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When a partially miscible binary mixture is quenched below its critical temperature, it
transitions from its single-phase to a two-phase region, undergoing phase separation. The
processes of formation and coalescence of droplets are driven by diffusive and convective
phenomena, taking place isotropically in the system. The application of an external force
field, which exerts a different contribution on the two species, breaks the symmetry of
phase separation, leading to the segregation of two equilibrated phases separated by a
single interface. This study investigates the dynamics of phase segregation under an
external force. The effects of various force magnitudes, captured by the Bond number,
in both high- and low-viscosity mixtures, distinguished by different fluidity numbers,
are quantified via numerical simulations by using the phase field model. The intricate
dynamics of formation, floating and coalescence of droplets towards complete segregation
are described along with the quantification of the segregation time, revealing different
patterns for high and low Bond numbers. Results show that in none of the cases, formation
and floating can be regarded as strictly serial processes. A universal scaling between
segregation time, Bond number, fluidity number and domain size is not possible, with
a power-law dependence emerging only under the diffusion-dominated regime.

Key words: suspensions, breakup/coalescence, Marangoni convection

1. Introduction

The temperature-composition phase diagram of a partially miscible liquid mixture at
a given pressure exhibits two distinct regions: a stable sector where the mixture is
homogeneous, indicating complete miscibility of the liquids, and a two-phase region
where two homogeneous phases coexist. These regions are separated by the equilibrium
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curve, obtained through the minimization of the mixture’s free energy. When a partially
miscible binary mixture is brought from the single-phase to the two-phase region by
altering its composition and/or temperature, a phase separation process occurs. This
process involves the formation of droplets of the minority phase, which subsequently
grow by diffusion and coalescence. Close to the equilibrium curve within the two-phase
region of the phase diagram, the mixture exists in a metastable state, necessitating a
finite activation energy to initiate the phase separation process. Conversely, far from the
equilibrium curve, the mixture becomes unstable, leading to phase separation via spinodal
decomposition (Gunton, San Miguel & Sahni 1983; Gunton 1984; Binder 2005). This
process entails the growth of fluctuations, even infinitesimal ones, exceeding a critical
wavelength.

The growth of droplets of the minority phase in the context of phase separation is
due to the relative movement of the two phases, induced by diffusion and convection.
Diffusion arises from molecular velocity fluctuations at equilibrium, wherein molecules
undergo incoherent, random motion without any specific preferential direction. In contrast,
convection is a collective phenomenon that occurs over larger distances and is influenced
by both outer and inner force fields. The latter is described by the diffuse interface model
(also known as the phase field model) (Hohenberg & Halperin 1977; Anderson, McFadden
& Wheeler 1998; Lowengrub & Truskinovsky 1998; Lamorgese, Mauri & Sagis 2017;
Bertei, Chueh & Mauri 2021) as the gradient of a non-equilibrium chemical potential.
Under equilibrium conditions, this, so-called, Korteweg force reduces to the Marangoni
force (Jasnow & Viñals 1996; Jacqmin 2000), allowing the phase field approach to be
viewed as a generalized model based on surface tension (McGuire et al. 1996; Martula
et al. 2000), whereby the force acting on droplets linearly increases with their interface
area. In the absence of an outer force field, both diffusion and convection occur in
random directions, resulting in the formation of isotropic morphological structures. The
ratio between convection and diffusion magnitudes is captured by the fluidity number,
which distinguishes low viscous mixtures from high viscous ones. Notably, when diffusion
dominates, as in the case of highly viscous systems or shallow temperature quenches, the
average radius of the drops grows over time following a t1/3 (Siggia 1979; deGennes 1980;
Lifshitz & Pitaevskii 1984) or more generalized power law (Binder & Stauffer 1974; Binder
1977; Midya & Das 2017). Conversely, when convection drives the process, as seen in
low-viscosity liquid mixtures or deep temperature quenches, the mean droplet radius grows
linearly with time (Siggia 1979; Tanaka 1996), in agreement with numerous experimental
results (Chou & Goldburg 1979; Wong & Knobler 1981; Guenoun et al. 1987; Cumming
et al. 1992; White & Wiltzius 1995; Gupta, Mauri & Shinnar 1999; Mauri et al. 2003;
Califano & Mauri 2004).

The force exerted on droplets by an outer force field exhibits a linear growth with respect
to the droplet volume, in contrast to the force resulting from the inner force field, which
depends on the droplet surface area. The ratio between these two forces is referred to as the
Bond number, which exhibits a linear dependence on the droplet radius. Consequently, for
small droplets characterized by small Bond numbers, the outer force can be disregarded,
resulting in isotropic morphological structures. As the droplets grow, they eventually reach
a critical size corresponding to an O(1) Bond number, known as the capillary length. At
this point, the influence of the outer force field becomes significant, causing a breakdown
in the process symmetry. Recent research has demonstrated that when the mixture is
initially unstable, phase separation occurs rapidly through spinodal decomposition, leading
to a complete segregation of the two phases. In contrast, for initially metastable mixtures,
the external force primarily induces species stratification, followed by a much slower
nucleation process (Bertei & Mauri 2022).
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This study focuses on examining the phase separation process and its progression
towards complete segregation. Numerical simulations are performed for different
Bond and fluidity numbers, thus investigating the dynamics of segregation for both
diffusion-dominated and convection-dominated regimes at different extents of the external
force field. After presenting the model equations in § 2, numerical results are first discussed
qualitatively in § 3.1, highlighting the principal phenomena of formation, coalescence and
progression towards thermodynamic equilibrium with and without an external force field.
A quantitative analysis of segregation, formation and floating times is then presented
in § 3.2, revealing that phase segregation cannot be strictly interpreted as a series of
elementary phenomena, although some patterns for the segregation time as a function
of Bond number emerge in the diffusion-dominated regime.

