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EXISTENCE THEOREM FOR THE INITIAL-BOUNDARY 
VALUE PROBLEM FOR A SINGULAR PARABOLIC 

PARTIAL DIFFERENTIAL EQUATION 
BY 

JULIUS A. KRANTZBERG 

1. Introduction. We consider the initial-boundary value problem for the parabolic 
partial differential equation 

an LU-?£+?£* du_eu 

in the bounded domain D, contained in the upper half of the xy-plane, where a part 
of the x-axis lies on the boundary B (see Fig. 1). 
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FIGURE 1. 

By applying a finite difference-differential method, as opposed to the straight 
numerical approach used by Jamet [4], we will show that one of the conditions on 
the coefficients for this special case can be weakened from \k\ < 1 (the condition 
given by Jamet [4]) to k< 1. 

Rothe's [6], [7] finite difference method in the variable t will be used in the proof 
of this existence theorem. We get a difference-differential equation 

(1-2) LkUn+1 = Un+*~Un 

which is an approximation of (1.1). Here h>0 is a parameter which defines a 
sequence of mesh points along the *-axis. 

The results of Schechter [9] will be applied to the Dirichlet problem obtained due 
to this method. This will show the existence and uniqueness of Un+1. 
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From our approach we will obtain a limit function as the mesh size parameter h 
converges towards zero. Finally we will show that this function is the solution to 
our initial-boundary value problem. 

In order to prove convergence to this limit function as h -> 0 we must first derive 
a priori estimates of the solution of the difference equation (1.2). For this purpose 
we will make use of the following maximum principle. 

2. Maximum principle. Let the differential equation 

(2.1) Lkv-X2v= - g , A > 0 

be defined in the domain D with boundary B. Suppose v vanishes on B, and v, 
geC\D)Ç\C(D). Then 

(2.2) \v\ < * max |g | . 
A D 

Certainly at any point of D where v assumes its maximum value we have 

(2.3) Lkv < 0 

whence by (2.1) 

(2.4) A2v < g. 

Similarly, the inequality 

(2.5) X2v > g 

holds at any minimum of v inside D. Hence from (2.4) and (2.5) 

(2.6) max \v\ < ^ max |g| 
D A D 

from which (2.2) follows. 

3. Estimates. We define the difference U%\j=0, 1, 2 , . . . of the sequences Un 

by the following formulas : 

(3.1) U^= Un + 1-Un. 

(3.2) UX+1>=U<P+1-U<p9 y = l , 2 5 3 5 . . . . 

By a procedure similar to the method used by Garabedian [2], and applying the 
maximum principle of §2, we obtain the following important estimates : 

(3.3) UP = 0(h) 

(3.4) UP = 0(h2). 

4. The existence theorem. Let D be a bounded domain in the xj-plane bounded 
by a smooth curve B which contains part of the x-axis (see Fig. 1). Then for 
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T>0, fc< 1, there exists in Dx[0, T], a solution Ue C2(Dx[0, T]) f| C(Dx[0, T]) 
for the following initial-boundary value problem: 

(4.D LkU = ^ + ^ + ^ = 
d2U d2U kdU _3U 
dx2 + dy2 +y dy ~ dt 

(4.2) U(x,y,0)=f(x,y) for (x,y)eD 

(4.3) U(x, y,t) = 0 on Bx[09 T]. 

We assume that/(x, y) e Cé(D) and satisfies 

(4.4) Lkf=Lk(Lkf) = 0 onB. 

Proof. Let h > 0 be a parameter which divides the interval [0, T] in a sequence of 
mesh points 

(4.5) t = nh, « = 0 , 1 , 2 , . . . . 

The difference-differential equation 

(4.6) LkUn+1 = Un+1~Un 

represents an approximation of (4.1). 
An iteration procedure to solve (4.6) is begun for each h by setting 

(4.7) Uo(x,y,0)=f(x,y), (x,y)eD, 

(4.8) Un(x, y, nh) = 0; n = 0, 1, 2 , . . . on Bx[0, T]. 

The main problem is to solve (4.6) with the conditions (4.7) and (4.8) for «=0, 1, 
2, Then we show that the rule 

(4.9) U(x, y, t) = lim Un(x, y9 nh), nh -> f 
h-*Q 

defines the desired solution U of the initial-boundary value problem (4.1), (4.2), 
(4.3). 

Let us write (4.6) in the following form 

dx2Un + 1 + dy2Un + 1+y dy hUn + 1~ h 

By mathematical induction we suppose Un is known throughout D, which is true 
for the case n = 0. Since Un + 1 vanishes along Bx[0, T], it is determined by the 
Dirichlet problem (4.10), (4.8). 

