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Abstract. For relevant logics, the admissibility of the rule of proof γ has played a sig-
nificant historical role in the development of relevant logics. For first-order logics, however,
there have been only a handful of γ-admissibility proofs for a select few logics. Here we
show that, for each logic L◦t of a wide range of propositional relevant logics for which
excluded middle is valid (with fusion and the Ackermann truth constant), the first-order
extensions QL◦t and LQ◦t admit γ. Specifically, these are particular “conventionally nor-
mal” extensions of the logic Gg,d, which is the least propositional relevant logic (with the
usual relational semantics) that admits γ by the method of normal models. We also note the
circumstances in which our results apply to logics without fusion and the Ackermann truth
constant.

§1. Introduction The admissibility of γ in relevant logics remains an impor-
tant question. With recent interest in quantified (modal) relevant logics, attention
is turned to γ-admissibility in these logics. A particular boon in this research is
the semantic framework for the quantified relevant logics QR and RQ introduced
by Mares & Goldblatt (2006), which has been extended more generally to first-
order and first-order modal relevant logics sound and complete for ternary rela-
tional frames by Ferenz (2023).1 Here we employ this Mares-Goldblatt semantics
as generalized by Ferenz to investigate which first-order relevant logics admit γ
using the method of normal models, which was introduced by Sylvan (né Routley)
and Meyer (Routley & Meyer, 1972). This provides a foundation to explore γ-
admissibility in first-order modal relevant logics, taking advantage of the general
framework provided by the Mares-Goldblatt interpretation of quantifiers.

Ackermann’s rule γ, originally given in (Ackermann, 1956), is a form of disjunc-
tive syllogism (or, classically, detachment/modus ponens). In the tradition of relevant
logic, γ ought to be rejected when formulated as a rule under which theories are
closed. This would entail that from inconsistent theories anything is derivable,
which is anathema to the relevantist project. However, it is another story if we
take γ to close the set of theorems. Thus, γ is presented follows:

¬A ∨ B,AV B
The symbol ‘V’ here indicates a rule of proof in the sense of Humberstone (2011);
Smiley (1973): That is, A1, . . . ,An V B means that if each Ai is a theorem of the
logic in question, then so is B. The rule γ is typically not given in the definition of
a relevant logic; it is, however, sometimes an admissible rule. That is, in particular,
the addition of the rule does not result in new theorems. The question of which
relevant logics admit γ is an interesting and significant question, and has been in
the crosshairs of relevantists since the beginning.

1 Additionally, Tedder & Ferenz (2022) have extended this framework to logics sound
and complete for neighbourhood semantics, and the framework has been applied to
conditional logics extending FDE (Ferenz, 2022).
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We present logics as Hilbert-style axiom systems with axiom and rule schemes
defining a set of theorems. We use the usual notion of a proof (of A) in this set-
ting as a sequence of formulas (ending with A) where each formula is either an
instance of an axiom scheme or follows from previous formulas by application
of an instance of a rule scheme. As our interest is in the set of theorems and not a
consequence relation, we set our focus on rules of proof (defined above). In defining
a logic, the rules explicitly given in the statement of the logic we call the primitive
rules of the systems. Similar to primitive rules are the derived rules, whose form
can be captured exactly by a series of axioms and primitive rule applications. For
example, a rule of reiteration of the form A V A, if not primitive, can be shown
to be derivable using modus ponens and the axiom A → A. Finally, a rule is
admissible if there exists a proof of the conclusion of the rule whenever there are
proofs of the premises.2

In this paper we will give all primitive rules using the V notation, but the
distinction between primitive and admissible rules is worth noting. One way to
expand relevant logics is by the addition of proper axioms, with the notion of
derivation suitable altered to include the additional proper axioms. These need
not be schematic, and can allow relevant logic to represent reasoning from theories
such as set theory, Peano Arithmetic, or even just a small set of beliefs. Part and
Parcel to the relevant approach is that inconsistent theories do not imply every
formula, and so γ is not desirable as a primitive rule in these cases. On the other
hand, the rules taken as primitive, although presented as rules of proof, are taken
to apply in these extended cases.3

Meyer et al. (1974, p. 120) note, “the cut theorem. . . is for classical theories simply
γ is peculiar notation.” This is emphasized in Urquhart (2016), summarizing the
history and importance of γ, where he suggests additional similarities. Notably
he conjectures a speed-up theorem for γ is relevant logics, in analogy to speedup
theorems for the rule cut in classical logics (as shown in, e.g., Pudlák (1998)).4 The
admissibility of γ, if Urquhart’s conjecture is proven, has significant consequences
for proof-theoretic presentations of first-order relevant logics.

