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Abstract

Parameters such as pretreatment method, enzyme type and concentration, determine the conversion efficiency of biomass’ cellulose and
hemicellulose to glucose and mainly xylose in biomass-based fuel production. Chemical quantification of these processes offers no
information on the effect of enzymatic hydrolysis (EH) on particle morphology. We report on the development of a microscopy method for
imaging pretreated biomass particles at different EH stages. The method was based on acquiring large field of view images, typically
20 × 10mm2 containing thousands of particles. Morphology of particles with lengths between 2 μm and 5mm could be visualized and
analyzed. The particle length distribution of corn stover samples, pretreated with increasing amounts of sulfuric acid at different EH stages,
was measured. Particle size was shown to be dependent on pretreatment severity and EH time. The methodology developed could offer an
alternative method for characterization of EH of biomass for second generation biofuels and visualization of recalcitrant structures.
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Introduction
The production of biofuels from biomass is a field that has
developed significantly during the last decade (Ragauskas et al.,
2006; Fairley, 2011; Albers et al., 2016). Due to environmental,
economic, and social concerns (Kleiner, 2008) regarding the use
of edible products for use in the industry or energy sector, the
focus has diverted on the use of residue biomass to produce
bioethanol and other chemicals (Ragauskas et al., 2006; Fairley,
2011). This second-generation biofuels are commonly produced
from corn stover, sugar cane bagasse, or woody biomass from
forest or industrial by-products (Ragauskas et al., 2006). The raw
material for producing this energy form is considered sustainable,
renewable, and it is readily available, without the need of “dirty”
extraction methods compared to fossil fuels. However, the
extraction and conversion of cellulose and hemicellulose, which
are the energy bearing molecules in biofuel production, is a
complex process associated with considerable costs.

Cellulose is well-protected in a thick plant cell wall and pre-
treatment processes are used to break-up the lignin and/or xylan

bonds in the wall (Behera et al., 2014). This step of pretreatment is
an active field of investigation and several methods have been
developed such as hot water, dilute acid pretreatment, and lime
(Wyman, 1994; Zhao et al., 2012; Behera et al., 2014). The choice of
pretreatment depends on the biomass type, and on the efficiency of
the pretreatment to “liberate” cellulose and hemicellulose in a
speedy and cost-efficient way, without destroying it. In this respect
investigation on the different parameters such as temperature,
pressure, or concentration of chemicals is necessary for optimizing
the overall process (Zhao et al., 2012). After cellulose and hemi-
cellulose are made accessible in the process of pretreatment, the
process of enzymatic hydrolysis (EH) follows. In this step, spe-
cialized enzymes convert cellulose to glucose and hemicellulose to
mainly xylose (depending on the hemicellulosic structure other
sugars are released as well) (Avci et al., 2013). The choice of
enzyme mixture, consisting of cellulases and hemicellulases
depends on the biomass type and is crucial for the conversion to
sugars (Banerjee et al., 2010). Afterwards, a yeast fermentation
converts glucose (and depending on the yeast xylose) to ethanol
and, finally, distillation is used to purify the final product. For a
widespread use of biofuels, their production has to be at least as
economic as that of fossil fuels, therefore the whole downstream
process has to be optimized (Viikari et al., 2012; Albers et al., 2016).

Optimization of these processes includes cost efficiently
maximizing the enzymatic conversion yields of cellulose and
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hemicellulose to glucose and xylose. Conversion efficiency mea-
surements are performed with techniques such as high perfor-
mance liquid chromatography (HPLC) (Cheng et al., 2010;
Foston & Ragauskas, 2012; Liu et al., 2012), nuclear magnetic
resonance (Hu et al., 2011; Foston et al., 2012), or near infrared
spectroscopy (Hames et al., 2003; Templeton et al., 2009). The
principle behind such applications is that, if the conversion effi-
ciency is increasing, then the optimization steps followed in the
pretreatment or EH process were successful. Such an approach,
focuses exclusively on the chemical composition of the sample,
ignoring the effect of morphological changes. Pretreatment
modifies significantly the plant cell wall morphology, which will
largely determine the accessibility of enzymes to cellulose and
hemicellulose during EH. This will ultimately define the perfor-
mance and yield of the overall process. Furthermore, EH itself
also changes the morphology of biomass particles. Therefore,
understanding the dynamics and influence of these processes on
biomass particle morphology could offer valuable insight on their
mechanism of action and their capabilities regarding efficiency.

