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Abstract. We consider smooth algebraic varieties with ample either canonical or anticanonical
sheaf. We prove that such a variety is uniquely determined by its derived category of coherent
sheaves. We also calculate the group of exact autoequivalences for these categories. The technics
of ample sequences in Abelian categories is used.
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0. Introduction

Examples of different varieties X exist which have equivalent derived categories
Di’oh(X ) of coherent sheaves. These kind of equivalences were constructed for
Abelian varieties and K3 surfaces by Mukai, Polishchuk and the second author
in [7-10]. In [4] we prove equivalence of the derived categories for varieties connected
by certain kinds of flops.

Does this mean that ngh(X ) is a weak invariant of a variety X? In this paper we
will show that this is not the case, at least for some types of algebraic varieties.

We prove that a variety X is uniquely determined by its category Dfuh(X ), if its
anticanonical (Fano case) or canonical (general type case) sheaf is ample.

To reconstruct the variety from the category we use nothing but the graded struc-
ture of the category, i.e. we need only to fix the translation functor.

The idea is that for good, in the above sense, varieties we can recognize the
skyscraper sheaves of closed points in Dfoh(X ). The main tool for this is the Serre
functor [3] (see also Section 1), which for D% ,(X) can be regarded as a categorical
incarnation of the canonical sheaf wy. In this way we find the variety as a set. Then,
one by one, we reconstruct the set of line bundles, Zariski topology and the structural
sheaf of rings (for details, see the five steps of the proof of Theorem 2.5).

With respect to the above problem, it is natural to introduce a groupoid with the

objects being the categories D’ggh(X ) and with the morphisms being equivalences.

*This work was partially supported by INTAS grant 93-2805 and RFFI grants 97-01-00933
and 99-01-01144.
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There are two natural questions related to a groupoid: which objects are
isomorphic and what is the group of automorphisms of an individual object?
The first problem was addressed within the framework of graded categories. To
tackle the second one, we need the triangulated structure of the category. In Section
3 we prove that for a smooth algebraic variety with either ample canonical or
anticanonical sheaf, the group of exact autoequivalences is the semidirect product
of the group of automorphisms of the variety and the Picard group plus translations.

The answers to the above questions for the case of varieties with non-ample and
nonantiample canonical sheaves seem to be of considerable interest.

1. Preliminaries

Here we collect some facts related to functors in graded and triangulated categories,
with special emphasis on the Serre functor.

In this paper, for simplicity we consider only k-linear additive categories, where k
is an arbitrary field.

By definition a graded category is a pair (D, Tp) consisting of a category D and a
fixed equivalence functor T : D — D, called a translation functor.

Recall that a triangulated category is a graded category with an additional
structure: a distinguished class of exact triangles satisfying certain axioms (see [12]).

A functor F: D — D' between two graded categories D and D' is called graded if it
commutes with the translation functor. More precisely, a natural isomorphism of
functors tr: F o Tp =>Tp o F is assumed to be fixed.

In the sequel, we omit the subscripts in the notation of translation functors because
it is always clear from their position in formulas which category they belong to.

While considering graded functors, we use graded natural transformations. A
natural transformation pu between graded functors F and G is called graded if
the following diagram is commutative:

FoT X ToF

l#T l Tu

GoT 15ToG

A graded functor F: D—> D between triangulated categories is called exact if it
transforms all exact triangles into exact triangles in the following sense. If
X—>Y—>Z—TX is an exact triangle in D, then one takes FX —
FY — FZ — FTX and substitutes in this sequence F7(X) by TF(X) using the natu-
ral isomorphism of FT with TF. The result FX — FY — FZ — TFX should be an
exact triangle in D'.

A morphism between exact functors is, by definition, a graded natural
transformation.

A functor which is isomorphic to an exact functor can be endowed with a structure
of a graded functor so that it becomes an exact functor. Indeed, if F is exact, then
using the isomorphism u: F => G, one constructs the natural isomorphism
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t¢: GT =5 TG, tg = utpu~', which makes G graded. Since any triangle isomorphic
to an exact triangle is again exact, G transforms exact triangles into exact ones.
The natural transformation g becomes a graded transformation of exact functors.

Let F: D— 7D’ be a functor. Suppose we fix a class C of objects in D and for any
object X € C some object X’ isomorphic to FX in D'. If, for any X € C, we
additionally fix an isomorphism FX = X’, then there exists a new functor
G : D — D', which is isomorphic to F and such that

GX = FX, for X¢C, GX =X, ,for X eC, €))]

with the evident action on morphisms.
We shall frequently use this simple fact in the sequel.

PROPOSITION 1.1. (i) Let F:D—TD be a graded functor between graded
categories, G: D'—D its left adjoint, so that the natural transformations are given:

idp <> FoG,  GoF - idp. )

Then G can be canonically endowed with the structure of a graded functor, such that
(2) become morphisms of graded functors.