While some logics admit γ, such as R and E, several do not. In particular, sev-
eral contraction-less relevant logics extended by Boolean negation do not admit
γ Meyer et al. (1984). The naı̈ve set theory of Brady (1983) also fails to admit γ, but
in this case the failure of γ is a feature and not a bug; on the other hand, the proof in
Friedman & Meyer (1992) showing the failure of γ for Meyer’s relevant arithmetic
R] was a catastrophic event for the development of R]. Meyer & Dunn (1969) first
showed that R, E, and T—the favorite children of Anderson and Belnap—admit γ
using algebraic techniques. Later, additional techniques were found, such as nor-

2 A logic which has an admissible rule that is not derivable lacks the property of being
structurally complete (see Raftery & Świrydowicz (2016) for an exploration of structural
completeness in some relevant logics).

3 Note that there is another way to extend relevant logics to deal with theories: taking
theories to be sets of sentences closed under Modus Ponens, Adjunction, and provable
implications. This approach highlights the focus on logics as sets of theorems, and the
admissibility of γ on the set of theorems retains its importance.

4 A speedup theorem is essentially a complexity result on the size of proofs. For γ this
would mean there are theorems that are relatively small using γ, but whose derivations
without γ have a much larger lower bound on their size.
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mal models (Routley & Meyer, 1973), metavaluations (Meyer, 1976), and reduced
frames (Slaney, 1987). Although the technique of normal models is the basis of
the techniques of this paper, metavaluations involve defining valuations mapping
formulas to the values 0 or 1 based on the relationship they bear to a regular theory.
For the interested reader, the method is elegantly described in (Dunn & Restall,
2002). Note that the normal models method is restricted by the requirement of
the principle of excluded middle as an axiom. For relevant logics without this
requirement, one turns to the other methods references in this paragraph.

For a detailed account of the history of γ in propositional relevant logics, the
reader is directed to Urquhart (2016) and the references therein. Many modal propo-
sitional logics have also been shown to admit γ; e.g., see Mares & Meyer (1992);
Routley & Meyer (1972); Seki (2011a,b, 2012). The Mares-Goldblatt style seman-
tics of Ferenz (2023) for first-order modal relevant logics combines the Mares-
Goldblatt machinery with the general frames of Seki (2003), the latter of which
is used to obtain γ-admissibility results for a wide class of modal relevant logics.
Thus, Ferenz (2023) has laid the groundwork for using the method of normal
models in both the first-order and the first-order modal settings. Here we pursue
the former.

For quantified relevant logics, as far as we know, only a handful have been
shown to admit γ. The first, and most relevant to this paper, is the proof of γ-
admissibility in RQ in (Meyer et al., 1974, Theorem 6.). The method of proof is by
an algebraic semantics for RQ. The Mares-Goldblatt interpretation of the quanti-
fiers introduces a natural semantics for RQ, defined as a Hilbert style axiom sys-
tem. The genesis of such a semantics was due to the fact that the most straightfor-
ward way of defining a constant domain, ternary relational semantics extending
the semantics for R validated formulas which were not theorems of RQ. This is
the incompleteness result of Fine (1989).5 The set of validities of the class of the
most straightforward constant domain, ternary relational models (semantically)
determines a logic, and we will call this logic RQ. This properly contains the
theorems of RQ, and was shown by Weiss (2020) to admit γ. However, giving an
axiomatization (finite or otherwise) of this set of validities is still an open question.

In Kripke (2022), a method of proving γ-admissibility for first-order extensions
of R and E using semantic tableaux is stated; however, no proof is given in detail.
Kripke, however, fails to establish which of RQ/RQ and EQ/EQ his proof is
applicable to.