2. Physical and mathematical model descriptions

The dynamic behaviour of a regular binary mixture under the influence of an external
force field has been studied in previous works (Bertei & Mauri 2022; Chueh, Mauri &
Bertei 2022) for Mauri’s non-equilibrium multiphase flow group. The physical model is
developed based on the principles of mass conservation, momentum conservation and
conservation of chemical species. The model assumes isothermal conditions and makes
the following assumptions: (i) constant density, viscosity and diffusion coefficient that
are independent of composition; and (ii) a regular and symmetric mixture, whose excess
enthalpy depends on the Margules parameter Ψ (Bertei et al. 2021), where the two species
possess equal molecular weights. This assumption is not overly restrictive and serves as
a simplification to reduce the number of parameters. It is worth noting that for polymeric
mixtures with high molecular weight, the average molecular weight can be used. As a
result, the governing equations can be simplified as follows:

∇ · v = 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
+ ∇p = η∇2v + ρf , (2.2)

ρ

(
∂φ

∂t
+ v · ∇φ

)
+ ∇ · Jφ = 0, (2.3)

where ρ is the density of the mixture and η is its viscosity, while v, p and φ are respectively
the mass-averaged velocity, the pressure and the mass fraction of species 1, which are
functions of position, r, and time, t. Furthermore, f and Jφ are the force per unit mass and
the diffusive flux of species 1, respectively. In the present study, f is the sum of the outer
(gravitational or electric) force, f (ext), and the inner Korteweg non-equilibrium force, f (K)
(Bertei & Mauri 2022):

ρf = ρ
(

f (K) + f (ext)
)

= −ρφ∇(ψ(K)12 + ψ
(ext)
12 ) = −ρφ∇ψ(cons)

12 , (2.4)

where ψ(K)12 = −R′Ta2∇2φ is the Korteweg potential difference and ψ(ext)
12 = −χ12bz is

the external potential difference. Here, R′ = R/Mw (with R denoting the universal gas
constant and Mw the molecular weight), T is the temperature (that here is assumed
to be uniform), a is a characteristic length (which is proportional to the surface
tension at equilibrium), b = |b| is the external force field magnitude, acting along the
z-direction, and χ12 is the susceptibility difference, indicating how differently the two
components of the mixture respond to the applied field. Note that a total energy potential
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ψ
(cons)
12 = ψ

(K)
12 + ψ

(ext)
12 can be defined as the sum of all the conservative body forces

(namely, Korteweg and external forces).
According to non-equilibrium thermodynamics, the diffusive flux, Jφ , can be written as

(Bertei & Mauri 2022)

Jφ = −D∗∇
(
μ12 + ψ

(cons)
12

)
, (2.5)

where μ12 is the thermodynamic chemical potential (which can be derived from the
free energy of the mixture), while D* is the effective diffusivity. Imposing that for ideal
mixtures (2.5) must reduce to Fick’s law, then we obtain D∗ = (ρD/R′T)φ(1 − φ), where
D is a constant diffusivity.

It is important to mention that the energy balance equation has been omitted in this
analysis. This decision is based on the assumption that, similar to liquids, heat propagates
significantly faster than mass. Consequently, it is assumed that the temperature of the
mixture remains constant and uniform, mimicking an instantaneous quench.

After substituting the expressions for the non-equilibrium Korteweg force, the external
force and the diffusion flux into the governing equations (2.1)–(2.3), we can transform
them into a dimensionless form using the following scaling:

x̃ = x
â
, t̃ = t

â2
/D
, ṽ = v

D/â
, p̃ = p

ηD/â2 . (2.6a–d)

Here, â stands for the characteristic length, â2/D denotes a characteristic diffusion time,
D/â is a characteristic diffusion velocity, while ηD/â2 represents a scaling factor for
pressure. Consequently, the governing equations that describe the conservation of mass,
momentum and chemical species are as follows:

∇̃ · ṽ = 0, (2.7)

N−1
Sc

(
∂ ṽ

∂ t̃
+ ṽ · ∇̃ṽ

)
+ ∇̃p̃ = ∇̃2ṽ + Nαφ∇̃(∇̃2φ + NBoz̃), (2.8)

∂φ

∂ t̃
+ ∇̃ · (ṽφ + J̃φ) = 0;

J̃φ = −
[
(1 − 2Ψφ(1 − φ))∇̃φ − Ψ

2
φ(1 − φ)∇̃(∇̃2

φ + NBoz̃)
]
, (2.9)

where the following dimensionless parameters are defined: the Schmidt number, the
fluidity number and the Bond (or Eotvos) number:

