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How a region of cracked sea ice affects ice-coupled
wave propagation
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ABSTRACT. By deriving the appropriate Green’s function, a model is developed that
allows the interaction of normally-incident, ice-coupled waves with any number of cracks
to be studied analytically. For a single crack a simple formula for the reflection and trans-
mission coefficients, R and T, emerges that yields identical results to the computationally
intensive work of Barrett and Squire (1996) but is much easier to apply. A crack is found to
behave as a steep low-pass filter, allowing long waves through while inhibiting shorter
waves, although there 1s also some fine structure to the response curve. The introduction
of more cracks is straightforward. While in that case a formula for R and T'is also possible
in principle, it is easier to express the result as the solution of a simple matrix equation of
order 2N, where N is the number of cracks. It is found that perfect transmission (|R| =0)
occurs at a set of discrete periods, hereinafter called a comb, for NV > 1 and that the comb
becomes finer as period decreases. For both periodically distributed cracks and ones that
are randomly spaced, the gross shape of the response curve remains similar. The results
suggest that it is improbable that waves travelling through the Arctic basin can be used as
a remote-sensing agent to determine mean ice thickness. The Green’s function technique

employed in this paper furnishes solutions to other problems of interest.

INTRODUCTION

Although the bulk of sea ice is imperfect, for mathematical
convenience it is often assumed by modellers to be uniform
in its physical and material properties, especially by those
who seek to understand how it affects the passage of ocean
waves (Squire and others, 1995). This approximation works
in many circumstances, allowing theoretical conclusions to
be drawn and results to be found that have subsequently
been validated by field and laboratory experiments (e.g.
Squire, 1984). Theoreticians argue that, because the length
of “typical” ocean waves greatly exceeds the width of features
such as cracks, pressure ridges and leads, the effect of the
flaws will be minimal when horizontal scales are not too big.
The extrapolation of such conclusions to geophysical scales to
answer geophysical questions has, on the other hand, been
controversial (Squire, 1995), in large part because of the
spatial variability of sea ice and the accumulated effect of
the many imperfections that a train of waves must encounter
as it progresses further into an ice pack.

There has also been recent interest in using waves to
“remotely sense” ice thickness. The basis of such proposals is
that theory and its associated experiments have, over the last
20 years or so, become sufficiently convincing that we now feel
that we understand how waves and sea ice in its many forms
interact. Accordingly, when provided with the wave intensity
outside and within the ice field, measured perhaps by satellite
radar altimetry, synthetic aperture radar or scatterometry, the
models can be tuned, at least in principle, to output an
estimate of mean ice thickness. Unfortunately, the majority of
models still assume that the ice behaves as a uniform plate
without flaws or an unsophisticated aggregation of such plates.

In this paper we study wave propagation in an imperfect
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ice sheet. We consider what happens when an ice-coupled
wave field travelling in an otherwise uniform ice sheet
encounters an area of heavily cracked sea ice at normal
incidence. Alternatively, the waves may enter a region
where the ice is fractured into floes that are present at high
concentration. The shear zone that forms between moving
and stationary sea ice in the Arctic basin could be modelled
like this.

A single crack in an otherwise perfect ice sheet has been
looked at before. Barrett and Squire (1996) solved the
problem numerically for a finite-depth ocean, and recently
Squire and Dixon (2000a) have also reported a solution for
deep water. The latter paper furnishes simple formulae for
the reflection and transmission coefficients, R and T, that
produce results identical to the Barrett and Squire model
without having to solve a complicated and tedious matching
problem. The formulae, which need only the ice-coupled
wave numbers that are the roots of a quintic polynomial,
can easily be evaluated for a given wave period by a few
lines of MATLAB code. The current paper generalizes the
Squire and Dixon result to multiple cracks, including the
single crack as a special case. For N cracks, R and T" emerge
from the solution of a 2N X 2N matrix system made up of
equations that do not sensibly decouple to provide natural
formulae for R and T. However, MATLAB can again
compute the solution without difficulty.

