from fuel to ashes is continuous 
and therefore there is a transition region where molecular weight increases inwards. 
We now consider a slow perturbation of the type as it is indicated in Figure 7. We 
discuss the conditions on a sphere S which is right in the shell. Let A be an area where 
material is moving outwards through this sphere. There, material enriched in ashes, 
with a higher molecular weight, passes through 5, while in the region B where matter is 
moving inwards, material enriched in fuel, with a lower molecular weight, penetrates 
the sphere. Now since T/ji is constant on S, the temperature in the area A is higher 
while in area B the temperature is lower. The effect of chemical composition diminishes 
the nuclear reactions in area A and increases the nuclear reaction rate in area B, but 
the variation of temperature does exactly the opposite. The variation of chemical 
composition tries to damp the circulation while the effect of temperature tries to 
enhance the motion. In order to find out whether or not shell burning is stable against 
this type of perturbation, one has to do a more detailed stability analysis. The first 
attempt in this direction has been done by Mestel (1957), later by Kippenhahn (1967), 
and then by Rosenbluth and Bahcall (1973), and by Richstone (1973). As one would 
already expect from our heuristic consideration, the higher the temperature depen­
dence of nuclear reactions, the more likely the shell is to be unstable. This indeed 
comes from the detailed study of the stability problem, but one also has to take 
into account the effects of radiative transfer. 

Some stability criteria have been given by Kippenhahn (1967). Biermann (1968) 
investigated the stability of shell burning in Red Giants, with the result that the shells 
seem to be stable. Recently Richstone (1973) has studied stellar models near and 
during the onset of helium flash, and he found that all models investigated which were 
spherically stable were also stable with respect to non-spherical perturbations. Some 
flash models were unstable but the ^-folding time of the non-spherical instability 
was longer than the ^-folding time of the spherical instability. It is therefore doubtful 
whether this type of circulation can have any influence on the evolution of the stars. 
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H, He 

Fig. 7. In a spherically symmetric star with shell burning a non-spherical perturbation (black arrows) 
brings ashes into the shell in region A and at the same time T increases while in region B new fuel is 

brought into the shell while the temperature decreases. 

3.3. PLUME MIXING 

Recently Scalo and Ulrich (1973) have postulated a new mixing process which might 

Mr 
M 

0.1620 

0.1610 

0.1600 

0.1595 

3200 3400 3600 4000 4300a 
H4He 

H-He-

fcHe-C-
_l_ j _ 

10000 20000 
—*• t(in years) 

Fig. 8. Thermal pulses in a star of 5 MQ (Weigert, 1966). The cloudy region gives the outer con­
vective zone. The broken lines indicate the two shell sources eating outward. In intervals of about 
4000 years thermal pulses occur forming short-living convective zones (vertical lines above the helium 
burning shell) which approach the hydrogen burning shell. The Scalo-Ulrich plume mixing is sup­
posed to occur as soon as the top of such a convective zone penetrates into the hydrogen burning shell. 
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occur in an evolved star if carbon enriched material is brought up into a hydrogen 
rich outer region. This might be expected after many cycles of thermal pulses 
(Weigert, 1966) as indicated in Figure 8. During such a pulse a carbon enriched 
mixture is brought into the envelope by the convective zone which forms just above 
the helium burning shell during the pulse. 

Due to the irregular convective pattern the material at the bottom of the envelope 
is heated in a non-spherically symmetric way, causing meridional circulation in the 
envelope. This motion would then bring hydrogen into the convective region where 
it would be mixed with the carbon enriched material (Figure 9). Since the CNO-
cycle is controlled by the C12 content the energy production due to the CNO-cycle 
would be strongly enhanced. Under happy circumstances this extra energy could 
be used to enhance the circulation. Scalo and Ulrich give a non-linear model for 
this type of motion and discuss the consequences of this type of mixing on chemical 
abundances. The results look very promising. 

hydrogen burning 
Fig. 9. Scalo-Ulrich plume mixing. Enhanced CNO burning in the convective, 

C12 enriched zone drives circulation. 