The paper is divided as follows. We begin by introducing preliminaries such as
the definitions of languages, logics, semantics, and key notions. Then we tackle
proving γ-admissibility by generalizing the normal models method. Here we use
the Mares-Goldblatt style semantics. Finally we make concluding remarks con-
cerning future directions.

§2. Preliminaries We jump straight into a presentation of first-order relevant
logics. For the reader not familiar with propositional relevant logics, one may
consult one of Dunn & Restall (2002); Bimbó (2007) for an excellent overview. Some

5 Note that Fine (1988) also gives an adequate semantics for RQ, but that many relevantists
have nevertheless been searching for simpler, more natural semantics. The author claims
that the Mares-Goldblatt semantics is exactly what was sought.
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familiarity with propositional relevant logics and ternary relational semantics is
assumed, but such knowledge is not required.

2.1. First-Order Relevant Logics
2.1.1. Language A first-order language (with constants and without function

symbols) is built up from a set of symbols divided as follows:

1. A denumerable set of variables Var = {x0, x1, . . . }. Here we assume a fixed
but arbitrary ordering of the elements of Var, which is tracked by variable
subscripts.

2. An at most denumerable signature S consisting of

(a) a set of constant symbols ConS = {c0, c1, . . . },
(b) a non-empty set of predicate symbols PredS, where Pn ∈ PredS is an

n-ary predicate. The set of n-ary predicates shall be written as Predn ⊆
PredS.

3. A constant symbol t.
4. Binary operators ∧,∨,→, ◦.
5. Unary operator ¬.
6. Quantifier symbols ∀, ∃.

The notion of being a term, relative to a signature, is defined as usual, and we
will use τ with decorations varying over terms. A signature will henceforth be
assumed fixed, and we will cease to mention signatures unless such a remark is
required.6 Given a set U of individuals, a variable assignment is a denumerable
sequence of individuals, f ∈ Uω, such that the n-th element in the sequence
(written as f n) is the individual assigned to the n-th variable xn given by the
assumed fixed ordering. Given a variable assignment f , an xn-variant of f differs
from f in at most the assignment to the variable xn. We write f ∼n f ′ (or f ∼xn f ′

) to denote that f and f ′ are xn variants of one another. We will write f [j/n] (or
f [j/xn]), with j ∈ U to denote the result of replacing the n-th element of f with the
individual j.

DEFINITION 2.1. (The First-Order Relevant Language) The basic first-order rel-
evant language L, or well-formed formulas (hereby wff) is defined in BNF as follows:

ϕ ::= Pn(τ1, . . . , τn)|t|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ→ ϕ|ϕ ◦ ϕ|∀xn ϕ|∃xn ϕ

Implicit is the use of parentheses around each construction with a binary con-
nective. That is, we assume that all unary operators (including quantifiers) bind
more strongly than binary operators. Moreover, we assume the right arrow binds
weaker than fusion, which itself binds weaker than the extensional conjunction
and disjunction.

We write A[τ/x] to denote the result of substituting every free occurrence of
x in A with the term τ. Similarly, we will use A[τ0/v0, . . . , τn/vn] for the result
of simultaneously replacing v0 through vn with τ0 through τn respectively. The
usual definitions of bound and free variables are assumed. A term τ is free for x (or

6 In the canonical model constructions, the signature is assumed to contain sufficiently
many constant symbols.
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freely substitutable for x) inA if τ does not become bound in the resulting formula
A[τ/x].7

When we write a formula with a variable superscript, such as Ax, this means
that x does not occur free in A.

2.1.2. Axiomatic Presentations Although no propositional language was defined,
we first axiomatize a wide class of propositional relevant logics.8 Although al-
ternative axiom systems can define several of the logics we present, a singular
modular system extending a base logic is used.

