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Introduction

The purpose of this paper is to set the foundation for a general treatment of the
poles of standard intertwining operators and reducibility in the rank one case for
an arbitrary quasisplit group by means of the theory of endoscopy [2, 7, 20, 21, 24,
37]. This is a problem whose solution has many applications in global and local
theory and is equivalent to determining the nondiscrete tempered spectrum of these
groups as well as certain locAHunctions in the important context of endoscopy.
In fact, in this paper, we shall show that in the Abelian unipotent radical case where
there are only a finite number of orbits for adjoint action, the residue is always a
finite sum of twisted orbital integrals and therefore everything is controlled by
endoscopy and when the inducing data is generic, the poles of practically every
standardL-function is determined by it.

What is important is that the presence of endoscopy persists even if the number
of orbits are infinite and here is where some very fascinating examples show up,
among them the symmetric cube of cusp formai, which we hope our future
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work in this direction will shed some light on its existence. On the other hand, the
finite orbit case fits well in the theory of prehomogeneous vector spaces and allows
us to define ouL-functions as values of certain Igusa zeta functions. We hope that
this will lead us to a better understanding of possible connections of our work with
invariant theory.

To be precise, letG be a quasisplit connected reductive group over a non-
Archimedean local field" of characteristic zero. L& = TU be a Borel subgroup
of G with a maximal torusT, and letP=MN, T ¢ M, N c U be a parabolic
subgroup with Levi factoM. Let o be an irreducible unitary supercuspidal rep-
resentation of¥f = M(F) and givenv € ag, the complex dual of the real Lie
algebra of the split compone#t of (the center) oM, let I (v, o) be the corre-
sponding induced representation. Assufis maximal and letoy be the longest
element in the Weyl group d@%,, the maximal split torus of , in G modulo that of
Agin M. Let A(v, o, wo) be the standard intertwining operator frdrtv, o) into
I (wo(v), wo(o)), wherewg is a representative fary. Unlesswo(o) = o which
requireswo(M) = M, the operator has no pole at= 0 and/ (o) = 1(0,0) is
irreducible. Supposeg(c) = o. ThenlI (o) is reducible if and only ifA (v, o, wo)
is holomorphic ab = 0 (cf. [13, 15, 32, 33, 38]).

In this paper we make the assumption that the unipotent radiddiAbelian
and therefore the action @ on n, the Lie algebra oV, has a finite number of
open orbits whose union is densenif26]. This assumption covers a good number
of cases which come from the theory of prehomogeneous vector spaces [18, 26,
28, 30, 31, 39]. Letn;} denote a set of representatives for the corresponding orbits
of M in N.If N™ is the opposite oN, choosen; € M SlickLthatwgln,» =mnn; ,
n; € N,n; € N™. Let A be the center oM and letwo(A)A~* be the subgroup of
elements of the fornwg(a)a=t, a € A. Denote byw the central character of.

Letd = Ad(wg)|M, a semisimple automorphism bf. Clearly6 fixes the pair
(BN'M, T) asin[20]. Moreover, changingg by an appropriate element ity, we
may assumé also fixes the splitting itV N M. Given f € C°(M) andmg € M,
let ®y(mo, f) = fM/MMO f(O(m)ymom=1) drin be thed-twisted orbital integral of
f atmg. Here My ,,, is thed-twisted centralizer ofio in M. Then the main result
of our paper, Theorem 2.5, can be stated as

THEOREM 1. Let G be an arbitrary quasisplit connected reductive algebraic
group overF with a Borel subgrouB = TU. Fix a maximal parabolic subgroup
P=MN, T cM,Nc U. AssumeN is abelian and thereford/ acts onn by a
finite number of open orbits whose union is dense iBuppose is supercuspidal
and irreducible, andwg(c) = o. Then the intertwining operatad (v, o, wg) has

a (simple) pole ab = 0 or equivalentlyl (o) is irreducible if and only if

/~ _ Dg(zm;, o H(z)dz #0
A/wo(A)A™L

i
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for somef e C°(M) defining a matrix coefficient af by descent. Heres;’s,
m; € M, correspond to representativés;} of M in N as above.

In most applicationsA; = A, whereA; is the connected component of the
subgroupA; of all z € A for which 8(z) = z~1. This is equivalent taG being
semisimple. Our Theorem 1 (Theorem 2.5 and Corollary 2.6) then simplifies as
(Corollary 3.3):

THEOREM 2. Supposéd; = A, ThenA(v, o, wg) has no pole av = 0 unless
wo(o) = o and thusw? = 1. Supposavy(c) = o andw; = w|A; = 1. Then
A(v, o, wg) has a (simple) pole at = 0 or equivalently/ (o) is irreducible if and
only if ZseF*/(F*)z > y(em;, f) # 0for somef € C>(M) defining a matrix
coefficient ob by descent. Herg (m) = ZZ/Al f(zm)o1(2).

Let {1}(F) be theF-rational points of th&-conjugacy class of 1 iVl (F). In
the event that

UUtem} = WP, ee F/(F%, and M? =M}

&

which happens often and in our examples, Theorem 2 can be easily interpreted in
the context of the theory of endoscopy of Kottwitz, Langlands, and Shelstad [20,
21, 24, 37] as follows. Her®; is the¢-twisted centralizer ofz; .

Let M be the connected component of the;]roupLM of M. The automor-
phismé can be transferred to an automorphlﬁm)f M. LetH be ~ao-twisted
endoscopic group of1 for which H = Ceng (1, MY and!H = H « Wy is
L-embedded ik M = M « W by inclusion, whereW, is the Weil group. This
gives a ‘basic endoscopic data’ in the sense of Shelstad ([37], the appendix to this
paper) and we call the basic endoscopic group attachedNh 6).

One of the fundamental assumptions of the theory of endoscopy is the existence
(cf. [20, 24, 34, 37]) of a ‘map’f ~ f" from C>°(M) into C>(H) such that
Oy, f) = d(8, 1) for every stronglyg-regularf-semisimpley € M, if
8§ e H is the norm ofy, and ®3(§, ) = 0, otherwise (Assumption 4.2 of
Section 4 here, paragraph 5.5 of [20], and [37]).

Now leto be an irreducible supercuspidal representatialf agluch thatwg(o) =
o. Let H be the basic endoscopic group attachedMaq #). (The subgrougv®
of elements ofM fixed by 6 has the largest dimension among those fixed by
automorphisms in the class 6fin Aut(M)/Int(M) which preservg BN M, T).
Similarly for H = (M”)°.) AssumelJ, |, {em:} = {1}(F), M® = MY for all
i, and that the mayf — f" exists.We shall sayr comes fromH = H(F) by
0-twisted endoscopic transfer, if there exists a functfore C°(M), defining a
matrix coefficient of by descent, for whiclf' (1) # O, where f e C>(M) is
defined as in Theorem 2.
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The reader who is familiar with the theory of endoscopy realizes that conjec-
turally this is equivalent to the fact that the homomorphisngf — M which
parametrizes factors through H, the L-group ofH.

Our Theorem 2 can then be reformulated as follows (Theorem 4.5).

THEOREM 3. With assumptions as in Theorem 2, suppose

UUtemi) = (@(F), M? = M3

for all i, and that the ‘map’f +— f" exists, whereH is the basic endoscopic
group attached t@M, 0). Leto be an irreducible supercuspidal representation of
M and thatwo(c) = o which impliesw? = 1. Supposes; = w|A; = 1. Then

I (o) isirreducible if and only i comes fronHH = H(F) by 6-twisted endoscopic
transfer.

Observe how this generalizes the earlier results [9, 34] in the case of Siegel par-
abolic subgroups of classical groups. This was later interpreted in terkigygdes
in [27]. We refer to [6] and [12] for further possible connections and applications.

Our examples are given in Section 5. Our Proposition 5.1 gives a quick and
simple proof of OlSanskKs result [28] for GL, and shows that the residue is propor-
tional to the inverse of the formal degree of the inducing representation. Proposi-
tions 5.2 and 5.3 determine the reducibility for representations gf Bdnduced
from its GLy(F) x SO,_»(F) Levi subgroup. The most exotic of our examples is
the case of parabolic induction frofi= MN of an exceptional group of typE-;
for which the derived group p of M is of type Eg. Whenwg(o) = o andw = 1,

I (o) isirreducible if and only ife comes from a group of typg,, one of the two
(in fact the larger) twisted endoscopic groupsEgf(Proposition 5.4).

The case whel is not Abelian which includes all the cases when the number
of orbits is infinite is harder and covers most rank one cases. The Lie algebra
no longer be a one step nilpotent Lie algebra [26, 30]. In fact, although still the
action of M on each step ofi has a finite number of open orbits and is a preho-
mogeneous vector space, the operator, o, wg) is obtained by integration over
all of N which in general will not have a finite number of open orbits under action
of M, if N is a multi-step nilpotent Lie group. In fact, this is precisely the case for
an arbitrary maximal parabolic subgroup of a classical group, a problem which has
been studied in [11, 35] with interesting conclusions. Clearly the automorphism
6 of M still exists and plays an important role if the number of orbits is infinite,
and as it did in the case of classical groups [11, 35], one expects that the theory of
endoscopy will play a crucial role in general.

Finally our short discussion in Section 6 gives a new interpretation, in fact as
an lgusa zeta function [3, 8, 16], for some of dwifunctions (cf. [33]) wherv is
generic, giving a new context for global study. AlImost all the standafdnctions
that our method provides are among these.

https://doi.org/10.1023/A:1002038928169 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002038928169

POLES OF INTERTWINING OPERATORS VIA ENDOSCOPY 295

Magdy Assem was one person whose work on and understanding of the theory
of prehomogeneous vector spaces and Igusa zeta functions played a role in making
me interested in the theory of prehomogeneous vector spaces (cf. [3-5]). His pre-
mature and sudden death left an empty space, both as a friend and as a colleague,
and for that | would like to dedicate this paper to his memory.