NSc = η

ρD
, Nα = ρR′Tcâ2

ηD
, NBo = χ12bâ

R′Tc
. (2.10a–c)

The Schmidt number, NSc, represents the ratio of momentum diffusivity (η/ρ) to material
diffusivity (D). Note that in (2.6), NSc assumes a role similar to that of the inverse Reynolds
number, so that for liquid mixtures, where NSc � 1, the inertial term in (2.8) is negligible.
In this work, as we consider liquid mixtures, we assume NSc = 103. The fluidity number,
referred to as Nα , can be interpreted as an intrinsic Péclet number. It provides insight
into whether the process is predominantly governed by mass diffusion (Nα ≤ 1) or by
convection (Nα � 1). Lastly, the Bond (or Eotvos) number, denoted as NBo, expresses the
ratio between external and capillary forces. The representative external force is given by
ρχ12bâ3, while the reference capillary force is σ̂ â, where σ̂ represents a reference surface
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1z ∙ ∇̃φ = 0

1z ∙ J̃φ = 0

L̃

ṽx = ṽz = 0

ṽx = ṽz = 0

ṽ  = 0

p̃ ′ = 0

z̃

x̃

H̃

1z ∙ ∇̃φ = 0

1z ∙ J̃φ = 0

Figure 1. Initial and boundary conditions considered in the present study.

tension equal to σ̂ = ρR′Tcâ (Chueh et al. 2022), where Tc is the critical temperature of
the mixture. Both forces are expressed relative to the intrinsic characteristic length, â. The
Bond number can also be viewed as the ratio between the characteristic interface length â
and the capillary length, lc = R′Tc/χ12b.

The system of (2.7)–(2.9) is solved numerically in a two-dimensional domain
Ω = (x̃, z̃), which represents a rectangular region with lateral periodic boundaries with
two dimensionless side lengths of H̃ and L̃, as depicted in figure 1. The initial conditions of
the mixture are characterized by a state of rest, indicated by ṽ = 0, and uniform pressure,
represented by p̃ = 0.

An initial mass fraction lying within the spinodal unstable region (Sandler 2006) is set to
φ0 = 0.4, accompanied by a superimposed random white noise ε with statistical properties
〈δφ〉 = 0 and 〈δφ2〉1/2 = 10−2 at t = 0. These conditions indicate an abrupt and uniform
quenching of the mixture below its critical temperature, with a Margules parameter � set
equal to 2.62.

3. Results and discussion

In § 3.1, we explore the detailed complexities related to representing phase transition
patterns, specifically focusing on the changes in NBo and Nα at a given NSc = 103. Here,
Nα is the ratio between convection- and diffusion-driven material fluxes, and therefore the
process is convection driven when Nα � 1, while it is diffusion driven when Nα < 1. In
fact, in the absence of external forces, it has been shown (Vladimirova, Malagoli & Mauri
1999) that the mean droplet size, d, grows linearly with time, i.e. d ∝ t when Nα � 1, while
d ∝ t1/3 when Nα < 1, in agreement with experimental results (Gupta et al. 1999; Mauri

997 A29-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.841


C.-C. Chueh, R. Mauri and A. Bertei
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t̃  = 96 000 t̃  = 1.17×105 t̃  = 1.38×105 t̃  = 1.58×105 t̃  = 1.88×105
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0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2. Time evolution of phase segregation for Nα = 0.01 and NBo = 10−3 in a rectangular domain with
two dimensionless side lengths of H̃ = 200 and L̃ = 100.

et al. 2003). Conversely, NBo plays a crucial role in determining the strength of an external
force field, which is powerful enough to cause upward movement of the droplets along
the z-axis. In § 3.2, correlations for phase separation and phase segregation as functions
of domain height, NBo and Nα , are presented. It is important to note that simulations were
carried out using the same code already validated by Chueh, Bertei & Mauri (2020) and
Bertei & Mauri (2022).

3.1. Effect of NBo and Nα on phase segregation
Figure 2 illustrates a scenario where both Nα and NBo are notably small, namely Nα = 0.01
and NBo = 10−3. Given the asymmetric initial composition φ0 = 0.4, phase separation
proceeds via the formation of droplets of the minority phase. We see that drops form
and start growing due to the coalescence induced by diffusion; However, the convection
induced by external forces is initially very weak, since the drops are much smaller than
the capillary length lc, where external forces are balanced by surface forces (i.e. the
corresponding macroscopic Bond number is O(1)). In the last part of the process, as
the drops increase in size, the effect of the external force starts to become relevant, thus
facilitating droplet growth through convection-induced coalescence. Note that, despite the

997 A29-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.841


Phase segregation of a partially miscible binary mixture

NBo = 0

N
o
 f

o
rc

e
W

it
h
 f

o
rc

e

t̃  = 0 t̃  = 100 t̃  = 300 t̃  = 600 t̃  = 900 t̃  = 3000 t̃  = 25000 t̃  = 1.88×106
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NBo = 10–4

NBo = 10–3

Figure 3. Time evolution of phase segregation for Nα = 0.01 and NBo, ranging from 0 to 10−3, in a square
domain with the dimensionless side length of H̃ = L̃ = 100.

seemingly small value of NBo, the external force always plays a significant role, since at
the end, drops will always reach the capillary length size and start moving upward; while
in the absence of external forces, this floating process does not take place. At the end, we
observe the formation of an upper rich phase (in red) with a horizontal interface that moves
downward, until complete phase segregation is reached. It is interesting to note that, due to
a 90° contact angle, some droplets occasionally remain attached to both the bottom and the
upper walls. However, the magnitude of the Bond number, NBo = 10−3, exceeds a critical
threshold identified in previous works (Chueh et al. 2022), corresponding to the point at
which droplets detach from the confining walls. Furthermore, the observed behaviour and
dynamics align notably well with the patterns depicted in figure 4 of Califano, Mauri &
Shinnar (2005), further corroborating the agreement between the experimental findings
and the current study.