In this study, the focus was on imaging, image processing, and
statistical analysis, of biomass samples at different pretreatments
and EH stages. Special consideration was given to imaging large
amounts of individual particles to reveal particle length dis-
tributions (PLD). Biomass samples are characterized by particles
with high dynamic range in size. Most of the particle size char-
acterization techniques rely on light scattering methods (Jager
et al., 2011) which are high-throughput and efficient. However,
visual information on individual particles can only be achieved
with imaging techniques. Optical (brightfield) microscopy, can
offer visual evidence of individual particle morphology regarding
shape, as well as plant cell wall morphology. Moreover, it is not
limited in dynamic range as any particle size can be visualized and
measured. Therefore, it is most accurate in this respect. In con-
ventional microscopy, the number of particles that can be imaged
in one image is limited by the field of view of each image, however
it can be further extended with stitching techniques. This can be
accomplished by acquiring numerous adjacent images of the
sample and stitching them together to create one large field of
view (LFOV) image in the order of hundreds of square milli-
meters. The stitching method has already several applications
(Madabhushi et al., 2014; Penzias et al., 2016). On such LFOV
images, small (in the order of μm) and large particles (in the order
of mm) can be well visualized, without loss in resolution, and
quantified. In this way, millions of particles can be visualized and
characterized, making the whole sample characterization possible
in a time-efficient manner.

The goal of this study was to investigate the capabilities of the
LFOV imaging methodology in the field of biomass bioconversion
and to develop methodologies for analyzing such images. Corn
stover samples that received different dilute acid pretreatments and
at different stages of EH were imaged and analyzed with focus on
the microscopic morphological changes, and on particle size dis-
tribution dynamics due to pretreatment and during EH.

Materials and Methods

Biomass Samples

Corn stover samples (Table 1) were collected and pretreated based
on National Renewable Energy Laboratory guidelines, with varying
concentration of H2SO4, namely 0.36, 0.60 and 1.44 w/w%, at 190°C
for 1min holding time. Pretreated samples were diluted to a dry

matter concentration of 15 w/w% in a 1 L reactor and incubated
at 62°C and pH 4.5 under continuous stirring with DSM
enzymes containing cellulases and hemicellulases (DSM, Delft, The
Netherlands). Enzymes were dosed in such a way that considerable
glucan conversion was reached. After 0, 16, and 120 h samples were
taken, heated for 30min at 95°C to inactivate the enzymes. Samples
were stored at 4°C until further analysis. For imaging, samples were
diluted with distilled water at 10μg dry mass/mL. At this con-
centration particle density was low enough for visualizing each
particle. Samples were mounted on a microscope slide and covered
with a coverslip. The sugar composition in the pretreated corn
stover and enzyme hydrolysates was measured according to a
method described elsewhere (De Souza et al., 2013).