1. Preliminaries

Let F be a non-Archimedean field of characteristic zero. Denotebys ring
of integers and leP be the unique maximal ideal @. Let g be the number of
elements inD /P and fix a uniformizing element: for which | | = ¢~1, where
| | = | | denotes an absolute value fBrnormalized in this way.

Let G be a quasisplit connected reductive algebraic group fvétix a Borel
subgroupB and writeB = TU, whereU is the unipotent radical d andT is a
maximal torus there. LeA be the maximal split torus of. Let A be the set of
simple roots oA in the Lie algebra ofJ.

Denote byP = MN a standard parabolic subgroup®fn the sense that c U.
AssumeT C M. Letf C A be the subset of such thaM = M.

As usual, we usév = W(Ap) to denote the Weyl group dkg in G. Given
w € W, we usew to denote a representative for

Let X(M)r be the group off'-rational characters dfl. Denote byA the split
component of the center . ThenA C A,. Let

a=Hom(XM)r,R) = HOM(X (A)fr, R)
be the real Lie algebra &. Set
a=XM)r@zR=XA)r®zR

andag. = a* ®g C to denote its real and complex duals.

Given an algebraic groupl over F, we will use H = H(F) to denote its
subgroup ofF-rational points, thus identifyingl = H(F). We then haves, B, T,
U,P,M,N, A, Ap.

Forv € af ando an irreducible admissible representatiom\of let

I(l), O') = |ndMNTGO' ®q(U’HP()> %) 1,

whereH is the extension of the homomorphidty, : M — a = Hom(X (M), R)
to P, extended trivially alongV, defined byg-fmtm) — |y m)|r for all x €
X(M)g.
Fix w € W(Ag) = W such thatw () C A, wheref generateM = M. Let
N~ = N_y4 be unipotent subgroup opposedNo= Ny. SetNz = U N wN-w™.
Let V (v, o) be the space df(v, o). Forh € V (v, o), denote by

AW, o, w)h(g) = / h(w™ng) dn, (1.1)

Nw
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the standard intertwining operator frohtv, o) into I (w(v), w(o)). The integral
converges absolutely farin some cone i, and extends meromorphically to all
of af. (cf. [32, 38]).

Wheno is tempered, the cone of convergence of (1.1) equals to what one usu-
ally calls the positive Weyl chamber, denoted(a)*. Everyv € (a)" satisfies
Re(v, H,) > 0 for everya € A — 0 and conversely, wher#, is the standard
coroot attached ta andv is realized as an element @fp)7.. Hereay is the real
Lie algebra ofA,.

In the special case whenis also (unitary) supercuspidal, the polesi@b, o, w)
all lie on a* (cf. [38]).

For both local and global reasons it is very important to determine the poles
of A(v, o, w) ([13, 19, 33]). It is well known (e.g. Theorem 2.1.1 of [32]) that
A(v, o, w) can be written as a product of such operators for which the parabolic
subgroups are maximal or of parabolic rank one. These are what one usually calls,
rank one operators

Let us concentrate on one important application of our knowledge of these
poles. Assumeé® = MN is maximal. If “M denotes the.-group of M, it then
acts by adjoint action, denoted byon the Lie algebra ofn of N, the L-group
of N. If we use®!_, “n; to denote the gradation &6t under® M (cf. [22, 33, 36]),
then eachn; is invariant undef M. Letr; = r|fn;. Assume moreover that is
generic (cf. [32, 33]). Fo¥ € C and each, 1 < i < m, let L(s, 0,r;) be the
local L-function attached te- andr; in [33]. They are simply polynomials in—*
whose constant terms are normalized to be 1 and are the local components for the
corresponding global functional equations satisfied by globally generic cusp forms.

Assumex is the unique simple root iN and letp be half the sum of positive
roots inN. Denote by = (p, a)™1p € a*. Thensa e ag. for eachs e C. Finally
let wo be the longest element iW modulo that in the Weyl group o4, in M.
SinceP is maximal, this is the only element #@f which is of interest.

Now suppose is (unitary) supercuspidal. It then follows from Lemma 7.5 of
[33] thatL(s,0,r;) = 1 fori > 3. Moreover we can restate the following result
from [33].

THEOREM 1.1. Supposer is an irreducible (unitary) generic supercuspidal rep-
resentation of\f. Then]_[f:l L(is, 0,7:) tA(s&, o, wp) is a nonzero and holomor-
phic operator as a function af, i.e., poles oi["[f:l L(is, o, 7;) are precisely those
of A(sar, o, wo).

As soon as thd.-functions L(s, o, 7;) are determined from Theorem 1.1 for
supercuspidab, the machinery of_-functions developed in [33, 36] determines
them for any irreducible admissibte. In particular, this leads to a determination
of the nondiscrete tempered spectrumGby means of the theory ak-groups
(cf. [10, 13, 19]). We refer to [23], [25], and [33] for further applications of these
L-functions.
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The purpose of this paper is to determine the poled @f o, w) in the rank
one case and with a supercuspidal inducing data (not necessarily generic), when
the action ofM on the Lie algebra of N has only a finite number of open orbits
whose is dense in. The case whenis a one step nilpotent Lie algebra then falls in
this class as a consequence of the theory of prehomogeneous vector spaces [18, 19,
26, 30, 39]. The results are interpreted in terms of the theory of twisted endoscopy
[20, 21, 24, 37] and may be considered as a bridge between a number of deep and
diverse disciplines such as number theory, harmonic analysis and representation
theory of local group, invariant theory, theory of prehomogeneous vector spaces,
and finally the theory of endoscopy.

The case of the infinite number of orbits which covers most cases is much
harder. In the case of classical groups, we have already encountered the problem
in [11, 35]. We hope to formulate the general case in a future paper. The possible
hints that one may get towards some very important global problems makes the
whole project quite worthwhile.

2. Poles of Operators

From now on assumi = MN is maximal. Lets be an irreducible unitary super-
cuspidal representation @ff. Fix s € C. Let wg be the longest element in the
Weyl group W of Ap in G modulo that of the Weyl group Ao in M. Let wg
denote a representative @i for wg. In what follows we shall compute the poles
of A(v, 0, wp) as a function ofu € af.. Observe that to compute the operator
A(v, 0, wo), v € ag, itis enough to take € af. /3¢, where; is the real Lie algebra
of the connected center & and therefore one would only need to determine the
poles ofA(sa, o, wp) as a function of.

The operatoA (v, o, wo) has a pole at = vg if and only if A(v, 0,,, wp) has a
pole atv = 0, whereo,, = o ® g0 |t will therefore be enough to determine
when one has a pole at = 0. There are certain cases that one can dispose of
immediately. The operatot (v, o, wo) has a pole ab = 0 only if we(#) = 6 and
wo(o) = o. Thus from now on we shall assume @) : M — M, sending
Ad(wg) : A — A, and thatwg(o) = o.

Itis then clear thalNg, = wON*wcj1 = N. By Lemma 4.1 of [34], it is enough
to determine the pole of

/ h(wg'n) dn (2.1)
N

atv = 0 for anyk in V (v, o) which is supported irP N, the open cell.
Givenm € M, from now on letwq(m) = walmwo, i.e.,wo(m) = Ad(wqg)(m).
By the assumption on the support pfve only need to integrate over part §f
for whichwy'n € PN~
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Givenn; € N, where at the momernitis just an index to signify a specific

element ofN, for whichwg'n; € PN, write
wg T = piny = mnin;, (2.2)
wherem; € M,n; € N,andn; € N™.

Let M act onN and N~ by adjoint action. Let Cenpt(n;) = M,, be the cen-
tralizer of n; in M, i.e.,, M,, = {m € M|Ad(m)n; = n;}. Denote byMnl_- =
Centy(n;) and M, = Centy (n}) centralizers of:; andn; in M, respectively.
They are all stabilizers of the action &f at these points and, moreovbt,, (F) =
M, and so on, wher®l,,. is the centralizer af; in M. Finally Iethnl_ = Centf, (m;)
be the twisted (by means afip) centralizer ofm; in M; simply M) = {m €
M | wo(m)ym;m~ = m;} Again M!, (F) = M}, . We start with the following
lemma.

LEMMA2.1. (a) The groupsvi,,,, M no andM,, are all equal and are all contained
inMj,.

(b) AssumeN is Abelian and therefore the adjoint action Bf onn, the Lie
algebra of N, has a unique Zariski-dendd -orbit Ad(M)n; (cf. [26, 39]) then
[M},.:M,, s finite and independent af in its orbit. Similar statements are true
for [an, t M, 1.

Proof. The decomposition (2.2) determings, m;, n;, andn; uniquely as a
function ofn;. ThusM,, C Mﬂ,-" M, C Mné’ and finallyM,,, C Min,-’ using

wy imnm ™ = (wo(m) pym™) (mn;m ™),

m € M with mn;m= € N.

Now write n; = pjlwgln,» and apply the same unigueness argument to get
M,,l_- C M,, and so on, completing the proof of part (a).

For part (b) assumgM; :M,, ] is not finite. ChooseX; € n such that; =
exp(X;). The orbit AdM)X; is Zariski-open dense in and may be realized as
M/M,,. The quotienM; /M, then imbeds im through AdM;, )X;. SinceM;
is an algebraic group, dimension M, /M, must be positive. Choose a lin&
in n with an infinite intersection wittM; /M, = Ad(M;,)X;. We may and will
assumeX € Mj /M, Takea € A such thatw(a) = t andtX € M /M,
whereq is the simple root ofA in n. Clearly m(exp(t X)) = m; = m(expX).
But exprX) = Ad(a)(expX) implies thatm; = Ad'(a)m; = wo(a)m;a~t. We
may assumevg(a) = a~>. It is therefore enough that? # 1. But this is clearly
possible by the infinitely many choices fothat we have.