DEFINITION 2.2. (Propositional Logics) The base propositional logic B◦t is defined
by the following axioms and rules:9

(ID) A → A
(∧E) A∧ B → A
(∧E) A∧ B → B
(∨I) A → A∨B
(∨I) B → A∨ B
(∧I) ((A → B) ∧ (A → C))→ (A → (B ∧ C))

(∨E) ((A → C) ∧ (B → C))→ ((A∨ B)→ C)
(∧-∨) A∧ (B ∨ C)→ (A∧ B) ∨ (A∧ C)

(DNE) ¬¬A ↔ A

(MP) A,A → B V B
(ADJ) A,B V A∧ B

(Prefix) A → B V (C → A)→ (C → B)
(Suffix) A → B V (B → C)→ (A → C)
(RCont) A → B V ¬B → ¬A

(R◦) A → (B → C)WV (A ◦ B)→ C
(Rt) t → AWV A

Each of the logics of interest is a first-order extension of some propositional extension of
B◦t. The propositional extensions are defined using the following list of axioms and rules:

(A1) A∨ ¬A
(A2) A∧ (A → B)→ B
(A3) (A → B) ∧ (B → C)→ (A → C)
(A4) (A → (A → B))→ (A → B)
(A5) A → ((A → B)→ B)
(A6) A → (B → B)
(A7) A → (B → A)
(A8) (A → B)→ ((A → C)→ (A → B ∧ C))
(A9) A → (A → A)

(A10) A∨ B → ((A → B)→ B)
(A11) (A∧ B → C)→ (A∧¬C → ¬B)

7 N.b. that we lack function symbols in the signatures with which we are concerned; had
the terms been built up with function symbols, this condition may have required also
that no variable occurring in τ becomes bound in A[τ/x].

8 A propositional language can be approximated by eliminating the quantifiers and taking
only 0-ary predicates.

9 Note that “DNE” here stands for “double negation equivalence.”
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(A12) A → ¬(A → ¬A)
(A13) (A → ¬A)→ ¬A
(A14) (A → B)→ (¬B → ¬A)
(A15) A → B ∨ ¬B
(A16) A → (¬A → B)
(A17) (A → B)→ ((B → C)→ (A → C))
(A18) (A → B)→ ((C → A)→ (C → B))
(A19) (A → (B → C))→ (B → (A → C))
(A20) (A → (B → C))→ ((A → B)→ (A → C))
(A21) (A → B)→ ((A → (B → C))→ (A → C))
(A22) (A∧ B → C)→ (A → (B → C))

(R1) C ∨ AV C ∨ ¬(A → ¬A)
(R2) C ∨ (¬A → A)V C ∨A
(R3) C ∨ A, C ∨ (A → B)V C ∨ B
(R4) C ∨ (A → B)V C ∨ (¬B → ¬A)
(R5) AV (A → B)→ B
(R6) C ∨ (A → B), C ∨ (D → E)V C ∨ ((B → D)→ (A → E))

Some familiar and noteworthy logics are defined as follows:

G◦t =d f B◦t+(A1)
Gg◦t =d f G◦t+(R1)
Gg,d◦t =d f Gg◦t+ (R3) + (R4)
TW◦t =d f B◦t+(A14)+(A17)+(A18)
T◦t =d f TW◦t+(A4)+(A13)

EW◦t =d f TW◦t+(R5)
E◦t =d f T◦t+(R5)
RW◦t =d f EW◦t+(A5)
R◦t =d f RW◦t+ (A4)
RM◦t =d f R◦t+ (A9)

Because all of the results given in this paper are for logics with fusion and
the Ackermann truth constant, we save on notation by dropping the superscript.
Except for when otherwise stated, we take L to denote L◦t. Importantly, we have
to extend known γ-admissibility results for propositional results to include ◦ and
t. We do so in the appendix, where we drop this notational convention.

Note that the base logic for the paper is Gg,d◦t, which contains the two disjunc-
tive rules (R3) and (R4). It is pointed out in Seki (2011a) that these two rules are
required for the normal models method to work for logics with both fusion and
left implication. These logics, in Seki’s terminology are L3 logics. As far as the
authors can tell, both rules are required for each of fusion and left implication.