(1) If, in addition, F is an exact functor between triangulated categories, then G also
becomes an exact functor.

Proof. (i) Let us make G graded. By the adjointness of G and F and since Tp and
Tp are equivalences, we have the following sequence of bifunctorial isomorphisms:

Hom(GTX, Y) =~ Hom(TX, FY)~ Hom(X, T"'FY)
~ Hom(X, FT~'Y) =~ Hom(GX, T~'Y) (3)
~ Hom(7GX, Y)

forany X e D', Y € D.

By the well known Brown lemma [2], this gives a functorial isomorphism:
t¢: GT = TG.

Taking ¥ = TG X in (3) and carefully tracking the preimage in Hom(GTX, TGX)
of idrgy in Hom(7GX, TGX) under the chain of isomorphisms in (3), one obtains a
formula for ¢g. It is, in fact, canonically given as the composite of the following
sequence of natural transformations:

GTa Gr;'G

GT GTFG GFTG X%, 16. (4)

Here we use morphisms o and f§ from (2) and the grading isomorphism #z for
F:tp: FT => TF.Toshow that, say, o is an isomorphism of graded functors is equiv-
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alent to proving that the diagram

T I TFG Ui FTG
ol i aTFG\g/ acFTGéTF[}TG
FGT ¥Tey, FGTFG 19"%,  FGFTG,

being considered without dotted arrows, is commutative. One can split it by the
dotted arrows into two commutative squares and the loop, the latter being com-
mutati}yﬁe due to the fact that, for adjoint functors, the composite F —
FGF — F equals idg.

Notice that the inverse morphism to (4) is given by the composition

TRT-'GT

AL TGFT-'6T 2% GT. (5)

1, -1
16 2 rer-per 21T 9L

That can be found in the same way as (4) by putting ¥ = G7X in (3). It is interesting
to note that one needs a great number of commutative diagrams to prove directly,
without use of (3), that (4) and (5) are mutually inverse.

(ii) [3] Let 4 = B — C — TA be an exact triangle in D'. We have to show that G
transforms this exact triangle into an exact one.

Let us insert the morphism G(2): GA — GB into an exact triangle:

GA— GB— Z — TGA.
Applying functor F to it, we obtain an exact triangle
FGA — FGB — FZ — TFGA.

(Henceforth we make no mention of commutation isomorphisms like 7F = FT).
By means of id — FG, we construct a commutative diagram

A — B — C — T4

! ! !

FGA — FGB — FZ — TFGA

By the axioms of triangulated categories there exists a morphism pu: C — FZ that
completes this commutative diagram. By adjunction, we obtain a morphism
v: GC — Z that makes the following diagram commutative:

GA — GB — GC — TGA

id] id] v id|

GA — GB — Z — TGA

The functors represented by GC and Z are isomorphic via v in view of the 5-lemma,
hence by the Brown lemma, v is an isomorphism. Therefore the upper triangle is
exact. ]

If F is a graded autoequivalence in a graded category, then the adjoint functor is its
quasi-inverse.
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We may consider a category with objects being graded (or respectively
triangulated) categories and morphisms being isomorphism classes of graded
(respectively exact) equivalences. The proposition ensures that this category is a
groupoid. In particular, the set of isomorphism classes of graded autoequivalences
in a graded category or of exact autoequivalences in a triangulated category is a
group.

Now we outline the main properties of the Serre functor. Its abstract definition
was introduced in [3].

DEFINITION 1.2. Let D be a k-linear category with finite-dimensional Hom's. A
covariant additive functor S: D — Dis called a Serre functor if it is a category equiv-
alence and there are given bi-functorial isomorphisms ¢, z: Homp(4, B) =
Homp(B, SA)* for any A, B € D.

Remark. 1t was postulated in [3] that the following diagram is commutative:
Homp(4, B) —5  Homp(B, SA)*
]} T
Homp(S4, SB) —*”, Homp(SB, S2A)*
the vertical isomorphisms in this diagram being induced by S. In fact, this can be
deduced from bi-functoriality of ¢, 3.

PROPOSITION 1.3. Any autoequivalence ® : D—>"D commutes with a Serre functor,
i.e. there exists a natural graded isomorphism of functors ® o S = S o ®.
Proof. For any pair of objects 4, Bin D we have a system of natural isomorphisms:

Hom(®A4, ®SB) = Hom(4, SB) = Hom(B, A)*

6
~ Hom(®B, ®A)* =~ Hom(®A4, SOB). ©

Since ® is an equivalence, the essential image of ® covers the whole D, i.e. up to
isomorphism, any object can be presented as ®A4 for some 4. This means that
(6) gives rise to an isomorphism, of the contravariant functors represented by objects
®SB and SOB. By the Brown lemma [2], morphisms between representable functors
are in one-to-one correspondence with those between the representation objects.
This yields an isomorphism ®SB => SOB, which is, in fact, natural with respect
to B. ]

PROPOSITION 1.4. (i) Any Serre functor in a graded category is graded. (i1) A Serre
functor in a triangulated category is exact.