Although Ad(w,) is an inner automorphism fdB, its restriction toM may
be outer. Lety = Ad(wg)|M. Clearly6 is a semisimple automorphism bf. It
preserves the paiB N M, T), as required in [20], sinc& = T(F) andAg share
same Weyl groups. Moreover changing by an appropriate element ifiy, we
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may assume thatalso fixes the splitting ity 1 M. Observe that any changeun
by right translation by an element iwill changem; in decomposition (2.2). But,
up to conjugation by an element 6f M,,, andM] = = M, will remain unchanged.
We record this information as:

LEMMA 2.2. The automorphism of M preserves the pai(B "M, T) and can
be arranged so that it also fixes the splittingihn M. Givenn; € N;, the T-

conjugacy class of the groud;, the 6-twisted centralizer ofz; in M, is indepen-
dent of the choice afg for wg in his class moduld’.

We shall now set out to compute the residue for the pole of (2.1}a0. When
o is generic and = sa, this determines the poles &f(2s, o, o) L(s, o, r1). We
should point out that knowing the poles of a lodafunction is equivalent to its
full knowledge.

We may assume is supported inP N~. The main assumption of this paper is
thatN is Abelian. ThenM acts onn, the Lie algebra o, with a Zariski-dense
orbit Og (cf. [26, 39]). ThusOo(F) = |J,{0;}, O; C n and the complement of
U; exp(0;) in N is of measure zero.

Givenn € N with waln € PN—, write waln =mn'n~,m e M,n € N, and
n~ € N~ asin (2.2). Define

d*n = g% Hum) gy (2.3)
where as before = pp is half the sum of roots itV. We need:
LEMMA 2.3. Giveni, letn; € exp(O;) denote an arbitrary element. Then the
measured*n; is an invariant measure o/ /M,, and thus induces one on its

quotientM/M; (Lemma 2.1.b)
Proof. Fixm € M. We need to show'dm 1n;m) = d*n;. We know that

d(m™tn;m) = ¢\ ~20- Mgy, (2.3.1)
But

walmflnim = wo(mfl)m,-m . milngm -milni_m
gives the decomposition (2.2) fer—n;m. Thus

d*(m™nym) = q<p’HM(U’O(m_l)'""m))d(m_lnim). (2.3.2)

Using the definition off,; we have:

{p, Hpr (wo(m~Yym;m)) (. Hyr (wo(m™1))+(p, Hyr (m)) | {p, Hy (m;))

q =4q q
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and

(20, Hy (wo(m=1))) (2p,Hpy (m))

q = [p*(wo(m™ )| = |p*(m)| = q

wherep? denotes 2 as a rational character bf. The lemma is now a consequence
of (2.3.1) applied to (2.3.2).
Finally givenv € af, leto, = o ® g™ Then (2.1) can be written as

> / g g (m ) h(ny) b
exp(0;)

_ Z/ g B0 (1N () D) 2.4)
exp(0;)

_ Z/ (v, HM(mi))O—(mi)h(ni_) d*n,-,

Xp(O)

Wherewgln,» = m;n;n; according to decomposition (2.2).
Using Lemma 2.3, eachd; induces a measureidon M/M; so that (2.4) can
be written as

Z / g v Hi (wolmmim ™) o
M

/M moeM /My,
xa(wo(m)mimfl)h(mmonfmalmfl) dm, (2.5)

where we have now fixed a representatiydor each orbitO;. The representatives
m; andn; are defined through decomposition (2.2).

For the purpose of computing the residue we may assume that there exists a
Schwartz functionb onn—, the Lie algebra oN —, such that (expX) = ®(X)h(e),
whereX e n™. Letn; =expX;,X; en”.Then

mmoni_malmfl = exp(Ad(m 1) Ad(mal)Xl.—),
and therefore (2.5) can be written as

> / 3" e (Ad(m ) Ad(mg) X[ )g v Hirtotmmin™H) o
i M

/M mo
x o (wo(m)m;m ™) h(e) dr. (2.6)

To study the poles, it is enough to evaluate an arbitrary elemémtthe contra-
gredient space of at (2.6). Givervu € M, let (m) = (o (m)h(e), v) be the
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corresponding matrix coefficient. We have therefore arrived at

Z / Z g v Hu (wolmymim™h) o
i M

IMi g

x @ (Ad(m 1) Ad(myY) X)W (wo(m)m;m ™) drr. (2.7)
What we have done up to now has required no use of the fact-timsuper-
cuspidal which we shall invoke next. But it is good to record this as:

PROPOSITION 2.4.Leto be an irreducible admissible representationifand
assume thad/ acts onn by a finite union of open orbits0;} which is dense im.
Then the poles ok (v, o, w,) are the same as those of

Z/ Z C](U’HM(wO(m)mimilnq)(Ad(mil) Ad(mal)Xl—)X
— Jm/m;

mOEMi/Mn,-

x Y (wo(m)m;m™1) dim (2.4.1)
as ® ranges among Schwartz functionsionand s among matrix coefficients for
o, with absolute convergence f@.4.1) for Re(v, H,) sufficiently large.

Now assume is supercuspidal. Lek be the center dfl. ThenA° hasA as its
split component. Given a matrix coefficiefit there exists a functiogi € C>°(M)
such that) (m) = f; f(am)w~(a) da, wherew is the central character of. As a
result (2.7), or equally (2.4.1), can now be written as

> /N / > @ a)g W ommin 5 @ (Ad(m 1) Ad(mg ) X7) x
i AM/MI' mo

x f(awo(m)m;m~1) dr da. (2.8)

Our manipulations being formal up to now will soon be justified.

Under our assumption thatg(o) = o, we havew (wo(a)a™t) = 1 for all
a € A and therefore, up to the constddt: Z(G)]~! in which A’ is the subgroup
of elements ofA fixed by wg, we can further invoke (2.8) as

Z/ / / > @(Adn™Y) Ad(mgHX; ) x
; z€A/wo(A)A-1 JacA)z(G) I M/ M; o

><c1“”HM(“’0("‘)”“""_1)> - f(zwo(am)m; (am) ™YY 1(z) diir da dz. (2.9)

HereZ(G) is the center of5. Changingn to a~'m, (2.9) can now be written as
Z/ / o Gv(m)f(zwo(m)mim_l)x
T JIM/M; JzeA/wo(A)AL

x g v+ Hy (wommim™) =1 (1 g iy (2.10)
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where

0,(m) = /N Z<1>(Ad(am*1)Ad(mgl)X;)q<”>HM<w0<a’l>a>> da. (2.11)
A/Z(G) "o

It follows from the compactness of support pthatz must belong to a compact
subset ofA/wo(A)AL. In fact, one may identifyA /wo(A)A~1 with a disjoint
finite union J; a]Z(G)O where Z(G)° denotes theF—points of the connected
component of the center ¢f. Changingf with R, f for eachj, we may assume
thatz € Z(G)°. If z; € {wo(m)m;m=Yim € M} N Z(G)°, ¢ = 1,2, thenz; and
7, are M — #-conjugate, and consequently = 1,z = zlzz‘l, usingwp(z) = z.

It therefore follows that the above intersection is finite and thoust belong to a
compact subset df (G)° and consequentit /wo(A) A2,

On the other hand for eaghm must belong to a bounded set (compact jf
is semisimple) inM/M; (cf. [1, 29]). Consequently A@)X; must belong to a
compact set im~. Using the compactness df/ AZ(G), we may assume is in
A/A N Z(G). Since orbits ofr; are openX;’s must all be nonzero and therefore
|a(a)| or equally|p(a)| must be bounded above.

To compute the residue, it would be enough to ass|me)| is small enough
to dispose of® in (2.11). Using the computation in the proof of Lemma 2.3
gV Hu(wol@™Ha) — 4(2.Hu(@) The pole therefore comes from

(2v,Hp (a))
acAjzG)na 4 da, (2.12)

[p(a)l<k

wherex is some real bound.
Suppose = sp, s € C. Then (2.12) can be written as

acA/Z(G)NA lp(a)l (2.13)

lp(a)| <k

The integral (2.13) converges for R¢ > 0 and can in fact be computed as a
geometric series ifp(a,)|%, wherea, € A, with |a(a,)| = ¢ 2. In particular the
pole is simple.

Looking back at (2.10) one can now easily conclude that the residue=ad,
i.e.s = 0, is proportional to

[M;: M,,1) / / fGwom)ymim Yo () dindz.  (2.14)
T JzeA/wo(A)AL I M/M;

The constant of proportionality depends only @nand M and in particular is
independent of .

From (2.14), it is clear that the residue is a sum of certain integrals of twisted
orbital integrals and must be formulated in the language of orbital integrals and
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endoscopy. Giverf € C>*(M) andmg € M, define the&-twisted orbital integral
for f atmg by

(o, f) = / FOmymom™) di, (2.15)

M/ Mo,y

where My ,,, = My (F) is the 6-twisted centralizer ofng in M. We refer to
Lemma 2.2 for the properties 6f We have now arrived at

THEOREM 2.5. Assumer is supercuspidal andvg(c) = o. The intertwining
operatorA(v, o, wo) has a (simple) pole at = O if and only if

> [ e e £o (251)
i@m®}1

for somef e C°(M) defining a matrix coefficient of by descent. Heres;’s
correspond to representativeg;} for the action ofM on N through walni =
m;nn; .

COROLLARY 2.6. Assumer is supercuspidal andvg(c) = o. LetI(o) =
1(0, o). Thenl (o) is irreducible if and only if (2.5.1) is nonzero for some choice
of f € C> (M) defining a matrix coefficient ef by descent.

3. The Semisimple Case

Let O be theM—orbitM /M; of m;, i.e. theM — 6-conjugacy class ofi;. It will be
the same for all andJ; {m,} C O(F), where{m;)} denotes the — 0-conjugacy
class ofm;. Next, usingA = A°Z(G), observe thatuo(A)A~' C A; and in fact
wo(AV)A*l = A;. HereA, is the connected component of the subgréypof all
z € A for which6(z) = z~*. It then follows from the finiteness @i *(Z(G)) that
[A1 : wo(A)A™Y] < oo.