One would like to see this model of plume mixing worked out in detail. Maybe 
one should try to learn more of the driving mechanism by a stability analysis of a 
purely spherically symmetric model. In such a model non-spherical perturbations 
similar to those discussed in the preceding section should be applied. But the difference 
between this and the former case would be that mixing occurs at a certain depth. Such 
an approach could possibly help to find whether the excess energy released by the 
CNO-cycle would really be fed into the circulation, driving the motion rather than 
damping it, which in principle is also possible. 

On the other hand model calculations beyond the phases covered by Weigert are 
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necessary in order to find whether the convective zone can really penetrate into the 
hydrogen burning shell. 
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Appendix 

Al. ESTIMATE FOR VEW 

In a system of coordinates in which the matter of the star is at rest the first law of 
thermodynamics gives 

dT dP 
V F = Q£- CPQ ■- + <$-- . (Al.l) 

dr dt 
Here, F is the radiative flux and e the nuclear energy generation, while all the other 
symbols either have their usual meaning or have been explained in the foregoing 
text. If one now makes the transition to a system of coordinates in which the stellar 
matter moves with the velocity v by using the relations 

d a T 
= - + v V , V T = - VVP 

dr dt P 

V = d l n T / d l n F , Vad = (d In 7/d In P)ad = 
CPQT 

(A 1.2) 

one obtains 
V a d - V 

V-F = 5 - a d v-VP + eg. (A1.3) 
V a ( j 

In a slowly rotating star v \P~ vr dP/dr& — vrgg and if we restrict ourselves to regions 
where there are no nuclear reactions we obtain 

Vad - V 
V'F = -r5 ad_ gQvr. (A 1.4) 

^ad 

That in rotating stars there is normally no solution with vr = 0 comes from the fact 
that V • F does not vanish. 

As an estimate which is good for slowly rotating stars one can say (Baker and 
Kippenhahn, 1959, 144-145) 

3Lr 

471? V'F * ; - - £ * , ( A ^ ) 

and from Equation (A 1.4) one obtains 

^EV = \vr\ ~ —; ; — - • (A1.6) 
<HVad- V) Mr 4nrGQ

 V 
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A2. / I - M O T I O N 

If a blob of material in a star is carried with the velocity v either upwards (v>0) or 
downwards (v<0), its temperature is determined by the equation 

dO , v 1 
y , - = ( V - V a d ) — - — 0 (A2.1) 
dt HP TKH 

(Kippenhahn, 1969) where 9 = DT/T and where the time T£H of thermal adjustment 
is given by Equation (7). If the velocity does not change very much during the time 
T^H then a quasi-steady state is achieved: 

0 = - ( V a d - V ) - ^ t * H . (A2.2) 
HP 

For the case of different molecular weights inside and outside the blob, we obtain 
from DP = 0, Dg = 0 

DT D/i 
-5 + cp A- = 0 , (A2.3) 

where S= -(d \ng/d \r\T)P ^ <p = (d \ng/d ln / i ) P T (S,cp=\ for an ideal gas). Con­
sequently, we have 

DT q> Du 
0 = - - - : - = , - • (A2.4) 

Combining Equat ion (A2.2) and (A2.4) yields 

v, = \v\= ■ - - . (A2.5) 
^ ( V a d - V ) T K H /i 

A3. MAGNETIC BUOYANCY 

In order to derive the formula for magnetic buoyancy we again start with Equation 
(A2.2). We consider the size of the blob to be small compared to HP. We may therefore 
assume the gas pressure PGi in the blob and PGe in the surroundings as being constant 
over the blob's diameter. PM is a mean value of the magnetic pressure in the blob. 
We then define a dimensionless quantity ( by 

PGi = {\-QP, PM = CP, (A3.1) 

where P=PGi+PM=PGe ls the total pressure. We assume £ to be small compared 
to unity. 