Imaging–Large Field of View

LFOV images were acquired with a Keyence VHX 5000 (Keyence
Corporation, Itasca, IL, USA) operated in stitching mode. Images
were acquired with 200 × magnification (lens model VH-Z20R;
Keyence Corporation). The microscope’s resolution performance
is detector limited, which means that the resolution is limited by
the detector’s pixel size and not by the optics. Therefore, the
resolution of the system in the 200 × magnification setting is
defined by the field of view of each pixel of the complementary
metal-oxide-semiconductor sensor, which is 1.1 μm. Each image
tile acquired had 1,600 × 1,200 pixel resolution which corre-
sponded to a 1.7 × 1.3mm2 FOV. A series of 17 × 11 image tiles
were acquired and subsequently stitched together to produce the
LFOV image. Images had 30% overlap to allow for good stitching.
The resulting LFOV image had a field of view of 20 × 10mm2.
Acquisition of image tiles and subsequent stitching was per-
formed automatically by the microscope software. Since this is a
widefield approach, acquisition of each image tile depends on the
camera exposure, which is in the ms range. Acquisition of all the
images, including stage translation, requires 3min approximately,
and stitching and saving the LFOV image 3min approximately.
In all, three LFOV images for each sample condition were
acquired and analyzed. The resolving power of the microscope,
therefore also the minimum particle length that could be mea-
sured, was 1.1 μm (determined by the pixel size) and the max-
imum measurable particle length was 22.3mm (defined by the
diagonal of the LFOV image). However, since a four-pixel cut-off
(any object with pixel size below the cut-off value is ignored) is
applied during image analysis (see section below) the minimum
measured particle length was 2.2 μm (2 × 2 pixel configuration).

Particle Size Analysis

LFOV images were processed with a median filter to remove noise
and segmented based on intensity thresholding. Afterwards each
particle’s cross sectional surface was measured with the analyze
particles plugin of ImageJ (Schneider et al., 2012). A four-pixel
cut-off was used to eliminate any noise artifacts. Most particles
appeared with an elongated cylinder like morphology. An ellip-
soid was fitted to each particle and its major and a minor axis
were calculated. The major axis of the ellipsoid was considered
the effective particle length, which from now on will be simply
called particle length. PLD histograms were reconstructed based
on particle surface weighting. Particle surface, instead of particle
count, was used as weighting. This method was chosen, since
there are many small particles compared to the number of large
particles. However, these small particles contribute less to the
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overall mass of the sample. Therefore, particle count weighting
would result in an underestimation of average particle size. PLD
were calculated with a custom routine in MATLAB 7.1 (Math-
works, Natick, MA, USA). PLD were fitted with a bi-lognormal
curve with the curve fitting tool of MATLAB. The fitting para-
meters of the bi-lognormal distribution were ℓ1, and ℓ2, a1 and a2,
w1 and w2 which correspond to the center, the area, and the log
standard deviation of each lognormal fitted curve. A nonlinear
least square method was used with the Trust-Region algorithm
and the bisquare robust regression method. The probability of
each length bin was used as fitting weight. Average particle length
(<ℓ> ) was calculated from the curve fitting results as

< ‘> =
a1 ‘1 + a2 ‘2ð Þ
ða1 + a2Þ (1)

where the denominator serves as normalization. The contribution
of small particles population to the total sample can be extracted
by the ratio of a1 over the sum of a1 and a2. For each sample,
hundreds of thousands of particles were imaged and analyzed
(Table 2) to provide statistically-significant results.

Results

Particle Length Analysis

The LFOV methodology was used to visualize the morphology of
pretreated and hydrolyzed corn stover samples. It is based on
brightfield microscopy, therefore contrast comes from absorption
of light from biomass particles. Particles appear with colors
ranging from light to dark brown, indicating that particles absorb
in the full visible spectrum. Their brightness is inversely pro-
portional to the thickness of the sample. Moreover, samples are
diluted enough so each individual particle can be clearly visua-
lized. The LFOV technique offers the possibility of imaging small
particles ( ~ μm) and many large particles ( ~mm) in the same
image with good resolution. Thus, a broad dynamic range of
particle sizes can be visualized in one image. Since such images
are representative of the sample population, they can be used to
quantify PLD of each sample. Particle length quantification can be
performed by image segmentation and subsequent particle size
analysis.