(3.1) Suppose for each € A; and eachi, {zm;} = {m;} for somej. This is
particularly the case it J;{m;} = O(F). In fact, if |.{m;} = O(F), then given
z € Ay, choosezy € Ajp such that; = z2. Thenzm; = 6(z5h)m,(z5H)~* and
therefore J, {m;} = O(F) implies{zm;} = {m;} for somej. Moreover, if{zm;} =
{zm;}, then{m;} = {m;}, and therefore under (3.1) the m&pn;} — {m,} is
one—one and onto. The residue (2.5.1) of Theorem 2.5 can now be written as

Y e [ e Heted (3.2)
—~ JA/a

€EA1/wo(X)X_1

wherew; = w|A1. Theorem 2.5 can now be stated as follows:
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PROPOSITION 3.1LetA; be the connected component?of = {z € A|0(z) =
z71}. Letw; = w|A;. Assume for each € A; and eachi, {zm;} = {m,} for
somej. This is in particular the case (f), {m;} = O(F). ThenA(v, o, wg) has no
pole atv = O unlesswg(o) >~ o andw; = 1. If we(o) >~ o andw; = 1, then
A(v, o, wp) has a (simple) pole at = 0 if and only if

Z/~ y(zm;, ot (z)dz #0
i JA/AL

for somef € C2°(M) defining a matrix coefficient ef by descent.

In most of the examples we shall encouniky, = A° which forcesG to be
semisimple, and conversely. The following corollary will then cover those cases.
The corollary is quite important and will be referred to on several occasions, par-
ticularly in connection with endoscopy.

Observe thatl1/wo(A)A™L ~ F*/(F*)2.

COROLLARY 3.2. AssumeA® = A1. ThenA(v, o, wg) has no pole av = 0
unlesswg(o) ~ o and thusw? = 1.

(@) Assumew(o) ~ o andw; = w|A; = 1. Let f € C®(M) be defined by
f(m) = Zg/Al f(zm)w™1(z). ThenA(v, o, wp) has a (simple) pole at = O if
and only if

YY" ®ylemi, F)#0 (3.2.1)

i geF*/(F*)?2

for somef € C°(M) defining a matrix coefficient ef by descent.
(b) Suppose assumpti@l.1) holds andw; # 1. ThenA(v, o, wg) has no poles
atv =0.

COROLLARY 3.3. AssumeéA® = A; andwg(o) ~ o leading tow? = 1.

(a) Supposev; = w|A = 1. ThenlI(o) = I(0,0) is irreducible if and only
if (3.2.1)is non—zero for som¢ € C>°(M) defining a matrix coefficient af by
descent.

(b) Assuméd3.1) holds andw; # 1. Thenl (o) is reducible.

4. Connection with Endoscopy

Let G be a quasisplit connected reductive group a¥eiThroughout this section
we shall freely use notation and results from [20] and [37] as well as [21] and
[24]. Let (B, T) be a pair inG, whereB is a Borel subgroup with a maximal torus
T. Let 6 be an automorphism d& fixing (B, T), i.e.,6(B) = B ando(T) = T.

The groupG being quasisplit, has aR-splitting. More precisely, there exists a
collection {X} of root vectors, one for each simple root Bfin B, such that the
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triple (B, T, {X}) is preserved by’ = Gal(F/F). The automorphisms @ which
preservgB, T, {X}) then split the exact sequence

1— Int(G) - Aut(G) — Aut(G,B, T, {X}) — 1.

We shall finally assume thatpreserves the splittingB, T, {X}).

Let (G, p, nc) be aL—group data foG. ThenG is a connected reductive group
over C, p is an L—action ofl" on G, and ne. ¥(G)Y — \II(G) is aI'-bijection
between canonical based root data (cf. [20]). The automorphish® induces bi-
Jectlon59 Y(G) - ¥(G)andd”: ¥ (G)Y — w(G)v Lete be an automorphism
of G which induces the bijectiong - 6" - ng Lon \I/(G) Let (8,7, {X}) be a
I'-splitting of G which we assume is preserved dyThere is no harm in assuming

= T and we in fact will.

For the purpose of this discussion, we may ass@igesimply connected. Then
G’ andT?, i.e., the subgroups @ andT, whose elements are fixed Byare con-
nected. Otherwise we need to ta®”)? and (T?)°. If R(G, T) is the set of roots
of Tin G, let Res(G, T) = {ares = @|T?; @ € R(G, T)}. Then by (1.3.4) of [20],
the set ofindivisible roots in R,es(G, T) coincides withR(G?, T?). Similarly we
haveRreS(G 7) which can be identified Wltl{l(av)res — oV|T? a € RV(G,T))
sinceT? is connectedG being adjoint and preserving a splitting. Here" (G, T)
is the set of coroots of in G. Observe that by (1.3.8) of [2Q}es > (@Y )resiS @
well-definedr-bijection betweerRe«(G, T) and Ries(G, T).

Lets = 1 and letd be the identity component of Ceil, G)asin (2. 1) of [20].

Then:H = H « Wy is anL-group, L-embedded by inclusion hG = G o W.
We now refer to [37], where this particular case of twisted endoscopy, as called
appropriately by Shelstad the ‘basic endoscopic data’, is studied in detail. Being
an appendix to our paper, we shall freely refer to its definitions and results. In
particular, we define:

DEFINITION 4.1. The groupH whoseL-group“H = Cenj(1, G)’ « Wy is
L-embedded by inclusion ihG is called the basic endoscopic group attached to
(G, 9).

Next we reformulate the discussion on transfer in [37] as

ASSUMPTION 4.2.Let G and 6 be as in Lemma.1. LetH be the basic en-
doscopic group attached t(G, 0). Given f € C>(G), there exists a function
f™ e C>(H) such that

Dy, f) = @%@, M), (4.2.1)

for every stronglyg-regular 6-semisimpley € G(F) if § € H is the norm ofy,
and®*' (8, fH) = O otherwise. Hereb' (y, f) = >~y Py, f), wherey'runs
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over representatives for afl-conjugacy classe/’} which lie inside the stable-
conjugacy class of . Similarly are the stable ordinary orbital integratss(s, f™)
defined.

We refer to paragraph (5.5) and Section 3 of [20] as well as all of [37] for the
definition of norm and the detailed discussion of matching stated above.

We continue with the assumption th&preserves thé-splitting (B, T, {X}).
Moreover, we assume for a moment ti@tis simply connected. The®? and
TY are both connected. Sinéepreserveqd X}, simple roots inR(BY, T?) are ex-
actly the restriction ta? of simple roots inR (B, T), identifying the Weyl group
Q(GY, T?) with Q(G, T)?. ConsequentlyG? has the largest dimension among
those fixed by automorphisms in the clas®dh Aut(G)/Int(G) which preserve
the pair(B, T). In conclusionG? (59 , respectively) which is the-twisted central-
izer of 1 inG, a connected group, has the largest dimension (as a grougFover
for such@’s (§'s, respectively) in their class preserving the pdr T). One can
in fact remove the assumption th@atis simply connected and conclude the same
statement about the dimension@f.

In particular, in the notation of Corollary 3.2, if it happens that for some (and
thus all)i, M; has the largest possible dimension for the elements in the class of
6 which preservgB N M, T), where# is assumed to fix at-splitting, then the
M — 6-conjugacy class ofz; intersects the center &fl. In fact, lets; € T lie
in this conjugacy class (cf. Lemma 3.2.A of [20] sineg’s are 6-semisimple).
The¢-twisted centralizeM;, of ¢ is isomorphic (overF) with M; = M’ . Since
M2 = (M?)0, we will see tha1Mf has the same dimension Ms‘) But Mf is the
flxed point set of Ini(#;) o6 and for it to have the largest dimension WhICh is that of
M?, Int (;) must be trivial. Now, multiplyingw, by a central element if necessary,
we may assume that thd — #-conjugacy class ofi; intersectsA°. It therefore
follows that| J;{m;} C {1}(F), where{1}(F) is the F-rational points of 1}.

Now assume

UUtemi) = @), e e Fr/rm2

Moreover, assumcM0 M0 for all ;. We shall now reformulate Lemma 9 of
[37] in our notation as foIIows

PROPOSITION 4.3.Suppose Assumptieh?2 is satisfied for the group and the
automorphisn® of M, whereG andé are as in Corollary3.2. In particular A; =
A°. Assume further that

UUtem:) =T0F) and MY =M forall i.
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Let H be the basic endoscopic group attached(kb, 6). Given f € C>(M),
definef as in Corollary3.2 and let7 e C>°(H) be as in Assumptiod.2. Then

S e ez 2y Palemi, ) # 0, if and only if 7 (1) # O.

DEFINITION 4.4. Supposés, M and6 are as in Propositiord.3,

UUtem) = @), MP=MJ foralli,

and that Assumptiod.2is valid forM and6. Leto be an irreducible supercuspidal
representation of\f such thatwg(o) = o. Assumeaw; = w|A; = 1. We shall
sayo comes fromH = H(F) by 6-twisted endoscopic transfer, wherkis the
basic endoscopic group attached(d, ), if there exists a functiorf € C°(M),

defining a matrix coefficient af by descent, for WhicHH(l) # 0.

We can now reformulate our result in the language of endoscopy as follows:

THEOREM 4.5. Supposé&s, M, andé are as in Propositiort.3,

UUtem) = @@,  mMP=M? forall i,

and that Assumptio#.2 is valid forM andé. Leto be an irreducible supercuspidal
representation ol and thatwg(c) = o. Thenw? = 1. Supposer; = w|A; = 1.
Then! (o) is irreducible if and only ife comes fromH = H(F) by 0-twisted
endoscopic transfer.

5. Examples and Connection with Prehomogeneous Vector Spaces

In this section we shall produce a good number of interesting examples where the
situation of Theorem 2.5 happens. Most cases fall into the setting of Corollary 3.3
and Proposition 4.3 (under Assumption 4.2). Let us start with the most well known
of all cases, the case of Gland reprove OlSansld result [28]. The proof is
remarkably simple and beautiful, and recaptures the inverse of the formal degree
as the residue of the intertwining operatowat 0.