It is particularly intriguing to conduct a comparative analysis of the phase separation
patterns in the presence and absence of an external force field, as visually demonstrated
in figure 3. In the absence of any external force (as depicted in the first row of figure 3),
the growth of the droplets is primarily influenced by the effect of the internal force field,
which is typically proportional to the area of the interface. As we observe the impact
of increasing values of NBo, ranging from 10−5 to 10−3, we see that the external force
field, whose effect is proportional to the volume of the drops and grows linearly with
their size, becomes increasingly influential. Consequently, the acceleration in the drop
formation process becomes more pronounced (notice the different dimensionless times
above each panel), thereby expediting the attainment of complete segregation within the
system.

A noteworthy transformation is shown in figure 4, as the value of Nα is set to 100,
ushering in a distinct dominance of convection within the process at hand. As time
progresses, the droplets exhibit a tendency to either emerge or coalesce with one another
due to the vigorous influence of convection in a nearly ballistic motion. Consequently,
the phenomenon of diffusion-induced growth, observed in previous instances, becomes
irrelevant under such circumstances. In a parallel development, when NBo < 10−4, the red
drops remain attached to the bottom wall through the capillary force, and the external force
is not strong enough to detach them. However, for larger NBo, the rich red phase embarks
on an upward trajectory, progressively forming an interface that moves in a downward
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Figure 4. Time evolution of phase segregation for Nα = 100 and NBo, ranging from 0 to 10−3, in a square
domain with the dimensionless side length of H̃ = L̃ = 100.
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Figure 5. Characteristic droplet size as a function of dimensionless time for (a) Nα = 0.01 and (b) Nα = 100
for a selection of Bond numbers corresponding to figures 3 and 4.

direction over time. Overall, the dynamics of the process becomes much faster than in the
absence of convection (compare the dimensionless times above each panel in figures 3
and 4).

A comparative analysis of the droplet size evolution is shown in figure 5. The figure
reports the characteristic droplet size (Bertei, Tellini & Mauri 2019; Chueh, Bertei
& Mauri 2020) along the horizontal (d̃x) and vertical direction (d̃z) as a function of
dimensionless time for a selection of different Bond numbers in the two regimes of
fluidity numbers, corresponding to the cases represented in figures 3 and 4. Figure 5(a),
corresponding to Nα = 0.01 and NBo = 10−3, shows that droplets grow according to a
scaling d̃ ∝ t̃1/3 as long as they are sufficiently small to be unaffected by the external force
field; then, as the droplet size increases, the external force adds a coherent vertical motion
that causes coalescence in both directions and speeds up the droplet growth. Nevertheless,
the convection-dominated regime, characterized by d̃ ∝ t̃, is not reached; this is consistent
with the qualitative description provided at the beginning of this section. For Nα = 100,
reported in figure 5(b), in addition to the irregular spikes that correspond to coalescence
events, there is a faster growth along the vertical direction as the Bond number increases.
The growth rate never scales as d̃ ∝ t̃1/3 as expected, because the dynamics is dominated
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Figure 6. Time evolution of separation depth contour corresponding to figure 4.

by convection for Nα = 100, but a clear and sustained linear regime cannot be claimed
either as NBo varies. As also stressed in the next section, identifying general laws for the
convection-driven regime is challenging and requires larger computational domains and
statistical analysis which are beyond the scope of the present study.

Coming back to the qualitative description of phenomena, it is important to acknowledge
that a mixture may initially attain a state of local equilibrium, wherein the compositions
of the droplets and the continuous phase align with the equilibrium compositions of the
respective phases. However, the complete segregation of the two phases occurs much later
in the process. Consequently, we introduce the concept of separation depth to measure the
extent to which the system deviates from local equilibrium on a 0–1 scale. The separation
depth, S, was defined by Vladimirova, Malagoli & Mauri (1999) as