PROPOSITION 2.3. (Conventionally Normal Propositional Logics) The propositional
relevant logic Gg, any extension of Gg by axioms and rules with frame postulates being
conjunctions of R and N statements (or implications with a single R statement in the
antecedent), and several extensions of Gg with implicational frame conditions with two
R statements in which (R3) and (R1) are derivable admit γ (Routley et al., 1982, Section
5.6). (See Seki (2011a) for the refinement from G to Gg.)

Such logics are also called Conventionally Normal in Routley et al. (1982).

THEOREM 2.4. For any conventionally normal logic L with (R3) and (R4) admitting
γ, the logic L◦t also admits γ.
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Proof. See appendix. �

This last theorem is needed because we include both fusion and little t in our
first-order formulations. We will say more about this fact later.

DEFINITION 2.5. (First-Order Logics) Let L be a propositional relevant logic (with
fusion and t) defined above. The logic LQ is defined by adding the following axioms and
rule schemes, in the first-order language:10

(∀E) ∀xA → A[τ/x], where τ is free for x in A
(∃I) A[τ/x]→ ∃xA, where τ is free for x in A

(EC) ∀x(A∨ Bx)→ ∀xA∨ Bx

(dEC) Ax ∧ ∃xB → ∃x(Ax ∧ B)
(A∃E) ∀x(A → Bx)→ (∃xA → Bx)

(R∀I) Ax → B V Ax → ∀xB
(R∃E) A → Bx V ∃xA → Bx

Moreover, the logic QL is defined similarly, but without (EC) and (dEC).

The principle (EC) is often desribed as the extensional confinement axiom; together
with (dEC), we consider these both to be the extensional confinement axioms.

An important restriction for us is primitive inclusion of ◦ in each of the defined
logics. In some first-order logics, an extension with either ◦ or even← (the inclu-
sion of which makes (A∃E) derivable) is not a conservative extension (Tedder &
Ferenz, 2022). With fusion, the following formula become a theorem (scheme):

(A∀I) ∀x(Ax → B)→ (Ax → ∀xB)

Moreover, with (EC) and (dEC) as the only ‘toggle’ considered in this paper, there
are many first-order relevant logics that we do not consider. In a neighbourhood
setting, e.g., we can drop (A∃E) and (A∀I). We may also be able, though not in
this paper, to define and explore γ-admissibility in additional first-order relevant
logics. We briefly discuss some of this freedom.

The following is a list of further rules and meta-rules to consider.

(dR∀G) Cx ∨ B V Cx ∨ ∀xB
(dR∃G) Cx ∨ B V Cx ∨ ∃xB
(dR∀I) Cx ∨ (Ax → B)V Cx ∨ (Ax → ∀xB)

(dR∃E) Cx ∨ (A → Bx)V Cx ∨ (∃xA → Bx)
MR1 If AV B, then C ∨ AV C ∨ B, where universal generalization (here,

(R∀I)11) is not used on a free variable in A to obtain B.
MR2 If A V B, then ∃xA V ∃xB, where universal generalization is not

used on a free variable in A to obtain B.

10 The reader is reminded that a super-scripted x means that x does not occur free is the
decorated (sub)formula.

11 Brady (1988, 1989) has the restriction using the typical universal generalization rule
A V ∀xA. We use (R∀I) because it is equivalent in the presence of t. MR1 and MR2 are
used to define extensions of Brady’s BBQ, where Brady’s BBQ is strictly weaker than
what we here would call BBQ. Notably, (A∃E) and (A∀I) are not included.
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It is easy to show that (dR∀G) is a derivable rule in every first order logic LQ,
due to the presence of (EC). (A quick proof uses (EC), (MP), and the derivable
(R∀G).) In a logic QL, it remains an open question whether or not this rule is deriv-
able/admissible. The rule (dR∃G) is derivable in every first-order logic, due to (∃I).
Moreover, since ∀x(Ax → B)→ (Ax → ∀xB) is a theorem of any first-order logic
(as defined in this paper), it is easy to show that (dR∀I) is also a derivable rule with
(R3). The case is similar for (dR∃E), requiring (R3) again. Note, however, that (EC)
and (dEC) are not needed for (dR∀I) and (dR∃E).

We therefore know then that LQ will have each of the four disjunctive rules
above, and that QL sometimes has some of these rules. In section §3., we show
γ-admissibility for QL and LQ, provided that L admits γ by normal models.