PROPOSITION 5.1 Fix positive integersn, n and leto; and o, be irreducible
unitary supercuspidal representations @Gt (F) and GL,(F), respectively. Let
o = 01 ® op. Thenw, (o) = o ifand only ifm = n ando; = o,. Assumen = n
ando; = o0,. ThenA(v, o, wp) always has a (simple) pole at= 0. The residue
(2.5.1) is proportional to the inverse of the formal degree of

Proof. We need to consider the Levi Glx GL, inside GL,,. Let 21 and Ao,
hi € C*(GL,(F)), define matrix coefficients af; ando,, respectively. Sek =
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hi®h,.ClearlyA = A = F x F . MoreoverN = M, and there is one open orbit
coming frommq = I, € M, (F). By Theorem 2.5, we need to calculate

/ ®y(z, o~ H(z) dz, (5.1.1)
A/wo(A)A~L

wherew = w1 ® ws with w; the central character of, i = 1, 2.

SetM = GL,, x GL,, and denote b, the twisted centralizer ofiy =1, = I
in M. ThenM, = {(m, m) |m € GL,} and thereforé/// M, can be identified with
GL, (F) which we realize as

M/My = {(I,m)|m € GL,(F)}. (5.1.2)
Write A = {(z1,22) | z; € Z,(F) = F*}. Then
wo(A)A™ = {(z,z7Y |z € Z, (F)}. (5.1.3)

Using identification (5.1.2), (5.1.1) can be written as

-1
/ / ha(zam)ha(zom ™) x
(z1,22)€A /wo(A)A~Y JmeGL,(F)

xwp T(z1)w; (22) dm d (21, 22). (5.1.4)

Breaking the integration over GILF') to one overZ, (F) and another over,, (F) \
GL,(F), (5.1.4) equals

X
/(Z1,Z2)€A/wo(A)A‘1 ~/ZEZn(F) /mEZn(F)\GLn(F)

Y Yz 0y (z2) dit dz d (21, 22). (5.1.5)

But identifying integration ovefZ,(F) with wo(A)A~* via (5.1.3), one can tele-
scope the first two integrals in (5.1.5) to imply

/ </ hi(zam)wy (z1) le) X
Zn(F)\GL, (F) 21€Zy(F)

xhi(zizm)ho(z22~

x ( / ha(zom ™ Hwy (z2) d12> drin. (5.1.6)
722€Z,(F)
If
(o2(m)vn, 1) = / ha(zmwr () dz
Zy(F)
and

(02(m)v2, V2) = / ha(zm)wy*(z) dz,

Zn(F)
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denote the corresponding matrix coefficients definedipwand i,, respectively,
then (5.1.6) can be written as

/ (o1(m)vy, V1) (o2 (m ™ )va, Vo) dhin, (5.1.7)
Zy(F)O\GL, (F)

which is precisely the Schur orthogonality relation of Harish-Chandra [14]. It is
simply equal to zero unless; = o, in which case equals(él) 1 (v1, Vo) (v2, V1),
where do,) is the formal degree af,. Observe that this nonvanishing is precisely
equivalent tawg(c) = o.

Another reductive case when Theorem 2.5 can be applied is the case of Siegel
parabolics for unitary groups. We refer to [9] for this case.

Our remaining examples are taken from the semisimple case to which we can
apply Corollary 3.2. Moreovet,J, |, {em;} = {1}(F) andM? = M? for all i in
each case (as we verify them individually) and we can therefore apply our results
from Section 4. The only exception is the case of Proposition 5.2. We leave out
the case of Siegel parabolic for the group,$@s it was treated earlier in [34].
With the exception of Proposition 5.2, in each cadse= “n; (notation as in first
section), i.e.m = 1 andr = r; is irreducible.

There are two new cases of classical groups which fall immediately into this
category. We shall treat them first.

LetG = SQ, andM = GL; x SO, _». LetP = MN be the corresponding
standard parabolic subgroup. TRepoints of N can be identified withF”"—2 and
GL1(F) x SQ,_»(F) acts onF™ 2 by N > X — aXh ', a € GLi(F),h €
SO, _2(F).

We first consider the case of = 2n + 1. ThenM = GL; x SO,,_1 and
Mp = SO,,_; is adjoint and has no outer automorphisms. In this d‘el$e:
SO2n — 2) (cf. [31] and Lemma 2.1(b)) and since &2 — 1) has no outer
automorphismsyz;’s will not be central and therefore the interpretation in terms
of twisted endoscopy given in Theorem 4.5 will not apply. On the other hand the
twisted orbital integrals in (2.5.1) now become basically ordinary ones and the
nonvanishing condition (5.2.1) of the next proposition may now be handled by
ordinary endoscopy [24]. We leave this to a future paper. But wh&ngeneric,

i.e. has a Whittaker model, the theoryloffunctions developed in [33, 36] applies.
In fact, in this casen = 2 andL(s, o, r2) = L(s, ) = L(s, 1) which always has
apole ats = 0. Thus ifo is generic supercuspidal, théio) is always irreducible.
We reformulate Theorem 2.5 and the above observation here as follows:

PROPOSITION 5.2. (al.et P = MN be the standard parabolic subgroup of
SOy,+1 Whose Levi subgroum >~ GL; x SO,, 1. Leto be an irreducible unitary
supercuspidal representation 8f. Supposevg(o) >~ o. Thenl (o) is irreducible

if and only if

YY) w@Pylem;, f) #0 (5.2.1)

i geF*/(F*)?2

https://doi.org/10.1023/A:1002038928169 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002038928169

310 FREYDOON SHAHIDI

for somef € C2°(M) defining a matrix coefficient ef by descent.
(b) Assume, moreover, thatis generic. Thedd (o) is always irreducible.

Now supposen = 2n. ThenM = GL; x SO,,_,. Let {«ag, -+, a,} be the
simple roots ofS0O,,. ThenM is generated byay, - - -, «,}. Suppose: is even,
thenwS(a;) = —a;, 1 < i < n, wherew§ is the longest element in the Weyl
group of Ag in G. On the other handp} () = —a;, 2 < i < n — 2, while
wy (ety-1) = —a, andw (@) = —a,—1, Where againod! has the same mean-
ing for M. Consequenthywo(e;)) = «;,2 < i < n — 2, wo(a,_1) = «,, and
wo(,) = a,_1. We therefore conclude thatis defined by the graph automor-
phism of the Dynkin diagram of S) ,. The case of oda leads to a similar
result. The graph automorphism is the one which ser)ds to «,, and vice versa,
while fixing other simple roots. (Unless = 5, the Dynkin diagram of S§)_»
always has a unigue nontrivial automorphism.) To apply Theorem 4.5 or Corollary
3.3, we need to assungefixes, say, the standard splitting of $0,. Observe that
H = Cent(1, M)° = SO;,_3(C) (cf. [15]). ThenH = Sp,,_,.

Next we need to verify other conditions of Theorem 4.5 or Corollary 3.3. We
will first show that open orbits oV under the action o8 = GL1(F) x Oy,_»(F)
are parametrized by classgs in F*/(F*)?, ¢ € F*. With notation as in [35],
N is parametrized by pair€X, Y), XX’ = 2Y, X € FZ 2, Y € F. Here'X' =
—Xw,,_» and for each positive integer w, € M, (F) has nonzero entries which
are equal to 1 only on its second diagonal. The open orbits come ¥ramF*
and from now on we assuni¢ # 0. If (X, Y) and (X3, Y1) are in the same orbit
of M, thenY andY; must be in the same clags}. Now supposel = a?Yq,

a € F*.Write X = aX h with h € GLy,_»(F). ThenX X' = 2Y and X1 X = 2V
imply X1hh'X] = X1X7 and by Witt's Theorem we may assurhes Oy,_»(F).
(See Lemma 4.1 of [35]). SincEX’ is a regular isotropic quadratic form, it is
universal. Therefore any such orbit appear®/in

We first show that ifw; # 1, thenI(o) is reducible. Givern; = n(Xy, Y1)
andn, = n(X,, Yo) bothin N with ¥; € F* ande = YZY{l nonsquare in
F*, choosem € M such thati, = mnim~1. Letm; € M be as before so that
waln,- = minin;, i = 1,2. Write m = diag(a, mo, a™), a € T, mg €
SO,,_2(F). Thena? = ¢ andmy = O(m)mim =t If mq = diag(al,m’l,al_l),
thenm, = diage "tas, 8 (mo)ymymgy*, ea;*) and sincar; ands~a; have different
classes modulo squares Fi, one concludes thdtn,} # {m»}. Soon we will
show(1}(F) = |, {e}. SincelJ,{m;} C {1}(F), this will imply |, {m;} = U, (e}
Applying Assumption (3.1) this implies thatdf; # 1, then/ (o) is reducible.

As we discussed before open orbitsdfunder M are parametrized by hyper-
surfacesX X' = ¢Z2, X € F?*72,Z € F*, ¢ € F*/(F*)?, or the F-equivalence
classes of quadratic formg(X, Z) = XX’ — ¢Z? which are quadratic forms in
2n — 1 variablesg € F*/(F*)?. Observe thaQ is then equivalent t@,(X, Z) =
e(X X' — Z?), using the equivalence &f X’ ande X X'. Its orthogonal group is split
O,,_1(F). Let us call the corresponding open orbit, therbit.
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Let (Xq, Zo) be a point in thes-orbit. ThenQ (X, Zg) = 0 implies that it is
Q-isotropic. Observe that f Xoh ™' = Xg,a € F*, h € Oy,_»(F), then

Q(aXoh™, Z) = a?Q(Xo, Za™) = Q(Xo, Z).

Since XoX, # 0, this impliesa® = 1 ora = +1. Thus to determine thés -
stabilizer M, of Xg, we need to findi € O,,_»>(F) such that(+1, 1) Xq = Xo.
Define (+1, h)(X, Z) = (£Xh~1, Z). We shall first find allh € Oy,_»(F) for
which (1, h)(Xg, Zp) = (Xo, Zy).