DPG = PGI -PGe=-PM=-£P (A3.2) 

and from the equation of state 

DQ DPG DT 
= * D -S x (A3.3) 

Q PG T 
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with <x = (d Ing/d \nP)T ( a = l for an ideal gas). Since in hydrostatic equilibrium 
D^ = 0 w e conclude from Equat ion (A3.2), (A3.4) 

DT a P a P M a DPG 0 = —=-~ C = - = . (A3.4) 
T S PG S PG S PG 

And if we combine Equat ion (A2.2) and (A3.4) we find 

0 (Va d ~ V) TKH PG 

A4. SIZE OF THE FASTEST ELEMENTS 

We consider a spherical blob of diameter d with Dfi>0. If we assume pressure equilib­
rium (DP = 0) and thermal adjustment (DT=Q) then DJU/^ = DQ/Q^Q and a buoyancy 
force 

327T , Du 
K=gVDg= ggci3 - - (A4.1) 

3 // 

acts on the blob where V is its volume. It would then move with the Stokes velocity 
vSt defined by 

3nfr}vStd=K, (A4.2) 
w h e r e / i s a dimensionless factor of order 1, while rj is the viscosity. Thus, we obtain 

32 gd2 Dfi 
fst = Q / . ■ - , (A4.3) 

9 / v ft 
where v is the kinematic viscosity v = rj/g. This was without thermal adjustment. With 
thermal adjustment without friction it would move with 

°*.= , m m * ' ( A 4 - 4 ) 
<pHP \Dn\ 

< 5 ( V a d - V ) t * H n 

If we now express v in units of the kinematic radiative viscosity vR 

2 aT4 

vR = ~k—2 (A4.5) 
15 CXQ 

and if we put t>Sl = v^ we obtain for the diameter of the blobs where friction becomes 
important 

45Vad<pf v \ 1 / 4 lvRc 
a d \ / R ( A 4 6 ) 

v 8 < 5 2 ( V a d - V ) v R ; V gr 

Ignoring the factor in front of the square root we obtain the estimate (12). 

A 5 . A MAGNETIC BLOB LIFTING HEAVIER MATERIAL 

We assume a rising magnetic blob with Dfi>0. In this case 
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p>-- (A5.1) 
rGi H 

As the element rises along a certain path PM/PGi changes to (AfAPG/)+d(^W^Gi) 
while Dfi/fj. remains constant, if the element is moving through a chemically homo­
geneous region. Thus, if d(PM/PGi)>0 then the effective buoyancy will become larger 
during the upward motion, while for d(PM/PGi)<0 the upward motion will slow 
down. The variation of PM/PGi during the upward motion is given by 

\rGi/ rGi rGi rGi 

During the upward motion the density in the blob (and in the surroundings) 
changes according to 

dg dPGi dT{ dPGi 
* = a <Ll -S ' = (a - V<5) --■--, (A5.3) 

?Gi Ts PGi 

where V = dln7ydln/> gives the ratio of the relative variations of temperature to 
pressure in the surroundings. While the density is changing during the motion, the 
element expands and the frozen in magnetic field changes. We define a dimensionless 
quantity \j/ by 

D - =<A (A5.4) 

and we obtain 

^ - [ ^ - V * ) - ! ] ^ " . (A5.5) 
*GiJ 'Gi 'G 

During an upward motion dPGi<0 and therefore 

i H a - V ( 5 ) ^ l (A5.6) 

is the condition that the rising element will not slow down. For an ideal gas a = S= 1, 
and we obtain from Equation (A5.6): 

^ , - v * 1 ' (A5'7) 

where on the right we have taken V = 0.25, a value typical for radiative regions in 
stars. 

The simplest case of a magnetic tangle would be a cylinder of radius R with a 
magnetic field parallel to its axis. As it rises Q~\/R2, B~\/R2 and PM~\/R4 and 
therefore PM~g2 or \j/ = 2 from which we can conclude that the upward motion will 
slow down. For a spherical tangle the magnetic pressure falls off with falling density 
even faster, \j/ is therefore even larger than 2 and the rising tangle is decelerated even 
faster. 
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