TORSIONAL OSCILLATIONS AND THE SOLAR DYNAMO REGIME
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ABSTRACT. We discuss the observational results of cyclic variations of solar rotation
and how these can be used as a means of probing the solar dynamo. We shortly describe
two examples of dynamo models where the a-effect has been modified, and compare the
resulting flows to the observations.

1. Introduction

The observed temporal dependence of the solar differential rotation can be understood as
an empirical constraint to the deep-seated turbulent dynamo. In our opinion the latter
forms the physical background for all the various cyclic activity phenomena of the main
sequence stars. The construction of the stellar dynamo can only be calibrated by the Sun,
which is the best observable star. As only surface features are observed, however, it is not a
trivial task to solve the inverse problem of finding either the inner flow or field regime. We
continue here to probe the dynamo by means of the cyclic variations of the solar rotational
rate, = Q(6,t), in addition to the butterfly diagram and the magnetic polar branch. As
we have described in much detail (Riidiger et al., 1986, hereinafter referred to as paper I)
all the polynomial modes in the series expansion

Q=Q E wnPY(cos )/ sin @ (1)

n=1,3,...

proved to be periodically time-dependent. The modes with n > 5, i.e. the original torsional
oscillation (Howard and LaBonte, 1980), form a 4-belt pattern in both hemispheres migrat-
ing in 22 years from the poles to the equator. Two belts are faster (“accelerating”) and
two are slower (“decelerating”) than the large-scale modes. The main acceleration belt lies
always equatorwards from the centre of the belt of magnetic activity. The pattern starts
its migration at the poles during the activity minimum — and reaches, after 22 years, the
equator also at the minimum. Additionally, also the modes with n = 3 and n = 5 vary in
phase with each other while their mazima occurs at mazimal activity. The full pattern of
variable Q looks somewhat different (Snodgrass and Howard, 1985). There is a speeding up
of the rotation at high latitudes during and just after the activity maximum and a wave then
emerges at mid-latitudes during the minimum and moves toward the equator. Compared

387

J. O. Stenflo (ed.), Solar Photosphere: Structure, Convection, and Magnetic Fields, 387-390.
© 1990 by the IAU.

https://doi.org/10.1017/5S0074180900044387 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900044387

388

with the temporal variation of the large-scale modes (n < 7), the torsional oscillation is the
dominating effect, the maximum contribution obtained from the mode with about n = 9.
A similar power law has recently been derived by Stenflo (1988) for the contribution of the
polynomial modes of the radial magnetic field over the cycle. Approximately according to
the expectations (the induced flow behaves quadratically with respect to the magnetic field)
it was found that the polynomials with » = 5 and n = 7 provide the largest contribution
to the solar radial magnetic field. This finding is also an important empirical constraint for
an optimal dynamo model.

These observations in mind we recall the results of Paper I in which the first published
solar-type dynamos (Steenbeck and Krause, 1969) were analyzed by means of the solution of
the Navier-Stokes equation with mean-field Lorentz force. What we found was that indeed
two accelerating and two decelerating belts of Q exist for dynamos with a relatively deep
convection zone. Also the location of the lower fast belt was correct and even the other
mentioned properties of §(8,t) could be reproduced, besides the behaviour of ws which
varied in anti-phase relative to ws. As the old dynamo models were only tractable in a
very rough way and as new ideas on the inner profile of the a-effect have meanwhile been
formulated, we analyze with some recently established dynamo models (Brandenburg and
Tuominen, 1988; Brandenburg, 1989) their associated magnetically induced mean flows. We
adopt the theoretical formalism of Paper I, also with its shortcomings described there in
detail. We mainly change the two most important input parameters of the dynamo theory,
i.e. the a-effect and rotation law. With respect to the latter it was the helioseismologically
derived solar rotation law which is involved, so that both the radial and the latitudinal
gradient of Q contribute as inducing effects to the dynamo action. The fixing of a is more
troublesome. It is certainly positive near the surface due to the dominating density gradient,

ax U, (2)

where £, = (dlnp/dr)~! is the density scale height. But deep in the convection zone the
opposite velocity gradient may weaken its value until even the sign is changed,

am Q1 -£,/L,), 3)

with £, = (dln ugyp/dr)~! (Krause, 1967). This consideration may especially hold in the
overshoot region below the convectively unstable zone as the density scale length £, becomes
larger than £, (cf. Pidatella and Stix, 1986).