Consider Q,_i(F) and Q,_»(F) as orthogonal groups for matrices
diag(—ewy,_2, —¢) and —swy,_,, respectively. It then gives an embedding of
O,_2(F) into O,,_1(F) as well asU C V, corresponding quadratic spaces. By
an appropriate change of coordinatedjinthe matrix—sw,,_» can be written as
diag(—e, —swy,_4, £). This gives an embedding of splitQ3(F) into Oy,_»(F).
ChooseXy = (0,---,0,1) € U = F?72, Then identifying X, with its im-
ages under equivalence8(Xo, 1) = 0. The stabilizer ofXg in Oy,_»(F) is now
0O,,_3(F), the split orthogonal group in2- 3 variables. Sincé and{x1} are both
in Oz,-3(F), we may disregard:1 as the stabilizer will not change. The group
M. is therefore the split orthogonal group in 2- 3 variables, independent ef
Observe thatt; = M. N M = M; for all i ande. Moreoverl J,{m;} = {1}(F). In
fact theM — 6-conjugacy classes if1}(F) are parametrized by elements of

ker(H'(O(2n — 3)) — HYX(SO2n — 2))),

where the groups are both split and therefore of highest Witt index. Identifying
elements of71(O(2n — 3)) with equivalence classes of quadratic formsin-23
variables and those iH*(SO(2n — 2)) with equivalence classes of quadratic forms
in 2n — 2 variables with same discriminant but different Witt indices, we see that no
form with a Witt index less than — 1 can be in the kernel. The correspondivig-
6-conjugacy classes then have split2w — 3) as stabilizers and are parametrized
by F*/(F*)? to account for different discriminants. It is easily checked that=f
diag(e, I, 1) is M — 9-conjugate te’ = diag(e’, I, ¢ 1), thene ande’ have the
same class moduleF*)2. Thus{1}(F) = |, {e} = |,{m:}. Applying Theorem

4.5 and Corollary 3.3 and taking into account that= A; = GL; x {+1} and

A = A; = GL4, we have

PROPOSITION 5.3Let P = MN be the standard parabolic subgroup 80,,
whose Levi subgroull = GL1xSO,,_». Leto = w;®7 be anirreducible unitary
supercuspidal representation #f whose central character is = w1 ® w,. The
representatiory (o) is irreducible unlessvg(o) = o. Supposeavg(o) = o. Then
w? = w? = 1. Supposev; # 1. ThenI (o) is reducible. Assume; = 1. Then
I (o) isirreducible if and only ifr comes fronSp,,_,(F) by 6-twisted endoscopic

transfer.
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We conclude our examples with the exotic case of an exceptional grouf® Let
be an exceptional group of type;, either simply connected or adjoint. Lkt be
the Levi subgroup of5 generated by the roots, - - -, ag, Where the roots are as
in the Dynkin diagram of; as follows:

Oa2

a3 ag 871 (07 (671 Qr

In both cased = (GL; x Eg)/{¢3), wherels is a primitive 3rd root of 1 and
M p is the simply connecteds.
SincewS (o) = —a;, 1 < i < 7, while

wy (a1) = —as, wy (@) = —a, wy (a3) = —as,

wy () = —au, wy (@s) = —az,  and wg (ae) = —ay,
one has

wo(or1) = e, wo(az) = o, wo(az) = as,

wo(eg) = g, wo(as) = o3, wo(oe) = 1.

Thus,0 is defined by the unique nontrivial graph automorphism of the Dynkin dia-
gram of Eg. If we again assume thatfixes a splitting, therf/ = Ceng (1, M)° =
F4(C) (cf. [15], page 514, or Proposition 47 of [31]). Consequertily= Fj.

One needs to check the remaining condition of Theorem 4.5. We start with a
general discussion. In the general setting of Corollary 3.3 in wARh: A;jisthe
only restriction, we consider the projectidh — M JA? = M, whereAC is the
connected component &. We shallassumeM /A® = M = M(F). This is the
case ifA is connected, i.6A = A%, using standard lemmas (cf. [22]).

If m € M andO,, denotes its/ —#-conjugacy class, the@,, gives theM —6-
conjugacy class oz, where 0,, and7 denote images ob,, andm under the
projectionM — M, i.e. 0,, = Os. Hereg is the automorphic o induced from
6. Moreover, form; € M,i = 1,2, if O,, N O, # ¢, thenm; = m, for some
msy € O,,. Similar statements are true fir — 6-conjugacy classes and those of
M — f-classes.

One can check that if: € M, thenM? = M., whereM! andM., are the
6-twisted and-twisted centralizers ofi andm in M andM, respectively.

Suppose0 is aM — #-conjugacy class iM and O(F) = U,- O;(F), where
0;(F)'s areM — #-conjugacy classes. L& be the image oD andassumehat
O(F) consists of a singlé/ — 6-conjugacy class, the@;(F) = O(F) for all j.

Let O1(F) = {my},m} € M. ThenO(F) = {m_/l}. By the previous observations,
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we can choose representative$ € O;(F), j =2, ..., such thath’j = m_/l Thus

m'; = a;-m}, a; € A. Changingn’; in its orbit, we may assume’, = sm’l for

somee € F*/(F*)%. ThUSO(F) = J, ¢+ /(g2 {em}). Moreoveer, =M. =

]
V;Tl forall ;.

In the present case 8 = (GL; x Eg)/(¢3) inside E7, A = A and therefore
M is adjoint Eg. ThusM/A = M = M(F). Let O be theM — 6-conjugacy class
of m,. The arguments of Sato—Kimura in Proposition 47 and Example 39 of [31]
are valid for an algebraically closeggadic field, if one appeals to [17] for minor
appropriate changes fgr-adic fields. The generic stabilizer of must haveF, as
its connected component. By part (b) of Lemma 248, = M21l = F,. As before
letm; € O be the image ofny. By our earlier commentd!, = M; = Vtmj
will have a connected component of typg. But ﬁfm is just the fixed point set
of Int(m1) o 8 and since it has the largest dimension, it must fix a splittinilin
SinceM is adjoint, the fixed point seﬁ;_ll of such an automorphism must be
connected (cf. the discussion at the end of Section 1.1 of [20]). ﬁiys: Fa.

Now using the triviality ofHY(F,), F4 being simply connected) (F) = {m1}, the
— 6-conjugacy class ofi1. As before{m;} = {1}. By the previous discussion

oF)= | tem) =Tmi(F) = (L(F) = | Jtems}.

e F*/(F*)2

Here {m1} is as earlier just thé — #-conjugacy class and does not denote the
projection moduldA. Finally observe tha;, = =M, = M_ = M_ = F, for all

i. This impliesM? = M for all i as needed. We can now apply Theorem 4.5 to
get:

PROPOSITION 5.4LetG be a group of typeZ7 and letP = MN be a parabolic
subgroup whose Levi component has a derived group ofigpEix (B, T) as be-

fore and in particular such thaB ¢ PandT C M. Leto be an irreducible unitary
supercuspidal representation &f with central characterw. The representation
I (o) is irreducible unlessvg(c) = o. Supposevy(o) = o. Thenw? = 1. Assume
o = 1. Thenl (o) is irreducible if and only ifo comes fromF,4(F) by 0-twisted

endoscopic transfer. (One expects thatif(c) = o, theno either comes from
F4(F) or SOy(F).)

Remark. The stabilizeM? of 8 in M is {1} - F4. This follows from paragraph
1.1 of [20] which impliesM? = A?(M?)°,
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6. L-Functions as Igusa Zeta Functions

With notation as in Section 1, letbe the action of M on*n and writer = & ;r;.
With the exception of Proposition 5.2, in all the examples of Sectiam 5, 1, and
wheno is generic, theL-function L(s, o, ;) is precisely the normalized inverse
polynomial which gives the poles df(sa, o, wg) (Theorem 1.1). Observe that for
the case of odd orthogonal groups (Proposition 5.2), the staridaiuhction is
always trivial asL(s, o, /) = L(s, w?) has always a pole sineg® = 1 and the
poles of intertwining operators are simple. On the other hand in all our examples,
the poles ofA(sa, o, wo) are obtained by integrating an appropriate test function
over the union of open orbits of action &f on the F-vector spacen, the Lie
algebra ofN. Thus theL-function L(s, o, 71) is the Igusa zeta-function (cf. [3. 8,
16]) attached to open orbits of adjoint actionMfon the prehomogeneous vector
spacen and an appropriate test function (functidn/ in Equation (2.4.1)). We
state our result as follows.

THEOREM 6.1. Leto be an irreducible unitary generic supercuspidal represen-
tation of M, whereP = M N is as in Proposition$.1, 5.3and5.4. ThenL(s, o, 71)

is the Igusa zeta-function attached to the open orbits of actioW @in n, the Lie
algebra of N, and an appropriate test function. In each case, Ihnction is the
standard L-function. On the other hand, if one is in the situation of Proposition
5.2,thenL(s, o,7) = 1.
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Abstract. We make some remarks about the simplest example of a set of endoscopic data in general
twisted endoscopy. We call it tHeasicset of data. It is associated with purely stable transfer. Our
purpose here is simply to describe some immediate consequences and simplifications of the general
constructions for this example.

Mathematics Subject Classifications1991): 11F72, 11R34, 22E35, 22E50, 22E55.

Key words: twisted endoscopy, orbital integrals, transfer factors.

The ingredients for twisted endoscopy ([KS]) are a connected reductive algebraic
group G over a fieldF (here local non-Archimedean, characteristic zero)Fan
automorphismy of G, and a cocycle which we can ignore since our interest is
in representationg for which r is exactly equivalent tar o 8. Modulo an inner
twisting of both automorphism and group (see Section 3.1 of [KS]), we have that
G is quasisplit overF and6 preserves ar-splitting of G. These will be our as-
sumptions throughouglthough often they are unnecessarily restrictive or a simple
modification yields the general case.