Proof. (1) This follows from the previous proposition.

(i1) The fact that a Serre functor takes exact triangles into exact ones is proved

in [3].
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PROPOSITION 1.5 [3]. Any two Serre functors are connected by a canonical graded
Sfunctorial isomorphism, which commutes with the bifunctorial isomorphisms ¢ 4 p
in the definition of Serre functor.

Proof. Let S and S’ be two Serre functors in a category D. Then, for any object 4 in
D we have natural isomorphisms:

Hom(A4, A) = Hom(A4, SA)* = Hom(S4, S’ A)

Taking the image of the identity morphism id 4 with respect to this identification, we
obtain a morphism S4 — S’A, which, in fact, gives a graded functorial isomorphism
S = §’, which commutes with ¢, p. ]

Thus, a Serre functor in a category D, if it exists, is unique up to a graded natural
isomorphism. By definition, it is intrinsically related to the structure of the category.
We shall use this later to reconstruct a variety from its derived category and to find
the group of exact autoequivalences for algebraic varieties with ample or antiample
canonical sheaves.

2. Reconstruction of a Variety from the Derived Category of Coherent
Sheaves

In this Section we show that a variety X can be uniquely reconstructed from the
derived category of coherent sheaves on it, provided X is smooth and has ample
or antiample canonical sheaf. We need only grading from the category, i.e. fixed
translation functor.

Roughly, the reconstruction proceeds as follows. First, by means of the Serre
functor, we distinguish the skyscraper sheaves of closed points in the variety. Then
we find the invertible sheaves and use them to define the Zariski topology and
the structure sheaf of the variety.

Let D be a k-linear category. Denote by Sp the Serre functor in D (for the case it
exists).

Let X be a smooth algebraic variety, n = dimX, D = Di?oh(X ) the derived category
of coherent sheaves on X and wy the canonical sheaf. Then the functor

(1) ® wx[n] (7)
is the Serre functor in D, in view of the Serre-Grothendieck duality:
Ext/(F, G) = Ext" (G, F @ wy)*

for any pair F, G of coherent sheaves on X ([5, 11]).

For derived categories the translation functor we consider is always the usual shift
of grading.

For a closed point x € X, we denote by k(x) the residue field of this point.
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We use the standard notations for the iterated action of the translation functor on
an object P: P[i]:= T'P, i € 7, and for the composition of the functors Hom and 7"

Hom'(P, Q) = Ext/(P, Q) := Hom(P, Qli]).

DEFINITION 2.1. An object P € D is called a point object of codimension s, if

(i) Sp(P) = P[s],
(ii)) Hom<°(P, P) =0,
(iii) Hom®(P, P) = k(P),

with k(P) being a field (which is automatically a finite extension of the field k).

PROPOSITION 2.2. Let X be a smooth algebraic variety of dimension n with the
ample canonical or anticanonical sheaf. Then an object P € Di,’oh(X) is a point object,
iff P=2Olr], r € Z, is isomorphic (up to translation) to the skyscraper sheaf of
a closed point x € X.

Remark. Since X has an ample invertible sheaf it is projective.

Proof. Any skyscraper sheaf of a closed point obviously satisfies the properties of a
point object of the same codimension as the dimension of the variety.

Suppose now that for some object P € Dfoh(X ), properties (i)—(iii) of Definition 2.1
are verified.

Let H' be cohomology sheaves of P. It immediately follows from (i) that s = n and
H' ® wy = H'. Since wy is either an ample or antiample sheaf, we conclude that H’
are finite length sheaves, i.e. their supports consist of isolated closed points. Sheaves
with the support in different points are homologically orthogonal, therefore any such
object decomposes into the direct sum of those which have the support of all
cohomology sheaves in a single point. By (iii), the object P is indecomposable, hence
all H' have their support in one single point. Now consider the spectral sequence
which calculates Hom”(P, P) by Ext/(H/, H*):

EY! = @ Ext’(H, H*)=Hom"™(P, P).
k—j=q

Note that for any two finite length sheaves which have the same single point as their
support, there exists a nontrivial homomorphism from one to the other, which sends
the generators of the first one to the socle of the second.

Considering Hom’(H/, H*) with minimal k — j, we observe that this nontrivial
space survives at E,,, hence by (ii) k — j = 0. This means that all but one cohomology
sheaves are trivial. Moreover, (iii) implies that this sheaf is a skyscraper. This con-
cludes the proof. O
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Now, having the skyscrapers, we are able to reconstruct the invertible sheaves.