The existence and uniqueness of Un+1 is assured by Schechter [9] due to the 
minus sign on the coefficient of Un + 1 and the fact that k< 1. Hence U0, Ul9 U2,... 
are all well defined. (It is interesting to note here that a numerical methods technique 
could be used to obtain the solution to (4.10) provided \k\ < 1. See Jamet and Parter 
[5].) 
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5. Convergence. We will restrict our attention to mesh sizes of the form 

(5.1) K = J* 

for fixed e>0, m e {0, 1, 2 , . . . } . 
For each m we obtain a function Um which represents an approximation to the 

value of the function U we seek. Using this notation we may express (3.3) and (3.4) 
as follows : 

(5.2) Un(x9 y, {n + \)hm) - Um(x, y, nhm) = 0(hm) 

(5.3) U<£Kx, y, (n + \)hm) - U$;\x, y. nhm) = 0(h%). 

By the use of the standard Cantor diagonalization process and other classical 
techniques it can be shown that an increasing sequence ml9 ra2,..., can be found 
with the corresponding sequence hmv hm2,..., such that 

(5.4) U(x, y, t) = lim Umv(x, y, t) 
V-»oo 

(5.5) t = nhmv = g-y for 0 < t < T, 

defines a solution to our initial-boundary value problem. By a similar procedure it 
can be shown that 

(5.6) Ut(x, y, t) = hm ——r 
v-> oo n m v 

is actually the partial derivative of U with respect to t. 
Moreover, the estimates (3.3), (3.4) or (5.2), (5.3) enable us to define both func­

tions U and Ut by continuity for arbitrary t e [0, T], 
The uniqueness of U satisfying the initial-boundary value problem (4.1), (4.2) and 

(4.3) is assured due to the maximum principle for parabolic partial differential 
equations. (See Rubinstein [8, p. 368].) 

6. Green's function. It can be shown that the Green's function for LkU = 0 in the 
domain D (see Fig. 1) does not exist for k > 1 (due to Huber [3]). Hence we have 
assumed k<\. 

In order to verify that (5.4) yields a solution U to the heat equation (4.1), we 
convert the difference-differential equation (4.6) into an integral equation using 
the Green's function [1]. 

The existence and explicit expression for the fundamental solution for the opera­
tor Lk for y>0 was shown by Weinstein [11], [12]. Hence the Green's function 
G(x,y; f, rj) for the bounded domain D can be obtained. 
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Equation (4.6) and the boundary condition (4.8) may be combined, by using 
standard techniques, into the single equation (cf. [1], [10]) 

(6.1) Un+1 + jfUn + 1-UnG(x9y;f9i,)d{di, = 0. 
D 

The limit may be taken under the integral sign as (Un+1 — Un)/h is uniformly 
bounded due to the maximum principle (§2) and estimates (§3). Hence, by making 
use of (5.4) and (5.6), we obtain from (6.1) the integrodifferential equation 

(6.2) U+jj UtG(x, y; t, v) de dv = 0 
D 

for the function U. This result is equivalent to the heat equation (4.1) with the 
boundary condition (4.3.). 

Finally, we observe that by construction (cf. (4.7), (4.9)) 

(6.3) U(x,y90)=f(x,y). 

This completes the proof of the existence theorem. 

ACKNOWLEDGEMENT. The author is indebted to Dr. David Colton of Indiana University for 
his guidance and assistance in the solution of this problem. At that time, both Dr. Colton and 
the author were associated with McGill University of Montreal. 

REFERENCES 

1. R. Courant and D. Hilbert, Methods of mathematical physics II, Interscience, New York, 
(1962), 261-264. 

2. P. R. Garabedian, Partial differential equations, Wiley, New York, (1964), 492-499. 
3. A. Huber, On the uniqueness of generalized axially symmetric potentials, Ann. of Math. 60 

(1954), 351-358. 
4. P. Jamet, Numerical methods and existence theorems for parabolic differential equations 

whose coefficients are singular on the boundary. Math. Comp. 22 (1968), 721-743. 
5. P. Jamet and S. V. Parter, Numerical methods for elliptic differential equations whose co­

efficients are singular on a portion of the boundary. SIAM J. Numer. Anal. 4 (1967), 131-146. 
6. E. Rothe, Zweidimensionale Parabolische Randwert-aufgaben als Grenzfall Eindimentionaler 

Randwert-aufgaben. Math. Ann. 102 (1930), 650-670. 
7. , Vber die Wârmeleitungsgleichung mit nichtkonstaten Koeffizientem im rdumlichen 

Falle. Math. Ann. 104 (1931), 340-354. 
8. Z. Rubinstein, A course in ordinary and partial differential equations. Academic Press, New 

York, (1969), 361-369. 
9. M. Schechter, On the Dirichlet problem for second order elliptic equations with coefficients 

singular at the boundary. Comm. Pure Appl. Math. 13 (1960), 321-328. 
10. R. J. Weinacht, Fundamental solutions for the class of singular equations. Contributions to 

Differential Equations, 3 (1964), 43-55. 

https://doi.org/10.4153/CMB-1972-042-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-042-2


234 JULIUS A. KRANTZBERG 

11. A. Weinstein, Generalized axially symmetric potential theory. Bull. Amer. Math. Soc. 59 
(1953), 20-38. 

12. , Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 
63, (1948), 342-354. 

LOYOLA COLLEGE, 

MONTREAL, QUEBEC 

https://doi.org/10.4153/CMB-1972-042-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-042-2