A representative case is illustrated in Figure 1. The LFOV
image of sample S1-0 is presented in Figure 1a, where large and
small particles can be discerned. A 3-mm long particle can be
clearly seen at the bottom of the image. Smaller particles are
better visible in the magnified images of the insets in Figure 1a
and are presented in Figures 1b and 1c. In Figure 1b, both large
and small particles are visible. Particles appear to have elongated
morphology with varying lengths. Also, smaller particle com-
plexes (red arrow, Fig. 1b) appear to be attaching to long particle
strings. In Figure 1c, the degrading effect of pretreatment is
clearly visible. One end of the particle is thick and uncompro-
mised, while the other end shows detachment of individual tissue
components. There, the particle seems to be decomposing into
individual, smaller particles. Details of particle morphology are
better visible in such images and resolution is adequate to per-
form accurate particle length quantification. Good image resolu-
tion is required for visualizing the products of pretreatment and
hydrolysis, since both processes result in smaller particles.

To calculate the average particle size of each sample, the
dimensions of each particle have to be measured. An example of
this procedure is presented in Figure 1d. A simple intensity
thresholding is applied in the image of Figure 1a and it is con-
verted to the binary image of Figure 1d. In this segmented image,
the size of each particle can be quantified using the particle

Table 2. Particle Length Distribution Parameter Fitting Results.

Sample

a1
(minor peak
parameter)

ℓ1 (μm)
minor peak

a2
(minor peak
parameter)

ℓ2 (μm)
major peak

<ℓ> (μm)
average length

Number of particles
(1,000)

Goodness of fit
(R 2)

S1-0 0.43 18 126 2,120 2,113 400 0.95

S1-16 0.68 26 17 311 300 370 0.94

S1-120 0.32 14 6 209 204 430 0.89

S2-0 0.37 20 88 1,375 1,370 425 0.97

S2-16 1.20 35 10 251 229 475 0.97

S2-120 0.76 25 3 140 119 480 0.97

S3-0 0.56 21 43 639 632 470 0.96

S3-16 0.49 21 6 179 167 365 0.91

S3-120 0.92 25 4 135 117 580 0.98

Table 1. Sample Information Regarding Pretreatment and Enzymatic Hydro-
lysis Parameters.

Sample Pretreatment conditions Hydrolysis time (h)

S1-0 0

S1-16 0.36 w/w% H2SO4, pH 2.3, 1min 16

S1-120 120

S2-0 0

S2-16 0.60 w/w% H2SO4, pH 1.9, 1min 16

S2-120 120

S3-0 0

S3-16 1.44 w/w% H2SO4, pH 1.3, 1min 16

S3-120 120
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analysis routine. The corresponding surface-weighted histogram
of particle lengths of Figure 1a is presented in the graph of
Figure 1e (cross). The histogram is fitted with a bi-lognormal
curve to produce the PLD and is presented with a continuous line
in the graph of Figure 1e. In this graph, two peaks can be dis-
tinguished, both representing the average length of the distribu-
tion of a subset of particle populations, that is, large and small
particles. The area parameters a1 and a2 correspond to the
respective population weight contribution to the overall curve.
Analysis of these parameters and position of the PLD peaks can
provide statistically relevant information on the dynamics of
particle size evolution dependent on sample treatment. In the case
of S1-0, two main peaks are identified, namely a major peak at
2,120 μm and a minor at 19 μm. Based on the contribution of each
lognormal distribution (parameters a1 and a2) the average particle
length is calculated, according to equation (1), to be about
2,113 μm. The population of large particles contributes more than
99% to the total PLD curve, also reflected by the average length
being so close to the major peak value.

With this methodology, particle length statistics for each
sample can be quantified, by analyzing many images from each
condition, and the profile of the distributions for the whole
sample can be reconstructed and further analyzed. The position
and the height of the peaks of these graphs also provide infor-
mation on the dynamics of particle size. The major peak defines
which population of particles is dominant and the distance of the
peaks gives evidence on how different are the populations of large
and small particles.