S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ − φ0

φ
(B )
e − φ0

for φ > φ0

φ − φ0

φ
(A)
e − φ0

for φ ≤ φ0

, (3.1)

where φ(A)e and φ(B)e denote the equilibrium compositions of the poor (blue) and rich
(red) phases, equal to 0.12 and 0.88, respectively, for the conditions simulated in this
study. For Nα = 100, the separation depth maps shown in figure 6 provide a vivid
portrayal of the droplets quickly achieving local equilibrium, while the encompassing
continuum phase situated outside lingers in a state of disequilibrium. The diffuse interface
separating the two phases inherently shows S< 1 since the mass fraction varies smoothly
from inside to outside a droplet according to the phase field approach. The discrepancy
between internal droplet equilibration versus external disequilibrium of the continuum
phase, along with the interfacial composition gradient (Kumaran 1998, 2000), serve
as crucial factors for the rapid dynamics observed within the system. Although barely
noticeable, the external force induces a little variation in composition along the vertical
direction in both the continuum and droplet phases, which corresponds to the stratification
phenomenon discussed elsewhere (Bertei & Mauri 2022). In any case, it is clear that in
a convection-dominated regime, droplets equilibrate quickly after emergence and initial
growth, while further coalescence induced by the external force field takes place at a later
stage when the droplets are locally at thermodynamic equilibrium.
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Figure 7. Time evolution of phase segregation for Nα = 100 and NBo = 10−1, in a square domain with the
dimensionless side length of H̃ = L̃ = 100.

In figure 7, when NBo = 10−1 and Nα = 100, the strong convection induced by the
external force field causes a stratification of the two species, with the formation of two
interfaces. Therefore, during the process of phase separation, φ ≈ φ

(B)
e at the top and

φ ≈ φ
(A)
e at the bottom, while between the two interfaces, a random convective motion

takes place (with no local equilibrium), with a rapid process of spinodal decomposition.
Then, the two interfaces gradually move towards each other until they merge and a
complete phase segregation is reached. The phase separation process described in figure 7
corresponds to the experimental data by Califano & Mauri (2018).

3.2. Quantitative analysis of segregation time
In this section, we present a quantitative analysis of the processes that were qualitatively
described in the previous section. In particular, so far, we loosely defined segregation as the
process that leads to a complete separation of the two equilibrated phases, A and B, under
an external force. Being more specific, we mark the segregation time, t̃segr, as the time at
which there is, within the domain, only one interface that separates the two equilibrated
phases. Thus, t̃segr characterizes the segregation process at the macroscale, by identifying
the moment when the system transitions from multiple interfaces to a single interface.
Arguably, the segregation process may be decoupled into two phenomena: (i) formation,
which is the process of emergence of droplets until their internal composition achieves
thermodynamic equilibrium; and (ii) floating, which refers to the rising and coalescence of
(equilibrated) droplets under the external force field (obviously, we would call this process
sedimentation if droplets moved downwards, which depends only on the orientation of the
external force field). Each of these two processes takes place in a finite time that we call
t̃form and t̃floa for formation and floating, respectively.
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Figure 8. Change in average separation depth over dimensionless time for different dimensionless domain
heights for (a) Nα = 100, (b) Nα = 0.01, given NBo = 10−3.

For large Bond numbers, we cannot refer to independent formation and floating as
distinct processes, as shown in figure 7 for NBo = 10−1, where no droplets form and two
well-separated regions grow from the top and the bottom at the expense of the central
mixed region. For smaller Bond numbers, instead, we may speculate that formation and
floating take place in series. In fact, while phase separation initially occurs on a small
scale and does not depend on the presence of an external force, corresponding to the
formation stage, the rise and progressive coalescence of droplets is mainly dictated by the
external force field during the floating stage, eventually leading to complete segregation
of the phases. We may also speculate that formation, being a process occurring locally
and dictated by how far the system is from equilibrium, is independent of the domain
dimension, namely the domain height H̃, so that any dependence of the segregation time
from the domain size has to be attributed to the floating time. Thus, it seems reasonable
to assume that the segregation time can be obtained as the sum of the formation time and
floating time, that is,

t̃segr(H̃) = t̃form + t̃floa(H̃), (3.2)

with the brackets denoting the dependence of a term from the domain height. This ansatz
is critically investigated in this section by addressing first the formation time and then the
floating time.

Since the formation refers to the emergence of droplets and their thermodynamic
equilibration, it seems natural to use the separation depth, S, as a useful metric to mark
the formation time. According to its definition in (3.1), the separation depth is a scalar
quantity that measures the deviation from equilibrium locally in each point of the domain.
To obtain a global descriptor of the formation within the domain, we adopt the integral
average of the separation depth, 〈S〉 = (1/H̃L̃)

∫
Ω

S dx̃ dz̃. Figure 8 reports the average
separation depth as a function of dimensionless time for different domain heights for two
representative fluidity numbers at NBo = 10−3. The average separation depth increases
with time in every case indicating that the system evolves towards equilibrium, albeit
more slowly for Nα = 0.01 since system evolution is ruled by diffusion. Notably, 〈S〉 never
becomes equal to one in a finite system because, even though S = 1 within the bulk of
the phases, the diffuse interface separating the two phases is characterized by a gradient
of composition φ and, as such, by S< 1 (see figure 6). Nonetheless, 〈S〉 approaches an
asymptotic maximum value at the end of the segregation. Figure 8 also shows that 〈S〉 is
basically independent of the domain height H̃ since, for each value of Nα , all the curves
tend to collapse one onto the others. This indicates that 〈S〉 contains information about the
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Figure 9. Segregation time as a function of dimensionless domain heights for (a) Nα = 100, (b) Nα = 0.01,
given NBo = 10−3. The dashed lines denote the best linear fit of data according to the least square method.

system pathway towards equilibrium without being affected by the domain size, which is
exactly what the formation process and the formation time aim to mark, satisfying part of
the ansatz in (3.2). As such, 〈S〉 is adopted to identify the formation time t̃form.