DEFINITION 2.3. An object L € Dis called invertible if, for any point object P € D,
there exists s € 7 such that

(i) Hom*(L. P) = k(P).
(i) Hom/(L, P)=0, foris.

PROPOSITION 2.4 Let X be a smooth irreducible algebraic variety. Assume that all
point objects have the form O,[s] for some x € X,s € 7. Then an object L € D is
invertible, iff L = L[t] for some invertible sheaf L on X, t € Z.

Proof. For an invertible sheaf £ we have

Hom(L, Oy) = k(x),  Ext(L, Oy) =0, ifi#0.

Therefore, if L = L[s], then it is an invertible object.

Now let H' be the cohomology sheaves for an invertible object L. Consider the
spectral sequence that calculates Hom'(L, O,) for a point x € X by means of
Hom'(H/, O,):

EY? = Hom!(H!, O,) =Ext"(L, O,).

Let H? be the nontrivial cohomology sheaf with maximal index. Then for any
closed point x € X from the support of H%, Hom(H?, O,)#0. But both
Hom(H*, O,)and Ext!(H%, O,)are intact by differentials of the spectral sequence.
Therefore, in view of the definition of an invertible object, we conclude that for any
point x from the support of H%

(a) Hom(H®, Oy) = k(x),
(b) Ext!(H®, O,)=0.

Since X is smooth and irreducible, it follows from (b) that the H? is locally free on
X, while (a) implies it is invertible.

It follows that Ext/(H%, O) =0 for i > 0. Hence, Hom(H%~!, ©,) are intact by
differentials of the spectral sequence. This means that Hom(H%*~! O,) =0, for
any x € X, i.e. H®~! = 0. Repeating this argument for /¢ with smaller ¢, we easily
see that all H?, except ¢ = qo, are trivial. This proves the proposition. O

Now we are ready to prove the reconstruction theorem. Invertible sheaves help us
to ‘glue’ points together.

THEOREM 2.5. Let X be a smooth irreducible projective variety with ample canoni-

cal or anticanonical sheaf. If D = fooh(X) is equivalent as a graded category to
D’ (X') for some other smooth algebraic varietyX', then X is isomorphic to X'
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Note that this theorem is stronger than just a reconstruction for a variety with an
ample canonical or anticanonical sheaf from its derived category: since X’ might
not have an ample canonical or anticanonical sheaf, the situation is not symmetric
with respect to X and X'.

We divide the proof in several steps, so that the reconstruction procedure will be
transparent.

Proof. During the proof, while saying that two isomorphism classes of objects, one
in D? ,(X) and the other one in D? ,(X"), are equal, we mean that the former is taken
to the latter by the primary equivalence D’ ,(X) == D% (X").

Step 1. Denote Pp the set of isomorphism classes of the point objects in D, Py the
set of isomorphism classes of objects in D’C’oh(X )

Pyi= {Ox[k] ]x € X, ke z}.

By Proposition 2.2, Pp =2 Py. Obviously, Py C Pp. Suppose that there is an object
P € Pp,which is not contained in Py. Since Pp = Py, any two objects in Pp either
are homologically mutually orthogonal or belong to a common orbit with respect
to the translation functor. It follows that P € Dfoh(X ') is orthogonal to any
skyscraper sheaf O,, x' € X’. Hence, P is zero. Therefore, Py = Pp = Py.

Step 2. Denote by Lp the set of isomorphism classes of invertible objects in D, Ly
the set of isomorphism classes of objects in Df,ah(X ) defined by

Ly = {L[k] ‘L being an invertible sheaf on X, k € Z}.

By Step 1, both varieties X and X’ satisfy the assumptions of Proposition 2.4. It
follows that Ly = Lp = Ly.

Step 3. Let us fix some invertible object Ly in D which is an invertible sheaf on X.
By Step 2, Ly can be regarded, up to translation, as an invertible sheaf on X’.
Moreover, changing, if necessary, the equivalence D’C’oh(X ) >~ D’C’oh(X ") by the trans-
lation functor, we can assume that L, regarded as an object on X’, is a genuine
invertible sheaf. (Formally speaking, L, is taken by the equivalence
Di’oh(X )%D’C’M(X ') to an object which is isomorphic to an invertible sheaf on
X’. But as was explained in Section 1 (formula (1)) we can adjust this equivalence
so that it takes Ly into the invertible sheaf on X'.)

Obviously, by Step 1, the set pp C Pp

ppi= {P e P ‘Hom(Lg, P) = k(P)}
coincides with both sets py = {O,, x € X} and py = {Oy, X’ € X’}. This gives us a
pointwise identification of X with X”.