The mathematical solution first requires a Green’s
function to be found for an infinite homogeneous ice sheet
floating on the surface of deep water. This has been done by
Squire and Dixon (2000b), who report the solution to a
different problem, and Squire and Dixon (2000a). Their
result, which extends the earlier work of Meylan and Squire
(1994), will just be quoted here. Green’s theorem in the plane is
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then used to formulate an equation that directly links the
velocity potential ¢(z,z) with the sum of the asymptotic
terms at £00 and the terms that arise at the many edges of
the multiply cracked ice sheet, presupposing that the bending
moments and shears vanish at each crack but at this stage
assuming only that they are continuous there. This gener-
alizes Squire and Dixon (2000a). Finally, assuming that the
displacements and displacement gradients at the crack
boundaries are finite, the equations are cast into the form of
a system. 1o do this we demand that the adjoint bending
moments and shears vanish at each crack edge, thereby
completing the application of the necessary four boundary
conditions for every crack. The system is solved straight-
forwardly to produce response curves for different crack
systems and ice thicknesses.

MATHEMATICAL MODEL

A one-dimensional sea-ice sheet of thickness h and density p’
floats on deep water of density p. The sheet is assumed to be a
thin elastic beam of infinite extent with rigidity D. Long-
crested, ice-coupled waves of radian frequency w propagate
in the positive x direction towards N cracks in the sheet
located at points ;,, lying in the finite closed interval [0, L].
Coordinate z is taken to be vertically downwards. The ice-
coupled waves are understood to be controlled by both the
properties of the ice sheet in which they travel and the
inertia of the water beneath (Fox and Squire, 1994).

To avoid excessive mathematical detail the description
that follows draws upon the first part of Squire and Dixon
(2000Db). That paper describes how the required Green’s func-
tion is derived, but applies it to a different problem, namely,
to waves impinging upon an iceberg or thick ice floe trapped
in sea ice. The interested reader is referred to that paper but
should note that the integral equation that eventuates there is
an added complication that does not arise in the current
paper. Assuming that the velocity potential describing the
system is separable and is periodic in time (e~*"), the non-
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Fig. 1 Zeros of the transformed dispersion relation
' +y—6=0.
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dimensionalized boundary value problem we seek to solve
for ¢(z, 2) is

V=0

ﬂ(bza‘mrr + (]— - O"Y)‘bz + O‘d’ =0,

z € (—00,00) \U[(z,,,z})],z=0
¢ZICL'(:I;7_17 0) = ¢ZIII(:I;7_17 0) =0
¢zrx(1':;7 0) = ¢zxzz(x$1 O) =0
¢. — 0,

z — 00,

where the length scale chosen for non-dimensionalization is
the distance L that designates the breadth of the cracked
region. The non-dimensional parameters a,  and v are
defined a = Lw?/g, B=D/gpL* and ~=p'h/pL. In
common with other wave problems of this type, Equations (1)
must be supplemented by suitable radiation conditions at f=00.

The half-space Green’s function

The Green’s function G(&,(;z,z2), € (—00,00), 2> 0,
which describes a uniform thin beam floating on a deep-
water half-space, satisfies the system

V2G = 6(¢ — x)6(C — 2)
BGeeeee + (1 — a)Ge + aG =0,
Ge— 0, — 00.

¢=0 (2)

Squire and Dixon (2000a) use Fourier transforms with
respect to & — 2 to calculate G as follows

G(E G, ) = 5 og[ (€~ 27 + (¢~ ]
- log[(€— ) + (¢ + 2]

_ i > L —|k|((+2) ,—ik(z—E§
27T/OcAk| o e e Say, (3)
where A = A(k) = Bk* +1 — ay. This reduces to the
better-known Green’s function for deep open water when
B = v = 0 (Wehausen and Laitone, 1960).

The integral in Equation (3) is found by contour integ-
ration, first recognizing that it is equivalent to

2R —ikl(z=8) =i+l g, 4
/0 Ak—a )
where R denotes the real part, and then writing this integral as
I=| ———e"dt. 5
A Bi—6 ©)
The parameters appearing in Equation (5) are

(1—&7)1/4 a
v= , 0=——7-—,
B v(1—ay)

X = vf(w—8) —i(z+0), t:%.

Note that & X < 0, where § denotes the imaginary part, as
z and ( are always zero or positive. This is essential or the
integral in Equation (5) will fail to converge. Use of partial
fractions finally gives the contribution from the integral [ to

G(& ¢, 2)
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where

00 e—z’Xt
Ij:/ dt,
0o t—a

A; =06/(56 —4a;), and a; are the five roots of
t9 4+t — 6 =0, which, for § > 0, lie as shown in Figure 1.
The roots of the original dispersion relation Ak —a =0
are k; = vay; the a; always lie in the shaded sectors shown.
Each 1ntegra1 appearing in the summation in Equation (6)
may be evaluated by contour integration (Squire and
Dixon, 2000b). For any X such that X <0 this is
laborious, but fortunately such generality is not needed here,
as to find R and T the integral will be required only at the
surface. The result involves sine and cosine integral auxiliary
functions (Abramowitz and Stegun, 1965, p.228-237), the
latter function having a logarithmic singularity as X — 0.