Despite setting a threshold value of 〈S〉 contains a certain degree of arbitrariness, an
analysis of figure 6 at Nα = 100 reveals that droplets are internally equilibrated (i.e. S = 1)
at t̃ ≈ 260, which corresponds to 〈S〉 = 0.8 in figure 8(a). Thus, we identify the formation
time t̃form as the time at which 〈S〉 equals 0.8, which is t̃form ≈ 260 for Nα = 100. Clearly, at
the formation time, 〈S〉 has not yet approached its asymptotic maximum value because the
continuum blue phase is not equilibrated yet at φ(A)e = 0.12, as denoted by the colourmap
in the last row of figure 6 at NBo = 10−3. By using the same threshold 〈S〉 = 0.8 in
figure 8(b), we find t̃form ≈ 2000 for Nα = 0.01, independent of the domain height,
which consistently agrees with the internal equilibration of the droplets in figure 3 for
NBo = 10−3 by judging their colour which is qualitatively similar to that of the droplets at
t̃ ≈ 260 in figure 3 at Nα = 100. Therefore, marking t̃form, as the time at which 〈S〉 = 0.8,
appears to be a sensible choice to identify the formation process for any value of Nα
investigated, while satisfying the requirement of t̃form being independent of H̃.

Given these premises, the analysis shifts to the identification of the floating time and its
additivity to the formation time to give the segregation time, which is a means to test the
validity of (3.2). For the same set of simulations discussed in figure 8, figure 9 reports the
segregation time t̃segr as a function of the dimensionless domain height H̃ for Nα = 100
and Nα = 0.01 at NBo = 10−3. If formation and floating really take place in series
according to (3.2), with t̃form being independent of the domain height as shown above
(see figure 8), any dependence of the segregation time with H̃ will scale directly to the
floating time t̃floa, with t̃form representing an offset of t̃segr versus H̃. The results in figure 9
indicate that, for both high and low fluidity numbers, which denote convection-driven and
diffusion-driven phase separation and segregation, the segregation time increases with the
domain height following a fairly linear trend, indicated by the dashed lines. However, in
figure 9(a), the offset, which should correspond to t̃form, is equal to 1200, which is much
larger than t̃form ≈ 260 identified above at Nα = 100 from the analysis of the separation
depth at the threshold 〈S〉 = 0.8. By looking at the last row in figure 4, it is clear that
at t̃ = 1200, the formation is completed and the floating has already started. However,
figure 9(b) indicates that the extrapolation of the linear trend gives a negative offset for
Nα = 0.01, which would mean a negative t̃form, which has no physical meaning.
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Figure 10. Segregation time as a function of Bond number for different values of Nα , given the
dimensionless height H̃ = 100.

Hence, both these observations indicate that formation and floating are not strictly
processes occurring in series and the latter may not scale strictly linearly with the domain
height, which is the scaling one would expect in case the external force would pull the
droplets at a constant terminal velocity. More importantly, the analysis of data in figure 9
disproves (3.2), meaning that the segregation time cannot be decoupled as a simple sum of
formation and floating times, neither for large Bond numbers for which (3.2) is obviously
inapplicable (see figure 7) nor for relatively small Bond numbers (namely, NBo = 10−3

as shown here). We conclude that formation and floating take place partly in series and
partly in parallel in a convoluted manner. This result is independent from the few arbitrary
choices made above, such as marking t̃form at 〈S〉 = 0.8, as any other threshold value would
not make (3.2) to hold.

Having assessed that, in general, the segregation time cannot be decoupled as a sum of
formation and floating times, figure 10 illustrates the relationship between t̃segr and Bond
number for various values of Nα at a given domain height. Numerical results show that t̃segr
decreases as the Bond number and fluidity number increase, due to the larger pull of the
external force field promoting floating in the first case and the higher mobility of droplets
in a convective regime in the second case. Nonetheless, universal quantitative trends do
not clearly emerge from figure 10. For Nα ≤ 0.1, a linear dependence with a slope of
ca. 0.9 in the log-log plot appears, so that the segregation time follows a power scaling
with Bond number as t̃segr ≈ N−0.9

Bo , being independent of Nα the more NBo approaches
10−1. However, for Nα ≥ 1, such a power-law scaling does not hold anymore, probably
due to an increased influence of convection. In fact, as discussed in § 3.1, the dynamics
of phase segregation in the presence of an external force becomes very rich and complex
in the convection-dominated regime, with arguably synergic nonlinear phenomena that
contribute to phase segregation. The reproducibility and consistency observed across
different simulations provide confidence in the validity (or absence thereof) of the scaling,
emphasizing the importance of considering the interplay between convection, diffusion,
external force and other factors on phase segregation dynamics.