Finally, note that, as shown in Ferenz (2023), (A∃E) and (A∀I) are valid in the
Mares-Goldblatt semantics for relational semantics. In contrast, in Brady’s pre-
sentation of the content semantics of Brady (1988), the base first-order relevant
logics do not include these axioms (but do include the extensional confinement
axiom(s)), although the later presentation in Brady (1989) incorporates (A∃E) and
(A∀I) into the setting of content semantics. While we get (A∀I) for free using
fusion, (A∃E) is nonetheless valid on the Mares-Goldblatt semantics. (This also
means that fusion does not conservatively extend Brady’s base system.) This con-
trast shows that the Mares-Goldbatt semantics and Brady’s content semantics di-
verge for first-order logics based on weak propositional relevant logics (at least for
those captured by a relational semantics.)

2.2. Mares-Goldblatt Semantics The target semantics is based on ternary re-
lational semantics.

DEFINITION 2.6. (Ternary Relational Frames) A ternary relational frame for B is
a tuple F = 〈W, N, R, ∗〉 where ∅ 6= N ⊆ W, R ⊆ W3, ∗ : W −→ W, and we further
define, for each a, b ∈ W, a ≤ b =d f ∃x ∈ N(Rxab). Moreover, the following conditions
are satisfied:

(c1) ≤ is a preorder on W;
(c2) N is an (≤-)upset;12

(c3) If a ≤ a′, b ≤ b′, c′ ≤ c, and Ra′b′c′, then Rabc. (R ↓↓↑)
(c4) b ≤ c implies c∗ ≤ b∗;
(c5) a∗∗ = a;

A ternary relational model for B is an frame with a valuation function ||−|| that assigns
an upset ||p|| ⊆ W to each propositional variable p. This assignment is extended to all
formulas by the following:13

12 We define the ‘upsets’ as ℘(W)↑ = {X ∈ ℘(W) : ∀a, b,∈W(a ∈ X & a ≤ b)⇒ b ∈ X}.
13 The operations ¬,→, and ◦ on subsets of W, on the right-hand side, are defined as

follows:

1. ¬X =d f {a ∈W : α∗ 6∈ X}
2. X → Y =d f {a ∈W : ∀b, c ∈W(Rabc & b ∈ X ⇒ c ∈ Y)}
3. X ◦Y =d f {a ∈W : ∃b, c ∈W(Rbca & b ∈ X & c ∈ Y)}
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||t|| = N
||A ∧ B|| = ||A|| ∩ ||B||
||A → B|| = |A|| → ||B||

||¬A|| = ¬||A||
||A ∨ B|| = ||A|| ∪ ||B||
||A ◦ B|| = ||A|| ◦ ||B||

For models for logics extending B: we provide the following list of frame conditions
(saving space by writing an axiom’s name instead of the entire axiom):

(cA1) a ∈ N ⇒ a∗ ≤ a
(cA2) Raaa
(cA3) Rabc ⇒ ∃x ∈W(Rabx & Raxc)
(cA4) Rabc ⇒ ∃x ∈W(Rabx & Rxbc)
(cA5) Rabc ⇒ Rbac
(cA6) Rabc ⇒ b ≤ c
(cA7) Rabc ⇒ a ≤ c
(cA8) Rabc & Rcd f ⇒ Rad f & Rbd f
(cA9) Rabc ⇒ a ≤ c or b ≤ c

(cA10) Rabc ⇒ Rbac & a ≤ c
(cA11) Rabc ⇒ ∃x ∈W(b ≤ x & c∗ ≤ x & Raxb∗)
(cA12) Ra∗aa∗

(cA13) Raa∗a
(cA14) Rabc ⇒ Rac∗b∗

(cA15) a∗ ≤ a
(cA16) Rabc ⇒ a ≤ b∗

(cA17) Rabc & Rcd f ⇒ ∃x ∈W(Radx & Rbx f )
(cA18) Rabc & Rcd f ⇒ ∃x ∈W(Rbdx & Rax f )
(cA19) Rabc & Rcd f ⇒ ∃x ∈W(Radx & Rxb f )
(cA20) Rabc & Rcd f ⇒ ∃x, y ∈W(Radx & Rbdy & Rxy f )
(cA21) Rabc & Rcd f ⇒ ∃x, y ∈W(Radx & Rbdy & Ryx f )
(cA22) Rabc & Rcd f ⇒ ∃x ∈W(b ≤ x & d ≤ x & Rax f )