Because the asymptotic behaviour of the Green’s
function 1s dominated by the real pole as x — Fo00, we
may also reason, for example, that for w > 0

Jim G(gCa,2) = £ A sinky(¢ — )

lim Ge(§, ¢, 2) =

{—+o0

fl}lfx Ge(&, G, 2) =

+hoAge 0+ cos kg (€ — ) (7)

_kOG(§7 Ca Zz, Z)

Finding Rand T

Green’s theorem in the plane is now applied to a rectangle with
sides &€ = =&y, € = &y, ( = 0, ¢ = (p, where &) and () are taken

to be sufficiently large to include the point (z, z). Because
li =
Jm (&)

li = etho€=koC 4 Re—iko€—koC
Jim 0§ ¢) =e + Re

Tetko&—ko¢

(®)

the contributions at each end, ie. as & — ZFoo, are,
respectively,

l ikoxr —koz
AgTe™ e

2
1T , (9)
§A0(eyk0m + Re—zko.’t)e—koz.

No contribution arises from the sea floor (5 — oo because of
the boundary condition there. On ¢ = 0, however, N + 1
contributions arise, each originating from the section of
uniform ice between the N cracks. Noting that the region
of cracked ice extends from & = 0 to {x = 1 in non-dimen-
sionalized coordinates, the outermost terms are

8 &
o [¢<§£&G< PeeeGiee + PeGege — ¢<G<&5} .
ﬂ 00
o [¢<§5§G< — begeGee + e Gge — ¢<G<ss£} o

whereas all inner contributions take the form

g S
o [%&Gc PeeeGee + PeGege — ¢<G<£££L (11)

forn=1, ... N — 1. The 00 limits in terms (10) combine
with terms (9) to give

(10)

1

1 Teikomefkuz
2 (12)

§(ezku,n + Re—v,koa,)e—koz,

respectively, as they must for the asymptotic behaviour to be
self-consistent. Because of the manner in which terms pair
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up across each crack, the free-edge boundary conditions,
namely, ¢eee(§,,0) = Peeee(§,,0) =0 and (€, 0) =
beeee(&r,0) =0, cannot be applied in full at this stage.
Instead, we may only require that ¢ (€, ,0) = ¢eee(§F,0)
and  Peeee(§,,0) = deeee(€),0), ie that the bending
moments and shears are continuous across (£, ,&"). Later
we will insist that all are zero. Each crack therefore contri-
butes terms

e (2,2) = 2 [occ(65, 0)Guge(6n 02, 2)
1T+ (Iv Z) = _g [(bCE(g;:v O)G(&(fn» 0;z, Z)

- ¢C(§:70)GC555(€WL70§$7Z)]~ (13)

Bringing together results (12) and (13) we obtain an equation
for ¢(z, z) as follows:

1+T eikol‘+RefikQZ e*koz
[(1+1)

DN | =

¢(z,2) =
- (14)
+ Z I:Hn* (.’f, Z) + Hn+ (IE, Z)] .
n=1

Expression (14) may be used to find the reflection and
transmission coefficients, R and T, respectively. This is
achieved by taking z — 0 and  — 0o and then comparing
the coefficients of the linearly independent functions e’
and €7 The same can be done by considering 2 — —o0;
this is the self-consistency condition we referred to earlier.
In either case, we obtain

A
R f K Zezkofn iPy(6) + ko Pa(6)]

n=1

(15)

Aoﬁ

N
T =14 200 Z —iko&n |:’LP1 671) kopg(ﬁn,)} y
n=1

where

Pl(én,) :gb(g(f,f,()) -
P2(£n) = (bf( 77:’0) -

¢Cf (57:7 O)
¢C<£¢77 O)'

Resubstitution into Equation (14) gives a final equation for ¢:

¢($7 Z) _ eik’o.’te—koz

Oﬂ —k:gz .
+ == ke Y " [Py(&,) cosko(z — &)

n=1

— ko Py (&) sinky(z — &,)]