Step 4. Now let Iy (resp., [y)) be the subset in Lp of isomorphism classes of
invertible sheaves on X (resp., on X’).
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They can be recognized from the graded category structure in D as follows:
Iy =Ily=1Ip:= {L eLp )Hom(L, P) = k(P) for any P epD}.

For « € Hom(L,, L), where L, L, € Ip, and P € pp, denote by o} the induced
morphism:

op : Hom(Ly, P) — Hom(L,, P)

and by U, the subset of those objects P in pp for which o}, # 0. By [6], any algebraic
variety has an ample system of invertible sheaves. This means that U,, where « runs
over all elements in Hom(L;, L,)and L, and L, run over all elements in /p,constitute
a basis for the Zariski topologies on both X and X’. It follows that the topologies on
X and X’ coincide.

Step 5. Since codimensions of all point objects are equal to the dimensions of X
and of X’, we have dimX = dimX’. Then, formula (7) for the Serre functor
Sp = S shows that the operations of twisting by the canonical sheaf on X and
on X’ induce equal transformations on the set /p.

Let L; = S'Lo[—ni]. Then {L;} is the orbit of Ly with respect to twisting by the
canonical sheaf on X. Changing, if necessary, the equivalence D, (X)~%>
Df()h(X "), we can assume that {L;} is the orbit of L, with respect to twisting by
the canonical sheaf on X’ too.

Since the canonical sheaf wy is either ample or antiample, the set of all U, where «
runs over all elements in Hom(L;, L;),i,j € 7Z, is the basis of the Zariski topology on
X, hence, by Step 4, on X’. This means that the canonical sheaf on X" is also ample or,
respectively, antiample (see [6]).

For all pairs (i, j) there are natural isomorphisms:

Hom(L;, L;) = Hom(S'Lo[—ni], S'Lo[—nj])
>~ Hom(Ly, §'Lo[—n(j — i)]) = Hom(Lo, L;;).

They induce a ring structure in the graded algebra 4 over k& with graded components
Ai = HOI’Il(Lo, Li).

This algebra, being defined intrinsically by the graded category structure, is
isomorphic to the coordinate algebra B of the canonical sheaf for X, i.e. to the
algebra with graded components B; = Homy(Oy, »¥').

Indeed, L; = Ly ® o', the isomorphism being given by tensoring by Lo. It is a ring
homomorphism, because the functor of tensoring by Ly commutes with the Serre
functor by Proposition 1.3.

The same is true for the coordinate algebra B’ of the canonical sheaf for X’. Even-
tually, we obtain an isomorphism B => B’ of the canonical algebras on X and X’.
Since the canonical sheaves on both X and X’ are ample ( or antiample), both var-
ieties can be obtained by projectivization from the canonical algebras
X = ProjB = ProjB’ => X’ This gives a biregular isomorphism between X
and X’ as algebraic varieties. O
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3. Group of Exact Autoequivalences

It was explained in Section 1 that the set of isomorphism classes of exact
autoequivalences in a triangulated category D is a group. We denote this group
by AutD.

The problem of reconstructing of a variety from its derived category is closely
related to the problem of computing the group of exact autoequivalences for
Dfoh(X ). For ample canonical or anticanonical sheaf we have the following.

THEOREM 3.1. Let X be a smooth irreducible projective variety with an ample
canonical or anticanonical sheaf. Then the group of isomorphism classes of exact
autoequivalences Df,oh(X) — DfUh(X) is generated by the automorphisms of the
variety, the twists by invertible sheaves and the translations.

Proof. Assume for definiteness that the canonical sheaf is ample. Choose an
autoequivalence F. Since the class of invertible objects is defined intrinsically with
respect to the graded structure of the category, it is preserved by any
autoequivalence. Moreover, the set of isomorphism classes of invertible objects
is transitive with respect to the action of the subgroup AutDﬁ,’oh(X ) generated by
translations and twists. Indeed, by Propositions 2.2 and .4, all invertible objects
in D/Zoh(X ) are invertible sheaves up to translations. Any invertible sheaf can be
obtained from the trivial sheaf O by applying the functor of tensoring with this
invertible sheaf. Therefore, using twists with invertible sheaves and translations
we can assume that our functor F takes O to O. It follows that F takes any tensor
power w§’ of the canonical sheaf into itself, because, by Proposition 1.3, it commutes
with the Serre functor.

Therefore, our functor induces an automorphism of the graded coordinate algebra
A of the canonical sheaf, i.e. algebra with graded components A;=
Hom(0, o) =H%w¥).

Any graded automorphism of the canonical algebra induces an automorphism of
the variety. Adjusting our functor F by an autoequivalence induced by an
automorphism of the variety we can assume that the automorphism of the canonical
algebra induces the trivial automorphism of the variety.