4. Conclusions

The phase field approach was applied in this work to conduct numerical simulations of
phase segregation in a partially miscible binary mixture subjected to an external force
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field. The presence of an external force breaks the symmetry of phase separation: although
the formation of droplets is rather unaffected by the force field, the following coalescence
process is no longer isotropic under an external force, which causes the segregation of
equilibrated phases separated by a single interface. The dynamics of phase segregation is
orders of magnitude slower for fluidity numbers smaller than one (i.e. in diffusion regime),
while system evolution becomes much faster and richer in morphological patterns when
convection dominates for fluidity number of the order of 100. In all the cases, an increase in
Bond number reduces the segregation time. For small Bond numbers (e.g. NBo = 10−3),
it is shown that the formation process is independent of the domain height for all the
fluidity numbers. Nonetheless, the segregation time increases with the domain height. In
any case, formation and floating cannot be regarded as strictly serial processes, so that the
segregation time cannot be decoupled as a simple sum of a formation and a floating time.
This is also corroborated in the extreme condition of high Bond numbers (NBo = 10−1),
when droplet formation does not occur and phase segregation takes place via stratification
of equilibrated phases at the boundaries of the domain with two interfaces that move one
towards the other while the central mixed region shrinks. A universal scaling between
segregation time, Bond number and fluidity number is not possible, although a power-law
dependence t̃segr ≈ N−0.9

Bo is attained for Nα ≤ 0.1.
The study and its results promote a deeper and mechanistic understanding of phase

segregation, fostering relevant applications where an external force field is imposed to
expedite the phase separation process. Future studies will be dedicated to investigating the
effects of oscillating force fields on phase separation dynamics.

Supplemental movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.841.
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Nomenclature.

a characteristic length of the diffuse interface [m]
b external field magnitude [N kg−1]
dx characteristic droplet size along direction x [m]
dz characteristic droplet size along direction z [m]
D composition-independent diffusivity [m2 s−1]
f conservative force per unit mass [N kg−1]
H domain height [m]
L domain length [m]
lc capillary length [m]
Jφ diffusive mass flux of species 1 [kg (m2 s)−1]
NBo Bond (or Eotvos) number [−]
NSc Schmidt number [−]
Nα fluidity number [−]
p pressure [Pa]
R′ ideal gas constant per unit mass [J (kg K)−1]
S separation depth [−]
t time [s]
T absolute temperature [K]
Tc critical temperature of the mixture [K]
v mass-average fluid velocity [m s−1]
x x coordinate [m]
x vector of spatial coordinate [m]
z z coordinate [m]
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Greek letters

ε random white noise [−]
η mixture dynamic viscosity [kg (m s)−1]
μ12 chemical potential difference [J kg−1]
ρ mixture density [kg m−3]
φ mass fraction of species 1 [−]
χ12 susceptibility difference [−]
Ψ Margules coefficient [−]
ψ12 potential energy difference [J kg−1]
� computational domain [−]

Superscripts

∧ characteristic value of temperature and composition-dependent quantities
∼ physical quantity recast in dimensionless form
A continuum (remainder) phase
B droplet phase
cons conservative
ext external
K Korteweg

Subscripts

e equilibrium
i species i
floa floating
form formation
segr segregation
0 initial

Author ORCIDs.
Chih-Che Chueh https://orcid.org/0000-0001-7065-6900;
Roberto Mauri https://orcid.org/0000-0001-9594-0035;
Antonio Bertei https://orcid.org/0000-0002-3202-6825.

REFERENCES

ANDERSON, D.M., MCFADDEN, G.B. & WHEELER, A.A. 1998 Diffuse-interface methods in fluid
mechanics. Annu. Rev. Fluid Mech. 30, 139–165.

BERTEI, A., CHUEH, C.-C. & MAURI, R. 2021 Dynamics of phase separation of sheared binary mixtures
after a nonisothermal quenching. Phys. Rev. Fluids 6, 094302.

BERTEI, A. & MAURI, R. 2022 Phase separation of a binary mixture with an external force field. Chem. Engng
Sci. 263, 118128.

BERTEI, A., TELLINI, B. & MAURI, R. 2019 Dynamic transition of dendrite orientation in the diffusive
spinodal decomposition of binary mixtures under a thermal gradient. Chem. Engng Sci. 203, 450–463.

BINDER, K. 1977 Theory for the dynamics of “clusters.” II. Critical diffusion in binary systems and the kinetics
of phase separation. Phys. Rev. B 15, 4425–4447.

BINDER, K. 2005 Spinodal Decomposition, in Systems Far from Equilibrium, pp. 76–90. Springer.
BINDER, K. & STAUFFER, D. 1974 Theory for the slowing down of the relaxation and spinodal decomposition

of binary mixtures. Phys. Rev. Lett. 33, 1006–1009.
CALIFANO, F. & MAURI, R. 2004 Drop size evolution during the phase separation of liquid mixtures. Ind.

Engng Chem. Res. 43, 349–353.
CALIFANO, F. & MAURI, R. 2018 Retardation of the phase segregation of liquid mixtures with a critical point

of miscibility. AIChE J. 64, 4047–4052.
CALIFANO, F., MAURI, R. & SHINNAR, R. 2005 Large-scale, unidirectional convection during phase

separation of a density-matched liquid mixture. Phys. Fluids 17, 94109.
CHOU, Y.C. & GOLDBURG, W.I. 1979 Phase separation and coalescence in critically quenched

isobutyric-acid—water and 2,6-Lutidine—water mixtures. Phys. Rev. A 20, 2105–2113.