ﬁ N
—=3 (P& Geee(n 032, 2)

n=1

— Py(&)Geee(6n, 05 2, )] (16)

Equation (16) still has 2N unknowns, P;(&,) and P(&,),
that arise from the boundary terms on each side of the NV
cracks. Using x,, and &, interchangeably, these unknowns
can be found by completing the application of the free-edge
boundary conditions by setting ¢, (2, 0) and ¢4 (x5, 0)
to zero. This is done by first differentiating Equation (16)

329


https://doi.org/10.3189/172756401781818806

Squire and Dixon: Wave propagation in cracked sea ice

formally to obtain ¢.,.(x,2) and ¢....(x, z), which, on
taking the limit z — 0, are

d)zmr(xa 0) = k?)eikoz

N
+ % ;{Pl (xn) [ionkg cosko(z — )

4
+ R AR (60, 0;,0)]
=0

— Py(zy) [iWA()kg sin ko(x — )

4
R IAKL (6 0:2,0)| } (17)

7=0

(bzzzr (.’13, O) = ikéeik(w

B o
+ P ;{Pl () [MTAOk:O sin ko(x — )

4
+RD AR (6, 0,0)

=0

+ Py(xy) [ionkg cosko(z — )

4
+ R AR, 02,0)] ], (18)
Jj=0

where the behaviour of the sine and cosine integral auxiliary
functions for small arguments (Abramowitz and Stegun,
1965, p.233) has been used. Fortunately, potentially singular
contributions vanish, either in the process of taking the real
part or because the roots a; of t°+t—§=0 satisfy
SioAj=1,and 3 (A" =0 for m=1...4, when
written in terms of k;. Similar expressions for higher powers
of k; follow from a? = 0 — a;. Expressions (17) and (18) must
be set to zero at each of the cracks x,, n = 1... N; because
continuity holds this can be done by approaching the crack
from either z, or x;}, the result is the same.

The system of equations that results from the foregoing
process decouples when only a single crack is present. Sup-
posing this is at 21, P;(x1) and Py (1) are simply given by

amkd
Pl(zl) = n m 0
B] S ARG log ky + 2mi( Aok + AqkS) |
—iank}
Py(z1) = 7 . :
B] - AR Tog K + 2mi( Aok + Ak |

(19)

which may be compared with Equations (17) of Squire and
Dixon (2000a). (The slight difference arises because the
current non-dimensionalization is based on the breadth of
the cracked region L, which is inappropriate for a single
crack) The requirement to take real parts vanishes in
Equations (19) because the complex terms in the j-summation
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Fig. 2. Magnitude of the reflection and transmission coefficients
due to an open crack at three ice thicknesses: 0.5 m (solid ), 1.0 m

(dashed ), 2.0 m ( chained).

appear as conjugate pairs. In this case, the reflection and
transmission coefficients are given by

. Aokt
R=1m 1 5 . 5 5
ZFO Ajk; log kj + 2mi(Asky + Asky)
B Aok
S0 AjkSlog kj + 2mi( Aokl + Akt
T=1+ir|—=; Aokg ,
Zj:() Aﬂ{}? log k‘j + QWZ(Ang + A4]€2)
A[)kg

4 8 i 8 8
> im0 AjK; log kj + 2mi( Asky + Aqk)

When more than one crack is present, i.e. N > 1, a matrix
equation of the form CP = K emerges, where the vectors

P = [Pi(21), Py(21), Pr(x2), Pa(2),
T
ey Pl(x]v), PQ(QSN)]
K= _kg [eik().Tl’ ,L-koeikgaq’ eikoa:Q, ikoeik(]mz’

oo, €F0EN ket ‘\] ,

(21)

where [|* denotes transpose. C is a 2N x 2N matrix with
elements constructed from the coefficients of P;(z;,) and
Py(x,,) that appear in Equations (17) and (18). The matrix
C has a convenient structure that allows it to be filled
systematically: its odd and even rows are derived from
Equations (17) and (18), respectively; and its columns occur
in pairs for x =z, * = 29, ..., = xy. Once C and the
vectors Pand K are filled, MATLAB is used to solve the
system for P with a single command, thereby allowing R
and T to be found from Equation (15). When N =1 the
solution reverts to the single-crack results expressed by
Equations (20). The result is checked by using the energy-
conservation condition |R|* + |[T]* = 1.