Such an automorphism is actually a scaling, i.e. it takes an element a € Ho(w? )to
J'a, for some fixed scalar A. Indeed, the graded ideal generated by any element
ac Ho(a)%') is stable with respect to the automorphism. It follows that « is multiplied
by a scalar. Then the linear operator in the graded component Ho(w%i) induced by
the automorphism should be scalar, say 4;. Since our automorphism is an algebra
homomorphism, it follows that 4; = Ji for A=y (in case HO(wX) =0, i.e. when
A1 1s not defined, we may substitute in the above argument Serre functor by a suf-
ficient jth power of it such that Ho(w? ) # 0 and, respectively, the canonical algebra
by the corresponding Veronese subalgebra) .

To kill the scaling of the canonical algebra, we substitute functor F by an
isomorphic one. For this we take the subclass C of objects in D consisting of powers
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of the canonical sheaf C = {0w$'}, i € Z. Asin Section 1, for any object C in C we need
to choose an isomorphism of its image with some other object C'. Our functor
preserves all objects from C. We choose C' = C for any C in C and the nontrivial
isomorphism: if C = o', then the isomorphism is 27 ide.

Then the new functor constructed by formula (1) induces the trivial automorphism
of the canonical ring.

Thus we have a functor, which takes the trivial invertible sheaf and any power of
the canonical sheaf to themselves and preserves the homomorphisms between all
these sheaves. Let us now show that such a functor is isomorphic to the identity
functor.

First, our functor takes pure sheaves to objects, isomorphic to pure sheaves,
because such objects can be characterized as the objects G in D% ,(X) which have
trivial Homk(co%[ , G), for k # 0 and for sufficiently negative i. Again we can substi-
tute our functor by an isomorphic one which takes sheaves to pure sheaves. By Serre
theorem [11], the Abelian category of pure sheaves is equivalent to the category of
graded finitely generated modules over the canonical algebra 4 modulo the sub-
category of finite-dimensional modules. The equivalence takes a sheaf G into a mod-
ule M(G) with graded components M;(G) = Hom(w$ ™, G). Our functor F gives the
isomorphisms:

Hom(w$ ™, G) = Hom(F(w$™), F(G)) = Hom(o$ ', F(G)).

Since F induces trivial action on the canonical algebra, these isomorphisms form
an isomorphism of A-modules M(G) => M(F(G)).

It is natural with respect to G. Hence, we obtain an isomorphism of functors
M= MoF.

Since modulo the subcategory of finite-dimensional modules M is an equivalence,
we have a functorial isomorphism id = Fon the subcategory of coherent sheaves.

Our system of objects {o§'} has some nice properties with respect to the Abelian
category of coherent sheaves on X which allow us to extend the natural
transformation id — F, from the core of the ¢-structure to a natural isomorphism
in the whole derived category. It was done in Proposition A.3 of the Appendix.

This finishes the proof of the theorem. O

In the hypothesis of Theorem 3.1 the group Authoh(X ) is the semi-direct product
of its subgroups G| = PicX @ Z and G, = AutX, Z being generated by the trans-
lation functor:

AutD’?

coh

(X) =2 AutX o< (PicX @ Z).

Indeed, during the course of the proof of the theorem, we in fact showed that any
element from AutD’jOh(X ) could be decomposed as g =g;g; with g € G; and
g2 € Gy. The subgroups G| and G, meet trivially in G, because the elements from

the latter take the structure sheaf O to itself, while those from the former do not.
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Group G| is obviously preserved by conjugation by elements from Gjand G», hence
normal in G.

Appendix

This appendix is devoted to describing the conditions under which one can extend to
the whole category a natural isomorphism between the identity functor and an exact
autoequivalence in the bounded derived category D?(A), provided one has such an
isomorphism in an Abelian category A (or even in a smaller subcategory, see
the proposition below).

To find our way through the technical details, we need a sequence of objects in the
Abelian category with some remarkable properties. For the case when the sequence
consists of powers of an invertible sheaf, these properties result from ampleness
of this sheaf. For this reason, we postulate them under the name of ampleness.

DEFINITION A.1. Let A be an Abelian category. We call a sequence of objects
{P;}, i € Z <o, ample if for every object X € A, there exists N such that for all
i < N the following conditions hold:

(a) the canonical morphism Hom(P;, X)® P,— X is surjective,
(b) Ext/(P;, X)=0 for any j # 0,
(¢ Hom(X, P;)=0.

Denote by D”(A) the bounded derived category of A. Let us consider A as a full
subcategory j: A <> D’(A) in D’(A) in the usual way. We also consider a full sub-
category ¢: C— D’(A) with ObC = {Pi}icz _,- We shall show that if there exists
an exact autoequivalence F: D”(A)— D’(A) and an isomorphism of its restriction
to C with the identity functor id¢, then this isomorphism can be uniquely extended
to an isomorphism of F with the identity functor idyy 4, in the whole DP(A).