There is a set of endoscopic data attached@d@op6) that is basic in several
ways. First, we expect a stable transfer of orbital integrals, one that is as invariant
as possible. Second, the definition of transfer is as simple as possible, the transfer
factors being essentially trivial on the most regular elements. At the same time, the
construction of transfer factors for a general endoscopic group ([KS]) measures, in
a certain sense, the variation from this simple case (see especially the fundamental
term Ay, in Section 4.4 of [KS]). For the example of cyclic base change fo¢GL
the basic set is essentially the only set of endoscopic data. It also appears signifi-
cant in applications such as [Sha] which is the motivation for our final observation
(Lemma 9).

1. Definitions

To form the basic set of endoscopic data6r, 6), we start with the strong invari-
ants, that is, the identity compone(@")* of the group of invariants, af" in G*.
This group is preserved under the action of the Weil grégpon G*, becaus@”

is constructed to preservelasplitting of G* and so commutes with the action of
I'. Further, from thel-splitting of G we may construct & -splitting of (G")?,
with T acting by restriction of the action o@”. Namely, for the Borel subgroup
in (G™)! we take the intersection of the Borel subgrougGif with (G*)?, for the
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maximal torus inG")* the intersection of that i with (G*)* and then construct
the root vectors in the usual way, following Steinberg (see Section 1.1 in [KS]). We
have then thatG! = (G")' o« Wy is an L-group, L-embedded by inclusion in
LG = G o« Wr. We will call “G* the L—group of strong invariants foé”. Let
G be a dual quasisplit group ovér. We shall refer tas; as thecoinvariantgroup
for G.

In the caseG is a torus, the coinvariant group, is the torus of coinvariants
of 6. In general, a maximal torus i@, is naturally isomorphic to the coinvariants
of 6 in af—admissible maximal torus i@, etc. In some cases, such as cyclic base
change,G, is naturally isomorphic to the (strong) invariantséofn G, but even
in these cases it is convenient to work expressly with the coinvariant group. On
the other hand, iiG is GL(n), with n odd, andd is transpose-inverse (followed
by a suitable inner automorphism, since we are insisting her&tpatserve an
F-splitting), then the coinvariant grou@; is symplectic, while the groug! of
strong invariants is special orthogonal, aigf G* are of dual type.

The basicset of endoscopic data foG, 6) is (G1,* G1,id, incl), that is, the
tuple consisting of the coinvariant group farthe L-group of strong invariants for
6", the identity element ofi*, and the inclusion of thé-group of strong invariants
for " in L G. The defining properties for a set of endoscopic data ((2.1) in [KS])
are readily verified.

2. Relative Transfer Factors

For the basic set of endoscopic data, passageztpar as in Section 2.3 of [KS]
is unnecessary, because the dafu@t is anL-group. The transfer factak(y, §)

is then defined in [KS] foy strongly regular inG,(F) and$ strongly 6-regular
in G(F). Note that we have replacestiongly G-regularin [KS] by strongly regu-
lar. This is allowed by Lemma 2 below. Recall thaty, §) = 0 unlessy is a norm
of 6. We shall start with the canonicedlative transfer factor attached to two norm
pairs.

LEMMA 1. The relative transfer factors fat, are trivial, thatisA(y, §; ¥/, §') =
1 for all strongly regulary, y’ in G1(F) that are norms of stronglg-regular s, &',
respectively, irG (F).

Proof. A is the product of four terms, three of which depend on additional
choices in general. We will show that in the present case all four terms are equal
to 1, whatever those additional choices may be. Fixstis a quotient, each term
of which is defined by a certain pairing in (Abelian) Galois cohomology (see[KS],
Section 4.2 for definitions). This amounts to evaluating a multiplicative character
at some element in a finite abelian group. FQt the element is the identity, since
our endoscopic datumis the identity element of;".

The termA, is again a quotient, and we use Lemma 4.3.A of [KS] to evaluate
each term in this quotient. Observe that every restricted ¢pobf types R and
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R, is from H(= G,), whereamoneof the restricted roots of typesRs from H

(see Section 1.1 of [KS] for a summary of the relevant facts due to Steinberg). We
see then from the cited lemma that there are no nontrivial contributiong tdhe

same remark about the types of restricted roots also implies that the discriminant
term A,y is trivial (see Lemma 4.5.A of [KS]).

We are then left with the one genuinely relative tefy). Because it is not nec-
essary to pass tgpairs we can use the constructions of the first part of Section 4.4
in [KS]. The termA,, is defined by a certain pairing (of Galois hypercohomology
classes) and again it is enough to show that one of them, in this case thel class
represented by the hypercocycle labelled™, s;), is the identity element. The
elementsy, is the identity, because our endoscopic datuisithe identity element
in G*. For A we recall the paragraph in [KS] before Lemma 4.4.B. Observe that the
L-group of strong invariants fat" appears in the construction whatever the endo-
scopic groupH, andA measures how embeddings’i& of L-groups of maximal
tori in H differ from those of thel-groups of (isomorphic) maximal tori ifr;.
Following the actual construction shows that for the basic set of endoscopic data
eachA(w), w € Wg, is the identity element. Note that the last datum, the inclusion
homomorphism ik G of the L-group of strong invariants far", is significant here.

This completes the proof of the lemma.

3. Transfer Factors

The transfer facto (y, §) for G, may now be normalized so that(y, §) = 1 if

y is strongly regular and a norm of stronglyregularé, andA(y,§) = 0 if y is

strongly regular and not a norm of stronglyregulars (see Section 5.1 of [KS]).
Before continuing, we record the following:

LEMMA 2. A strongly regular element ir1(F) is stronglyG-regular.

Proof. This is a supplement to Lemma 3.3.C of [KS]. We use the notation from
that lemma without further explanation. We assume that the elemenstrongly
regular inH (F) = G1(F) but not stronglyG-regular. Then there is an element, say
w, of the Weyl group2? (G, T) realized in Cent(s*, G). Recall that in the present
setting we haves = G*, 6 = 6*; the elemen$* in the 6-admissible maximal
torusT is not, however, to be identified with the given element with norm (the
definition of normin Section 3.3 of [KS] extends naturally to strongly regulgr
But any element of2?(G, T) is realized in thed-invariants. A short calculation
then shows that (6*) = §*(mod(1 — 0)T). This then implies that(y) = y.
That is impossible becausg(H, Ty), a subgroup of2? (G, T) under our various
identifications, coincides witt?(G, T) in the caseH is G, (see Section 1.1 of
[KS]). Thusy is stronglyG-regular and the assertion of the lemma is proved.

Remarkl. The lemma is true for any set of endoscopic data thirge in the
sense of Remark 2 below.
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4, NormsinG,

The definition of norm in [KS] does not guarantee that a stroégiggular element
has a norm in a given endoscopic group. However we do have the following:

LEMMA 3. Every stronglyg-regular element inG(F) has a (strongly regular)
norminG(F).

Proof. We return to Lemma 3.3.B of [KS] in which a maximal toriig over
F in an endoscopic groufl is shown to embed oveF as the coinvariantgj in
somef-admissible maximal torus ovét in G. What we need to show now is that:

(a) givens stronglyd-regular inG (F) (= G*(F)) there is @-admissible maximal
torusT over F in G and an element* in T (F) such that* is 0-conjugate to
8 and the image of* in Ty is F-rational, i.eo (6*) = *mod1—6)T,0 €T,
and

(b) there is a maximal torusy over F in H which embeds, in the manner of the
lemma, as the coinvariants of the maximal tofugiven in (a).

Thens evidently has a norm iff; (F), completing the proof of the lemma.

To prove (@) we first choose an arbitrafystable pair(B’, T’) in G with T’
defined overF and then takg € G (F) such that B(8), T(8))¢ = (B’, T'), where
on the left we have chosen some(ito #-stable pair. Observe that= g=156(g)
lies in T'(F) and that for any in I" we haveo (g)~1g normalizesT’ and (7")?,
and acts as an elemeant of Q°(G, T’) such thats (§') = w,(8") ando(¢) =
wy(e) for e in g=*G% (F)g c T'(F)’. We can then apply the usual argument with
Steinberg’s Theorem (on rational elements in semisimple conjugacy classes in a
simplyconnected quasisplit group) to geh G’ (F) such thatr (h)~*h normalizes
T’ and(T')?, and acts a&, on them. We then s&& = hB'h™1, T = hT’h ' and
8* = hé'h~t = h8'6(h)~%, and observe that the statement of (2a) is true with these
choices.

For (b) we again use Steinberg’s Theorem, this timeHor= G, (or, more
precisely, its simply-connected cover). To follow the usual argument we need to
know that any element aRf(G, T) lies in Q(H, Ty), (if Ty is embedded a%;,
overF), as is true.

This completes the proof of the lemma.

Remark2. The assertion (b), and hence also the lemma, is true for any large
set of endoscopic data, by which we mean the Weyl groupHfds the full set
of #-invariants in the Weyl group fo6. If the system of restricted roots associ-
ated tof is reducedthen H must be the coinvariant grou@,, but in even in the
simplest nonreduced example = GL(3) with 0 transpose-inverse (followed by
an inner autorphism in order to preserve Brsplitting), bothG, = SL(2) and
H = PGL(2) are attached to large sets of data.

We also note the following simple corollary of Lemma 3.3.B of [KS]:
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LEMMA 4. LetTy be a maximal torus oveF in H. Then the strongly;-regular
elements il (F) that are norms form the stronglty-regular elements in a neigh-
borhood of the identity ifTy (F).

Proof. Here H can be arbitrary butG, ) must be as we have assumed. We
chooseT as in the cited lemma and observe that because the restricti@ricof
the derived group of is semisimple [St], the image df(F)T(F) under the
natural projectiol” — T, is open inT, (F), whereZ denotes the center ¢f and
T! = T N G1. The lemma then follows.

5. Transfer

We recall the expected transfer of orbital integrals associated with the basic set of
endoscopic data as:

CONJECTURE. Givenf e CX(G(F)) there existsfi € Gi(F) such that
Oy (v, f1) = 0%(8, f) if strongly regulary € G1(F) is a norm of (strongly-
regular)d € G(F), and O, (v, f1) = 0 if strongly regulary € G.(F) is not a
norm.