Particle Length Quantification after Pretreatment

Representative LFOV images from pretreated samples with 0.3%
(S1-0), 0.6 % (S2-0), and 1.4% (S3-0) sulfuric acid are seen in

Figure 2. Corresponding magnified insets from each case are
presented in Figures 2d–2f. In such images, the characteristic
appearance of each sample becomes better visible. In S1-0, it is
common to find particles that are some mm long, however in
higher acidic pretreatments (S2-0, S3-0) the maximum particle
size observed decreases (to the range of 1mm or less). Apart from
maximum particle length, also morphological changes are seen in
smaller particles. In S3-0, many small particles in the range of a
few μm are visible, whereas in S1-0 such particles are not as
common. Moreover, particle complexes, as indicated in the
magnified insets of Figure 1b, appear to change with pretreat-
ment. In S1-0, larger particle complexes with long strings of tissue
are commonly visible, whereas these particle complexes appear to
reduce in size and frequency with increasing acidity. In S3-0,
these complexes are considerably smaller and fewer, while the
amount of small (in the range of a few μm) particles is greatly
increased.

Quantification of particle length changes is possible with the
PLD analysis methodology presented in the previous section.
The results are presented in graph Figure 2g and the results of the
fitting in Table 2. In the (PLD) curve (Fig. 2g) there is a trend to
smaller lengths with increasing acidity, as also observed in
the images. In all samples (S1, S2, and S3), two main peaks can be
seen. The minor peak represents small particles in the 20 μm
range while the major peak represents larger particles in the mm
range. In the minor peak, we expect particles that have been
chipped off from larger particles during pretreatment. In all cases,
this population had a length range between 18 and 21 μm and
contributed only weakly to the PLD based on the area parameters
a1 and a2 (S1-0: 0.3%, S2-0: 0.4%, and S3-0: 1.2%). We conclude
that this population is not significantly dependent on pretreat-
ment acidity. On the other hand, the major peak shifts sig-
nificantly with pretreatment to smaller lengths (S1-0: 2,120 μm,

Figure 1. Particle size analysis based on the large field of view (LFOV) methodology. a: Characteristic LFOV image of sample S1-0 with a field of view 27 ×16mm. b: Magnified
region of Figure 1a. Particles with long strings and particle complexes (red arrows) attached to them, are visible. c: Magnified inset of (a). A particle which appears intact on the
right side, and on the other end is degrading to components. d: Segmented image of Figure 1a. Based on this image particle size is calculated. e: Particle size distribution of
Figure 1b, data points (cross) and the resulting bi-lognormal fitting (line). Two peaks are visible, a major peak at 3,476 μm particle length and a minor at 32 μm.
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S2-0: 1,375 μm, and S3-0: 639 μm). This large-sized particle
population was therefore most affected by the pretreatment
procedure. Average particle length in S3-0 (632 μm) was 70%
smaller and in S2-0 (1,370 μm) 35% smaller, compared to S1-0
(2,113 μm). The average particle size <ℓ> is plotted against
increasing acidity in pretreatment in the graph of Figure 4a. This
suggests that increasing acidity in the pretreatment will reduce the
average particle size of the sample.

Chemical composition analysis (Supplementary Table 1)
revealed that insoluble glucan and xylan decreased with increas-
ing sulfuric acid concentration. More specifically, in S2, insoluble
glucan was 1.0% less compared to S1 and insoluble xylan 46.8%
less. Corresponding values in S3 were 14.0 and 71.8% less
compared to S1.