2. Dynamos with negative a

We have thus analyzed first a model with a lower region with a negative a-effect (cf. Fig. 2b
in Glatzmaier, 1985). The results for this model are given in Fig. 1. The butterfly diagram
indeed exhibits a very solar-like behaviour. The toroidal field belts start at latitude 60° and
reach maximum at 15°. The phase relation between B, and By, however, does not agree
as both components are varying in phase, in opposite to observations (Stix, 1976). Indeed,
as a consequence the accelerarion belt is located above the activity zone, contrary to the
observations. Furthermore, w; varies much too strongly. That clearly reveals the existence
of too large contributions of the lower polynomial modes in the magnetic field representation
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(cf. Stenflo, 1988). On the other hand, also the other modes in Eq. (1) have “wrong”
properties: w3 and ws and are out of phase. We have thus to state serious contradictions
between the model and the real observations, in particular of the time-dependence of the
rotational rate (1). Similar difficulties have been described by Glatzmaier (1986) for just

this type of dynamo.
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Fig. 1. Left panel: Butterfly diagrams for the B,- and Bgy-field for the dynamo model with negative
a. Right panel: The corresponding torsional wave pattern with n > 5. Note that in the right panel
the ordinate is linear in § and the abscissa goes from 0 to 1.57. The shaded areas define faster

rotation.

3. Higher order terms in «

We suggest thus to reject the idea of negative a at the bottom of the convection zone and
turn to another modification of the traditional a-profile. As is well known from the theory
of differential rotation, it is not enough to consider only the turbulence correlations which
are linear in the rotation rate . As the Sun is not a slow rotator in the sense of the
turbulence theory (“slow” means Tyot < Tcorr) also higher order terms must be involved in
the calculations (cf. Riidiger, 1989). The same arguments, of course, hold for the a-effect:
Higher order terms also exist with quite another latitude dependence,

a=ag— azcos’h 4)

(Riidiger, 1980, Schmitt, 1987), so that it even may change its sign at some latitude. For
a9 = ay the a-effect vanishes at the poles. We want to favour this case rather than that
where there is a node at a certain latitude, e.g. at 30° as Schmitt suggests, which seems
to be too extreme. Our choice only concentrates the a-effect to lower latitudes instead
having maximum at the pole. The hydrodynamical results of this procedure are rather
surprising (Fig. 2). The butterfly diagram and polar branch have the right properties and
also the phase relation agrees with the observations, i.e. B, By < 0. In addition the Stenflo
constraint is fulfilled, i.e. the lowest modes do not contribute too strongly. The torsional
oscillation belts have the correct location in the latitude-time-diagram, compared to the
magnetic field, but they start at the activity mazimum (reaching the equator after a whole
22-year cycle also at the maximum). That is a first contradiction while the second one
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is the out-of-phase variation of w3 and ws. But the behaviour of wj itself corresponds to
the observations, it has maximum at the activity maximum and minimum at the activity
minimum. Obviously, only the term ws is still out of correspondence.
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Fig. 2. Left panel: Butterfly diagrams for the B,- and By-field for the dynamo model with ap = a3.
Right panel: The corresponding torsional wave pattern.

We understand these examples as an improvement of the preliminary analysis presented in
Paper I, where only the depth of the convection zone resulted from the comparison of the
calculations and the observations. It seems possible to use the observed flow pattern as a
precise tool for analyzing the inner turbulent regime of stellar convection.
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