997 A29-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-7065-6900
https://orcid.org/0000-0001-7065-6900
https://orcid.org/0000-0001-9594-0035
https://orcid.org/0000-0001-9594-0035
https://orcid.org/0000-0002-3202-6825
https://orcid.org/0000-0002-3202-6825
https://doi.org/10.1017/jfm.2024.841


C.-C. Chueh, R. Mauri and A. Bertei

CHUEH, C.-C., BERTEI, A. & MAURI, R. 2020 Dynamics of phase separation of sheared inertialess binary
mixtures. Phys. Fluids 32, 023307.

CHUEH, C.-C., MAURI, R. & BERTEI, A. 2022 The detachment of a wall-bound pendant drop suspended in
a sheared fluid and subjected to an external force field. Phys. Fluids 34, 073306.

CUMMING, A., WILTZIUS, P., BATES, F.S. & ROSEDALE, J.H. 1992 Light-scattering experiments on
phase-separation dynamics in binary fluid mixtures. Phys. Rev. A 45, 885–897.

DEGENNES, P.G. 1980 Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem.
Phys. 72, 4756–4763.

GUENOUN, P., GASTAUD, R., PERROT, F. & BEYSENS, D. 1987 Spinodal decomposition patterns in
an isodensity critical binary fluid: direct-visualization and light-scattering analyses. Phys. Rev. A 36,
4876–4890.

GUNTON, J.D. 1984 The dynamics of random interfaces in phase transitions. J. Stat. Phys. 34, 1019–1037.
GUNTON, J.D., SAN MIGUEL, M. & SAHNI, P.S. 1983 The dynamics of first order phase transitions. In Phase

Transition and Critical Phenomena (ed. C. Domb & J.L. Lebowitz), vol. 8. Academic Press.
GUPTA, R., MAURI, R. & SHINNAR, R. 1999 Phase separation of liquid mixtures in the presence of

surfactants. Ind. Engng Chem. Res. 38, 2418–2424.
HOHENBERG, P.C. & HALPERIN, B.I. 1977 Theory of dynamic critical phenomena. Rev. Mod. Phys. 49,

435–479.
JACQMIN, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88.
JASNOW, D. & VIÑALS, J. 1996 Coarse-grained description of thermo-capillary flow. Phys. Fluids 8, 660–669.
KUMARAN, V. 1998 Droplet interaction in the spinodal decomposition of a fluid. J. Chem. Phys. 109,

7644–7648.
KUMARAN, V. 2000 Spontaneous motion of droplets during the demixing transition in binary fluids. J. Chem.

Phys. 112, 10984–10991.
LAMORGESE, A., MAURI, R. & SAGIS, L.M.C. 2017 Modeling soft interface dominated systems:

a comparison of phase field and gibbs dividing surface models. Phys. Rep. 675, 1–54.
LIFSHITZ, E.M. & PITAEVSKII, L.P. 1984 Physical Kinetics. Pergamon Press.
LOWENGRUB, J. & TRUSKINOVSKY, L. 1998 Quasi–incompressible Cahn–Hilliard fluids and topological

transitions. Proc. R. Soc. Lond. A Math. Phys. Engng Sci. 454, 2617–2654.
MARTULA, D.S., HASEGAWA, T., LLOYD, D.R. & BONNECAZE, R.T. 2000 Coalescence-induced

coalescence of inviscid droplets in a viscous fluid. J. Colloid Interface Sci. 232, 241–253.
MAURI, R., CALIFANO, F., CALVI, E., GUPTA, R. & SHINNAR, R. 2003 Convection-driven phase

segregation of deeply quenched liquid mixtures. J. Chem. Phys. 118, 8841–8846.
MCGUIRE, K.S., LAXMINARAYAN, A., MARTULA, D.S. & LLOYD, D.R. 1996 Kinetics of droplet growth

in liquid–liquid phase separation of polymer–diluent systems: model development. J. Colloid Interface Sci.
182, 46–58.

MIDYA, J. & DAS, S.K. 2017 Kinetics of vapor-solid phase transitions: structure, growth, and mechanism.
Phys. Rev. Lett. 118, 165701.

SANDLER, S.I. 2006 Chemical, Biochemical and Engineering Thermodynamics, IV ed. Wiley.
SIGGIA, E.D. 1979 Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A 20, 595–605.
TANAKA, H. 1996 Coarsening mechanisms of droplet spinodal decomposition in binary fluid mixtures.

J. Chem. Phys. 105, 10099–10114.
VLADIMIROVA, N., MALAGOLI, A. & MAURI, R. 1999 Two-dimensional model of phase segregation in

liquid binary mixtures. Phys. Rev. E 60, 6968–6977.
WHITE, W.R. & WILTZIUS, P. 1995 Real space measurement of structure in phase separating binary fluid

mixtures. Phys. Rev. Lett. 75, 3012–3015.
WONG, N.-C. & KNOBLER, C.M. 1981 Light-scattering studies of phase separation in isobutyric acid + water

mixtures: hydrodynamic effects. Phys. Rev. A 24, 3205–3211.

997 A29-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.841

	1 Introduction
	2 Physical and mathematical model descriptions
	3 Results and discussion
	3.1 Effect of NBo and N on phase segregation
	3.2 Quantitative analysis of segregation time

	4 Conclusions
	References