Particle Length Quantification During Enzymatic Hydrolysis

In the previous section, it was shown that particle size depends on
acidic pretreatment. Pretreatment sets a starting point for the
following step of EH for each sample. In this section, the effect of

EH on these samples is examined. During EH, the molecules of
cellulose and hemicellulose are converted to monosugars. This
becomes possible after the pretreatment step has weakened the
cell wall and created access points for the enzymes to hydrolyze
these molecules. Since the building blocks of biomass particles are
extracted during EH, particles collapse and break up. This
breaking-up is further facilitated by the weakening of lignin bonds
during pretreatment and by the stirring inside the EH reactor.
Therefore, the dynamics of the EH process are strongly reflected
on the particle size of the samples. These dynamics were followed
by analyzing PLD.

Representative LFOV images of samples S1, S2, and S3 at 0, 16,
and 120 h of EH are presented (Fig. 3). Visual observation of these
images offers already significant evidence on the degrading effect
of EH on particles. In all cases (S1, S2, and S3), particle size is
larger in the beginning of EH, while at increasing EH time, par-
ticles become smaller. Cross comparison between samples though
is very difficult with only visual observations. Therefore, the PLD
quantification methodology was employed for following the
dynamics of the average particle length in each case.

Figure 2. Large field of view (FOV) images of differently pretreated biomass samples. a: Low acidic pretreatment, S1-0, (b) medium acidic pretreatment, S2-0, (c) high acidic
pretreatment (S3-0). a–c: 10 × 10mm FOV, cropped images are used to present with higher detail the overall appearance of the samples, (d–f) magnified regions of above
images (a–c) with 1 ×1mm FOV. g: Normalized particle length distributions (PLD) of different pretreatment samples and corresponding fitted curves. Small particle population
(minor peak) is almost independent of pretreatment, while large particle population (major peak) shifts to lower values with increasing pretreatment acidity. PLD data points
are indicted by crosses (S1-0), squares (S2-0) and circles (S3-0), solid lines indicate PLD fitted curves.
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The normalized PLD are presented in Figure 3. In Table 2 the
results of PLD fits are presented. In Figure 2, particle length could
be characterized by two populations, large particles (ℓ2−major
peak) and small particles (ℓ1−minor peak). In Figure 3, the
evolution of these populations with EH time is presented. The
evolution of particle length based on EH time for each

pretreatment is presented in Figures 3j–3l and cross comparison
between pretreatments is presented in Figures 3m–3o. In sample
S1 (Fig. 3j), the major peak ℓ2 (2,120 μm at 0 h) decreased 85% at
16 h (311 μm) and further 33% at 120 h (209 μm) leading to a total
decrease of 90%. In S2 (Fig. 3k), ℓ2 (1,375 μm at 0 h) decreased
81% at 16 h (251 μm) and further 44% at 120 h (140 μm), with a

Figure 3. Large field of view (LFOV) images of samples. a–c: S1, (d–f) S2, and (g–i) S3, at 0, 16, and 120 h of enzymatic hydrolysis (EH). Particle length distributions fits for
different samples (j) S1, (k) S2, (l) S3, at different EH times (m) 0 h, (n) 16 h, (o) 120 h. Scale bar is 5mm.

Figure 4. a: Particle size versus pretreatment acidity. b: Particle size with enzymatic hydrolysis (EH) time, (c) ℓ1 at increasing EH time, (d) ℓ2 at increasing EH time. Error bars
represent the confidence bounds.
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total decrease of 89%. In S3, ℓ2 (639 μm at 0 h) decreased 72% at
16 h (179 μm) and further 24% at 120 h (135 μm), with a total
decrease of 78%. The ℓ1 values changed also with EH, but not
monotonically as ℓ2. In S1 and S2, ℓ1 initially increased 44%
(26 μm) and 75% (35 μm) at 16 h and decreased 46% (14 μm) and
29% (25 μm) at 120 h correspondingly. In S3, there was no change
at 16 h, and a 19% increase was observed at 120 h. ℓ1 and ℓ2 are
presented in the graphs of Figures 4c and 4d.