The idea is in reducing the number of nonzero cohomologies for an object by
killing the highest one by means of a surjective morphism from @ P; for sufficiently
negative 1.

In the proof, we shall repeatedly use the following lemma (see [1]).

LEMMA A.2. Let g be a morphism from Y to Y' and suppose that these objects are
included into the following two exact triangles:

¥y S v 5 z 5 oxm

o 12 oh o/

¥y S v L oz 2oy

Ifv'gu = 0, then there exist morphisms f: X — X' andh: Z — Z' such that the triple
(f, g, h) is a morphism of triangles.
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If, in addition, Hom(X[1], Z') =0, then the morphisms f and h, making com-
mutative the first and, respectively, the second square of the diagram, are unique.

PROPOSITION A.3. Let A be an Abelian category possessing an ample sequence{P;}
and let F: D’(A)—D’(A) be an exact autoequivalence. Suppose there exists an
isomorphism f: ¢ => F |¢ (where q: C— D’(A) is the natural embedding ). Then this
isomorphism can be uniquely extended to an isomorphismid = F in the whole D (A).

Proof. Note that in view of the condition (b) from Definition A.1, X € D’(A) is
isomorphic to an object in A iff Hom/(P;, X) =0 for j # 0 and i < 0.

This allows us to ‘extract’ the Abelian subcategory A from D’(A) by means of the
sequence {P;}. Then using surjective coverings Hom(P;, X) ® P,—> X by the stan-
dard technique from the theory of Abelian categories, one can extend f to an
isomorphism (which we denote by the same letter) f:j — F |4, where j stands
for the natural embedding j: A < D”(A). We skip the details of this part of the proof
because we don’t need it in the main body of the paper.

Let us define fxp,;: X[n] — F(X[n]) = F(X)[n] for X € A by fxpg = fx[n]. It is not
difficult to show that, for any X and Y in A and for any u € Ext*(X, Y), the diagram

X 5 YK
sl Lk (8)
F(u)

F(X) —> F(Y)Ik]
is commutative. Indeed, since any element u € Ext*(X, Y) can be represented as the
Yoneda composition u = u; ...u; of elements u; € Extl(Zi, Z;.1) for some objects
Z,, with Zy =X,Z,1 =Y, then we can restrict ourselves to the case
u € Ext!(X, Y). Consider the following diagram:

Yy — z S x 5 oy

sl Rz o Lo

FY) — F2) 22 rxy 2% rovn
By axioms of triangulated categories, there exists a morphism /: X — F(X) such
that (fy,fz,h) is a morphism of triangles. On the other hand, since
Hom(Y[l], F(X)) =0, by the lemma above % is a unique morphism such that
F(p)ofz =hop. As F(p)fz = fxp, we conclude that i = fy. This implies com-
mutativity of the diagram (8) for k = 1.

We shall prove by induction over n the following statement. Consider the full
subcategory j, : D, < D’(A) in D’(A) generated by objects which have nontrivial
cohomology in a (nonfixed) segment of length n. Then there is a unique extension
of f to a natural functorial isomorphism f, : j,—F |p,.

Above, we have completed the first, n = 1, step of the induction.

Now take the step n =a, a > 1, for granted . Let X be an object in D,,; and
suppose, for definiteness, that its cohomology objects H”(X) are nontrivial only
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for p € [—a, 0]. Take P; from the given ample sequence with sufficiently negative i
such that

(a) HonY(P;, H”(X)) =0 for all p and for j # 0,
(b) there exists a surjective morphism u: P?’k —H(X), 9)
(¢) Hom(H°(X), P;) = 0.

Note that in view of condition (a) and the standard spectral sequence
Hom(ZP;, X):> Hom(P;, H°(X)). This means that we can find a morphism
v:Pi@k—>X such that the composition of v with the canonical morphism
X—H(X) coincides with u. Consider an exact triangle

Y[-1]—P* 5 x — Y.

Denote by f; the morphism f for Z = Pka . Since Y belongs to D, by the induction
hypothesis, the isomorphism fy is already defined and the right-hand square of the
diagram

P X — Y — P
G Sy L LA (10)

\2
FPPYy T FX) — F(Y) — F(PPH[I]
is commutative.
Further, we have the following sequence of isomorphisms:

Hom(X, F(P®)) =~ Hom(X, PP*)~ Hom(H’(X), P?*)=0.

Hence, applying Lemma A.2 to g equal fy, we obtain a unique morphism
fx: X—>F(X) that preserves the commutativity of the above diagram.