Here Oy (y, f1) is simply the sum of the integrals gf along the conjugacy
classes in the stable conjugacy clasy pnd0? (8, f) is the sum of the integrals
of f along theg-twisted conjugacy classes in the stafavisted conjugacy class
of 6. Invariant measures are normalized in the usual way; we will say a little more
about this below.

The conjecture is known to be true for archimedea[RS]). In the present
case,F nonarchimedean and of characteristic zero, it amounts to some familiar
problems about the behavior of orbital integrals around the identity; we forgo a
more detailed discussion of this. What we will do here is simplggsume that the
conjecture is true near the identity i, (F). This means we have an equality of
functionsOs = 0Y on the strongly regular elements around the identitg jiiF).

Here the function0f is defined byOS(y) = 04, f) if v is a norm ofs, and
0%(y) = 0if y is not a norm. We remark in passing that the equality is extended,
with just a little care, to all regular elements.

6. Germ Expansion |

Let D1(y) be the usual normalizing factor for the (unstabilized) orbital integral
O(y, f1) andD(8) be that for the@-twisted orbital integrab? (8, f). ThenDy(y) =
D¢ (8) if 8 has normy; this was the assertion;y = 1 in Lemma 1. BecausB,
is stably invariant andg is stablyd-twisted invariant, we can replac®y = 0%
by an equality of normalized integrals which we writedag = ®Y,.

Each side ofdy = @Y has a Shalika germ expansion around the identity in
each Cartan subgrouf (F) of G1(F). We shall compareonstant terms (that is,
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the contributions from identity elementg, on the left anct; on the right) in the
caseT; is elliptic, and work on a neighborhood of the identity sufficiently small
that all its strongly regular elements are norms of elemen&(if)T1(F), with
notation as in the proof of Lemma 4 In fact, to shorten arguments we will later
assume that the restriction 6fto Z is semisimple, allowing us, in particular, to
omit Z(F) from the last sentence.

Each term ind®,(y) is a normalized orbital integrab(y’, f1), wherey’ is a
representative sufficiently close to the identity for a conjugacy class in the stable
conjugacy class of. It therefore contributes(y’) f1(eg,) to the constant term
in the germ expansion cb,,, where the constant(y’) depends on the choice of
invariant measures defining the orbital integral. By Rogawski’s Theorem, which
describes the constant explicitly, we can choose measures in such a way as to have
c(y) = c(y) (see [K]). We then conclude that the constant term for the expansion
of @y, is co f1(eg,), Wherecg is nonzero.

By definition, ®%,(y) is the sum, over representativésor the -twisted con-
jugacy classes of elements @Y F) with y as norm, of the normalize@-twisted
orbital integrals®’ (8, f). Some of these elementsare near the identity iG (F)
and we can immediately do a uniform version of the usual Harish Chandra descent
around the identity element; in G(F) for thesed. For generals, however, we
need some preparation.

7. A Stablef#-Twisted Conjugacy Class

Observe that; is 6-semisimple [KS] sincdnz () 06 = 6 is a quasi-semisimple
automorphism [St]. More general considerations then lead us to defirstathie
f-twisted conjugacy classf ¢; to be the set of all elements i@G(F) that are
6-twisted conjugate te; in G(F), that is, to consist of all elementsin G (F)
of the forme = g~10(g), with g € G(F). Then Intg) maps Cent(e, G)° to
G! = Ceny(eg, G)° = (G?)? and moreover:

LEMMA 6. Int(g) : Cent(e, G)° — G'is an inner twist.

Proof. Let o € T. Thengo(g)~! is fixed by 6. But because preserves a
splitting of G we have thatG’ = Z?G* (see [KS, Section 1.1]), wher# is the
center ofG. The lemma then follows.

In general, thed-twisted conjugacy classes in the stableonjugacy class of
e are parametrized by the classesdi(I", G?) which vanish inF (", G) under
the map given by attaching the cocyete— go (g)~* to g716(g). In particular,
they are finite in number. We shall consider the case in [Sha]. Namely, we assume
thateachd-twisted conjugacy class in the stalfleéwisted conjugacy class ef;
contains an elementsuch thatCeny (¢, G)° is quasisplit overF. Then all attached
cohomology classes have trivial image under the map induced by the projection
G’ — (G")ag = GL4 As we shall see, the-twisted conjugacy classes are then
parametrized (with multiplicity) by the kernel 61 (", %) — HY(T, Z).
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LEMMA 7. Suppose that € G(F) is of the formg=16(g), ¢ € G(F), and that
Cent (e, G) is quasisplit overF. Then, after replacing by ag-twisted conjugate
element if necessary, we may assume @ty (¢, G)° coincides withG* and that
bothe andg are central inG.

Proof. Takee as in the statement of the lemma. Then(gnt: Ceng (e, G)° —
G*, an inner twist of quasisplit groups, must be Brisomorphism. Multiplying
g on the left by an element of!, as we may, we can then assume thatgnt
induces a map between given pa{®’, T') and (B, T) in G such that all four
groupsB’, T’, B, T are defined oveF and(B! = BN G, T = T N G') is part
of an F-splitting for G1. We now multiplyg on the right by a suitable element of
G(F) and assume that lies in T. But thenNa(¢) = Na(g™6(g)) = 1 for all
rootsa of T in G and so Cente, G)° = G* (see [KS, Section 1.3]).

Second, we multiplyg by an element of"! to assume Ing) preserves arf -
splitting of G. Then, examining the action gfon root vectors irG*, we find that
a(g) = a(6(g)) for all rootse of T in G. Thuse = g~10(g) is central inG.

The last step is to show thatlies in G1Z. Let goq be the image of under
the natural projection off onto its adjoint groupi aq. Thenbaq(gad) = gad» Where
0ad(gad) = (6(g))adas usual, and sgyqlies in (Gag)?. But this group is connected
(see [KS, Section 1.1]) and so it is the image®f under the natural projection.
This implies thatg lies in G1Z, and so again we can multiply on the left by an
element ofG* to get centrakg such that = g~10(g). This completes the proof of
the lemma.

If we now set

Z1=Z(F)N{z (%) :z€ zZ(F)} and
Z,=Z(F)N{g'0(g) : g € G(F)}

then, arguing as in the lemma, we have tHatis contained inZ,. Moreover a
set of representativesgmplete and irredundanwill always be assumed in this
terminology) for the cosets df, in Z; provides us with a set of representatives
for the 6-twisted conjugacy classes in the stablewisted conjugacy class of the
identity element. We write a representative as= zi‘le(z,»), withz; = &1 = ¢5.

Remarl3. If we want to allow redundancy in counting thetwisted conjugacy
classes then we can s&f = {z710(z) : z € Z(F)}, so thatZs C Z, andZ;/Z3 is
isomorphic toR= Ker(HY(T", Z%) — HY(T, Z)) in the usual manner. The group
RthenyieldgZ, : Z3] representatives for each of thawisted conjugacy classes.

8. Germ Expansion I

We return to the germ expansion®f, (y) for strongly regulay sufficiently close
to the identity in an elliptic Cartan subgroufy(F). As promised, to make the
arguments a little shorter we shall assume the restrictightofZ is semisimple.
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Then we can choose stronglyregulars in T1(F) neare¢ with y as norm, and do

it in such a way thay — § is smooth. The elemetis strongly regular inG*.
Choose a set of representativesfor the conjugacy classes in the stable conjugacy
class (no twisting) 08 in G1(F), with w, = &g.

LEMMA 8. {w;lsicSszi, w; as above} is a set of representatives for tige
conjugacy classes of elementsgigF) with normy .

Proof. Suppose’ = w186 (w) is an arbitraryg-twisted stable conjugate 6f
Thenwo (w)~tliesinT? = Cen (8, G), o € I'. Thusw~10(w) lies in G(F) and
S0 is stablyg-twisted conjugate tes. Then there ig in G(F) and somé& such
that g~ w10 (w)0(g) = & = z; *0(z;) and sow’ = wgz; ' liesin G’ = Z°G*.
Write w’ = zw?, accordingly. Ther’ is #-twisted conjugate téw?) ;6w and
moreoverwlo (wl)~! liesin T, o e I'. It is now easy to complete the argument
that eactf—twisted conjugacy class has a representative as in the statement of the
lemma, and check there is no redundancy. Thus the lemma is proved.

We now apply Harish Chandra’s Compactness Principle to descend uniformly
from G(F) to G1(F) (see Section 1 of [LS] for similar arguments). This yields
functions f; € C>°(G*(F)) such that

o sw,, i)=Y o (w;tesw,, f)
j J

for eachi. The left side is a normalized stable orbital integbai(s, f;) for G(F).

Its germ expansion around the identity element has constantdefifz;i) =
c;0%(e;, f), where the term on the right is the integral pfalong thed-twisted
conjugacy class of;. Rogawski’'s Theorem again shows that measures can be
normalized so that alt; are the same and nonzero. We then conclude that the
constant term in the germ expansion®f(y) is c1 Y, 0%(e;, ). This sum is a
stable distribution, and so we write it @&(¢;, f). To finish our comparison of
the constant terms we have:

LEMMA 9. There is a nonzero constaasuch that. fi(sg,) = Ol(es, f).

Remark4. A closer look at the various constants shows that we can normalize
measures so that= 1 (see [K]). Here we us¢(G1) = ¢(G'), whereg(x) denotes
the F-rank of the derived group &f.

Remarks. Itis no more difficult to handle the general case, that is, to drop the
assumption from [Sha] on the structure of the sta@btevisted conjugacy class of
the identity. However, to defin@? (¢, f) we must then insert the sign-1)7¢ in
front of each term0? (¢;, f) before summing, wherg(e;) = q((Cent (i, G))°).

Remark6. An analogous result foF archimedean is shown using a limit for-
mula of Harish Chandra in place of Shalika germs.
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