Apart from particle length, also population size can be
investigated by examining the area parameters a1 and a2. The
contribution of small particles population to the total sample can
be extracted by the ratio of a1 over the sum of a1 and a2. In S1,
small particles contribution increased from 0.3% at 0 h to 3.8% at
16 h and 5.0% at 120 h. For S2, corresponding contribution was
0.4, 10.7, and 20.2%, and for S3, 1.2, 7.7, and 18.6%. This
demonstrates that at the end of EH the small particles population
in S1 did not increase to the same degree as in S2 and S3 and this
can be also visualized in graphs Figure 3o, where the curves of
small and big particles of S2 and S3 tend to fuse at 120 h whereas
in S1 large and small particles curves remained well separated and
distinct.

All these observations indicate that EH and consequently
pretreatment were not as efficient for S1 as it was for S2 and S3,
even if the same enzyme cocktail was used. Interestingly, large
particles with lengths in the order of mm, were still present at the
end of EH (Fig. 3g), indicating that some particles are more
recalcitrant to EH. Therefore, these particles do not contribute to
the cellulose conversion, limiting the efficiency of the overall
process of ethanol production. Future detailed studies on such
particles could provide information on the limitation of pre-
treatment and EH.

Chemical composition analysis on single samples showed that
insoluble glucan and xylan declined while glucose and xylose
increased during EH (Supplementary Table 2). In S1-120 com-
pared to S1-0 insoluble glucan and xylan decreased 50 and 50%,
respectively, while glucose and xylose increased 350 and 80%,
respectively. The corresponding values in S2-120 were 60, 60, 390,
and 40%. The corresponding values in S3-120 were 70, 50, 350,
and 10%.

Discussion

The gold standard method for characterization and chemical
quantification of biomass bioconversion to monosugars is HPLC
(Sluiter et al., 2012), since it can provide exact chemical compo-
sition information of a sample. Although powerful, it does not
provide morphological information of the particles of a sample.
Morphological information, acquired through imaging, is impor-
tant for understanding the process of EH andmore importantly for
studying recalcitrance, since it has emerged as an important
hindering factor in bioconversion (Zeng et al., 2012; Bubner et al.,
2013; Karimi & Taherzadeh, 2016). In this study, we pursued to
demonstrate that morphological information can be used to not
only investigate the local morphology of a particle but also to fully
characterize a sample. This was accomplished with the LFOV
methodology. We showed that a two-population particle length
model is adequate to characterize a biomass sample with good
precision. Particle length was shown to be dependent on the
severity of pretreatment (Fig. 4a). Particle length was also shown to
be dependent on EH time. For all three pretreatment conditions
(S1, S2, and S3) particle length shifted significantly to smaller

values in the first 16 h of EH, while the size shift for the remaining
EH period (120 h) was still significant but at a slower rate. Similar
observations have been made on the chemical composition of
hydrolyzed corn stover (Zeng et al., 2012; Avci et al., 2013), where
based on HPLC, it was shown that conversion of cellulose and
hemicellulose to monosugras is faster in the beginning of EH and
continues with reduced rate at later stages. Since almost 40% of
corn stover is cellulose (Chen et al., 2012; Avci et al., 2013), mor-
phology and chemical composition are related during a process
(EH) where most of cellulose is extracted from particles. Change in
chemical composition is reflected in morphology and this was
quantified by measuring particle length.