RESULTS

Figure 2 shows, for three different ice thicknesses, the
magnitude of R and T for a single crack, plotted as a
function of wave period. Recalling that the thin-plate model
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Fig. 3. Magnitude of the reflection (solid) and transmission
(dashed) coefficients due to two open cracks separated by
100 m_for an ice thickness of 1.0 m.

becomes less valid as wavelength and ice thickness become
comparable, each curve grows more approximate as zero is
approached. (A thick-plate model including rotatory inertia
and transverse shear could be used in this region if
necessary.) The crack responds as a low-pass filter with a
steep transition band and a zero in |R| at the centre point
of a 27 phase change in arg R. |T| =1 at about 57s for
h= 05m, 7.5s for Im and 98s for 2m. As period is
increased past the zero, |R| increases to a low maximum
before tending to 0 again, although transmission is actually
effectively perfect at periods beyond the zero. More details
are given in Squire and Dixon (2000a).

The same curves for two cracks are shown in Figure 3,
this time only for one ice thickness A = 1m. While the
generic low-pass filter effect of the feature is the same as for
the single crack, a great deal more fine structure is evident
in the form of zeros in the |R| curve. This is because the
crack separation presents a new length scale to the waves,
with which some interaction occurs at certain wavelengths.
As period decreases — with a concomitant decrease in the
wavelength — the zeros move together until for very short

0.8r ]
L/ Resonance band
=0.6
=
E
50‘4 L 4
0.2r \ ]
»s A\
—
0 e
0 10 15 20
Period (s)

Fig. 4. Magnitude of the reflection (solid) and transmission
(dashed) coefficients due to eleven equally spaced open cracks
located within 100 m of ice of thickness 1.0 m.
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Fig. 5. Magnitude of the transmission coefficient (a) and
reflection coefficient (b ) due to five randomly spaced open cracks
located within 100 m of ice of thickness 1.Om. One standard
deviation about the curve is also plotted in each case.

waves the comb of points at which transmission is perfect
becomes very fine. Note again that the model becomes
invalid as period — 0, however.

The situation for 11 cracks, located at 0, 10, 20, 30, 40, 50,
60, 70, 80, 90 and 100 m, is analogous to the two-crack case.
The feature still low-pass filters the incoming wave train,
but in this case resonances arising due to interactions
between the wavelength and the distance between cracks
are extreme. Indeed, resonances are so frequent at low
periods where, because the wavelength is small, many
cycles can fit between cracks and the several cracks interact,
that a resonance band is defined where zeros in |R| occur
too frequently to be plotted. This is shown in Figure 4.

In real ice, cracks are unlikely to be located at precisely
the same separation; instead they will be randomly located.
This is investigated in Figure 5, where five cracks at
locations drawn from a uniform distribution are positioned
randomly over 100 m of sea ice. This scenario is computed
many times (35) and the average curve is then found and
plotted with 1 standard deviation either side. Notice in
Figure 5 that the fine structure in the curve at relatively long
periods remains almost untouched by the averaging process
where the standard deviation is quite small, whereas at
shorter periods it is smeared out with an associated increase
in standard deviation. For a region of ice composed of many
randomly placed cracks, this suggests that sea ice may still
appear transparent to the incoming wave train at a few
wave periods, but that the dense-resonance comb will not
eventuate because coupling between crack separation and
wavelength is reduced by the randomness. Accordingly, the
most important effect of multiple, randomly placed cracks is
likely to be their low-pass filter action.

CONCLUSIONS

The aggregation of the several mechanisms that cause high
frequencies to be removed from an incoming sea, namely,
reflection at the edge, viscous damping in the water, ice
viscosity and now sets of cracks, all act to create a local ice-
coupled wave spectrum that is significantly biased towards
long period waves. The dispersion of such waves 1s indistin-
guishable from that in the open sea unless the sea ice is

331


https://doi.org/10.3189/172756401781818806

Squire and Dixon: Wave propagation in cracked sea ice

unphysically thick. Accordingly, it is improbable that waves
travelling through the Arctic basin can be used as a remote-
sensing agent to determine mean ice thickness.

While the resonances reported in the results section are
mathematically interesting, they are less important than the
overall low-pass filter effect. We have seen that sets of periodic,
as opposed to randomly spaced, cracks are more likely to lead
to perfect transmission at some frequencies. Resonance would
also be less likely to occur in a fully three-dimensional model,
where the notion of characteristic impedance no longer holds
true.
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