It is clear from the definition that fy is an isomorphism if so are f; and fy. For the
sequel, we need to show that fy does not depend on the choice of i and u. Suppose
we are given two  surjective  morphisms  uy: Pl.e?k‘ —H%X) and
U Psz —H°(X), where i; and i, are sufficiently negative to satisfy conditions (a),
(b) and (c).Then we can find sufficiently negative j and surjective morphisms
wi, wy such that the following diagram commutes:

PPt
Lw lw

uj

P 1),

Denote by v;: PP*'— X, v, : PP**— X the morphisms corresponding to u; and
u. Since Hom(P;, X) — Hom(P;, HO(X)), we have vawr, = viw.
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There is a morphism ¢: Y;— Y;, such that the triple (w1, id, ¢) is a morphism of
exact triangles:
P xSy — P
wll l id l ¢ l wi [1]
P N x Ly — PR,
ie. ¢y =y.
Since Y; and Y; have cohomology in the segment [—a, —1], by the induction
hypothesis, the following square is commutative:

v &y
Ty, l l«f Yy
F(9)

F(Y) —— F(Y3).

Denote by f)’( xl )’(2 the unique morphisms constructed as above to make the
diagram (10) commutative for v equal, respectively v =viw, v=v;, v=v,. We
have:

FOfy = F@)fy = F@QFO)f = F($)Fyy = fy, by = fr, -

It follows that f{( = )’(‘ Similarly, since viw; = v,w, we have ﬂ( = )’} Therefore, the
morphism fy does not depend on the choice of i and of the morphism
u: PP*—HO(X).

By means of the translation functor, we obtain the only possible extension of f, to
D1 in the obvious way. Let us prove that it is indeed a natural transformation from
Jat1 to Flp,,, i.e. that for any morphism ¢: X— Y, X, Y being in D,q, the
following diagram commutes

X 2 Y
fxl lfY (11
F(¢)
F(X) —— F(Y).
We shall reduce the problem to the case when both X and Y are in D,.
There are two working possibilities that we shall utilize for this.

Case 1. Suppose that the upper bound, say 0 (without loss of generality), of
cohomology for X is greater than that for Y. Take a surjective morphism
u: Pl@k—ﬂ-{O(X ) satisfying (a), (b), (c) and construct the morphism v: Pl@k—>X
related to u as above. We have an exact triangle:

P L x 5 z—s PR

If we take i sufficiently negative, then Hom(P?’k, Y) = 0. Applying the functor
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Hom(—, Y) to this triangle we found that there exists a morphism y: Z— Y such
that ¢ = yo. We know that fy, defined above, satisfies the equation F(a)fy = fo.
If we assume that F(y)f, = fyy, then

F()fx = FU)F()fx = FW)fzo = fyo = fr¢.

This means that, for this case in verifying commutativity of (11), we can substitute
X by an object Z such that the upper bound of its cohomology is, by one, less than
that for X. Moreover, one can easily see that if X belongs to Dy, with k£ > 1, then
Z does to Dy_;, and if it is in D; then so is Z.

Case 2. Suppose now that the upper bound, say 0 (again without loss of
generality), of cohomology for Y is greater than or equal to that for X. Take a
surjective morphism u : Pl@k—>H0(Y) with i satisfying (a), (b), (¢) (with Y instead
of X)) and construct a morphism v : Pl@k—> Y related to u. Consider an exact triangle

Pty Lo per,

Denote the composition ffo ¢ by .
If we assume that F(y)fy = fwy, then, since F(B)fy = fwf, we have

FB)fyod — F(@)fx) =fwhe —f(BO)x =fwi — F(h)fx = 0. (12)

We again take i sufficiently negative so that Hom(X, P®)=0. As F(PP) is
isomorphic to PP, then Hom(X, F(P?)=0. Applying the functor
Hom(X, F(—))to the above triangle, we found that the composition with F(f5) gives
an inclusion of Hom(X, F(Y)) into Hom(X, F(W)). It follows from (15) that
fré =F(@)x.

Thus, for this case, in verifying commutativity of (11), we can substitute Y by an
object W such that the upper bound of its cohomology is less by one than that
for Y. If Y belongs to Dy, k > 1, then W does to D;_, if Y belongs to D;, then
so does W.

Suppose now that X and Y are in D,y;, a > 1. Depending on which case, (1) or
(2), we are in, we can substitute either X or Y by an object lying in D,. Then,
if necessary, repeating the procedure, we can lower the upper bound of the
cohomology of the object to such a point that the other case is applicable. Then
we shorten the cohomology segment of the second object and come to the situation
when both objects are in D,, i.e. to the induction hypothesis.

At every step of the construction we always made the only possible choice for the
morphism fy. This means that the natural transformation with required properties
is unique. This finishes the proof of the proposition. O

Remark. As was mentioned by the reviewer the same argument as in the proof of
the proposition proves that for any pair (Fi, F>) of exact functors in the category
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DP(A) such that Fi|, and F| are isomorphic to the identity functor, the restriction
map

Homgpy 4 (F1, F>) - Home(File, Falc)

is bijective.
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