Several models have been proposed for describing the effect of
pretreatment and EH on the plant cell wall (Chapple et al., 2007;
Quiroz-Castañeda & Folch-Mallol, 2013), but the effect on par-
ticle size has not been characterized and quantified in detail. In
this study, we have visualized morphology and quantified key
morphological characteristics of pretreated hydrolyzed corn
stover biomass. By examining the evolution of this two-
population particle size model we were able to monitor the evo-
lution of particle size under different conditions and compare the
results. Particle length decreased significantly in the first 16 h of
EH (85.3, 81.75, and 71.9% in S1, S2, and S3 correspondingly) and
further 32.7, 44.2, and 24.5% between 16 and 120 h. Based on
chemical analysis (Supplementary Table 2) glucan decreased 46.0,
54.2, and 56.4% in S1, S2, and S3, respectively, in the first 16 h of
EH and further 15.9, 20.0, and 25.4% between 16 and 120 h.
Although, as expected, numbers regarding particle length and
glucan content do not match exactly, they do indeed show a very
similar trend, a big decrease at initial stages of EH and a smaller
decrease at later stages, therefore they are related. What is dif-
ferent regarding particle length and glucan content is that glucan
content decreased more in S3 during EH, compared to S1, while
particle length decreased more in S1 compared to S3. Since bigger
particles are contained in S1, the mechanical stress of stirring in
the EH reactor could be greater compared to the smaller particles
in S3, therefore a fraction of the particle length decrease could be
attributed to mechanical stress and not to particle degradation
due to EH. However, it is difficult to decouple the two processes,
as particles during EH are degraded and therefore prone to
mechanical damage. In addition, length change does not account
for total volume change. On the other hand, PLD analysis pro-
vides information that is not attainable with chemical composi-
tion analysis. Particle length at the end of EH is defined by the
severity of pretreatment (Table 2). Particle length provides
information on the size of recalcitrant particles. The size of big
population particles offers information on how many big particles
are still left in the sample with the possibility of being hydrolyzed
even further. Optimal EH would be achieved when the two
populations large and small particles fuse into a single population,
this would indicate that particles cannot be further degraded. In
this study, it was shown that in S1-120 the two populations were
clearly distinct, therefore leading to increased recalcitrant mass,
while in S3-120 the two populations almost fused which is an
indication that EH is close to its maximum capacity. Determi-
nation of the optimal condition for maximizing the glucose yield
while minimizing the severity of pretreatment would require
further investigation.

Apart from particle length quantification we were also able to
extract qualitative information on particle characteristic
morphologies. Most particles appeared with an elongated, almost
cylindrical, morphology. After pretreatment, there were several
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particles showing signs of degradation as one or both ends of the
particle were dissociating for the main body. It was also observed
that several structures, which we characterized as particle com-
plexes, were present is all sample in the beginning of EH
(Figs. 1, 2). The frequency of these particles appeared to be higher
in the less severe pretreatment cases. However, a common
observation was that these structures were completely absent after
16 h of EH, which is an indication that were easily and fast
hydrolyzed. These structures could belong to parts of the plant
that have been shown to hydrolyze faster (Zeng et al., 2012), such
as the leaves and the pith. At the end of EH small particles were
observed in all cases, although in more severe pretreated samples
(S3) particle size was smallest.

In this study, we provided a proof of concept of the imaging
capabilities of the LFOV method as a tool for biomass char-
acterization. Particle size investigation has been restricted in the
analysis of particle length, a feature that is visible in the images
acquired. Particle thickness was not investigated because bright-
field microscopy has limited axial resolution, thus thickness
cannot be measured. Such measurement would be possible with
more advanced optical microscopy techniques that offer sec-
tioning capabilities, such as confocal or two-photon microscopy.
Information on the particle volume could be then related to
particle mass and this information could be directly related to the
chemical composition of the sample. However, such techniques,
although powerful, are rather slow, especially when considering
that millions of particles need to be analyzed to extract reliable
statistics, therefore high throughput investigation would not be
practical.

Conclusions

The developed LFOV methodology was successful in imaging the
wide dynamic range of pretreated corn stover particles lengths,
and in identifying characteristic structures. Based on the high
number of particles analyzed, whole sample characterization was
possible with good accuracy. Therefore, this methodology was
useful for quantifying the effect of pretreatment on particle size
and further able to follow the dynamics of particle size distribu-
tion at different stages of EH. The developed methodology could
be used to quantify the effect of different pretreatments and EH
and use it as a guide for optimization purposes.

Supplementary materials. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927618015143
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