(cR1) a ∈ N ⇒ Ra∗aa∗

(cR2) a ∈ N ⇒ Raa∗a
(cR3) a ∈ N ⇒ Raaa
(cR4) a ∈ N & Rabc ⇒ Rac∗b∗

(cR5) ∃x ∈ N(Raxa)
(cR6) a ∈ N & Rabc & Rcd f ⇒ ∃x, y ∈W(Radx & Rbxy & Ray f )

(This list is to be read as (cX) is the frame condition corresponding to the axiom of rule
scheme (X).)

DEFINITION 2.7. (Models for LQ) A Mares-Goldblatt frame for LQ (an LQ-frame),
for a propositional relevant logic L is a tuple F = 〈W, N, R, ∗, U, Prop, PropFun〉, where
〈W, N, R, ∗〉 is an L-frame, U is a non-empty set, and we have that Prop ⊆ ℘(W)↑,
PropFun ⊆ {ϕ : Uω −→ Prop}. Moreover, the following conditions are satisfied:

(cq1) Prop contains N, and is closed under ∩,∪,¬,→, ◦;
(cq2) PropFun contains a constant function ϕN (ϕN f = N), and is closed under

∩,∪,¬ →, ◦, ∀n and ∃n, for every n ∈ ω, where

(a) (¬ϕ) f = ¬(ϕ f )
(b) (ϕ⊗ ψ) f = ϕ f ⊗ ψ f , for each ⊗ ∈ {∩,∪,→, ◦}
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(c) (∀n ϕ) f =
d

g∼xn f
ϕg =

⋃{X ∈ Prop | X ⊆ ⋂
g∼xn f

ϕg}

(d) (∃n ϕ) f =
⊔

g∼xn f
ϕg =

⋂{X ∈ Prop | ⋃
g∼xn f

ϕg ⊆ X}

(cq3) For every ϕ ∈ PropFun, X, Y ∈ Prop, n ∈ ω, and f ∈ Uω14

(cEC) X−Y ⊆ ⋂
j∈U

ϕ( f [j/n]) only if X−Y ⊆ (∀n ϕ) f

(cdEC)
⋃

j∈U
ϕ( f [j/n]) ⊆ X ∪Y only if (∃n ϕ) f ⊆ X ∪Y

A pre-model for LQ is a tuple M = 〈F, |−|〉 such that F is a Mares-Goldblatt frame
for LQ and |−| is a valuation function that assigns:

1. an individual |c| ∈ U to each constant symbol c;
2. a function |Pn| : Un −→ ℘(W) to each n-ary predicate symbol Pn; and
3. a propositional function |A| : Uω −→ ℘(W) to each formula A such that, when
A is atomic, for every f ∈ Uω:

|Pnτ1, . . . , τn| f = |Pn|(|τ1| f , . . . |τn| f )

where “|τ| f ” is f n when τ is the variable xn, and |c| when τ is constant symbol c.
Moreover, when A is not atomic (or t), the valuation is extended as follows:

|t| = ϕN

|A ∧ B| = |A| ∩ |B|
|A ∨ B| = |A| ∪ |B|
|∀xnA| = ∀n|A|

|¬A| = ¬|A|
|A ◦ B| = |A| ◦ |B|
|A → B| = |A| → |B|
|∃xnA| = ∃n|A|

A model for LQ is a pre-model for LQ that assigns an element of Prop to each atomic
formula.

A formulaA is satisfied by a variable assignment f in a model M, written M, f �
A, when N ⊆ |A| f . A formula is valid in a model M (M � A) when it is satisfied by
every variable assignment in that model; valid in a frame F (F � A) when it is valid
in every model based on that frame; valid in a class of frames C (C � A) when it is
valid in every frame in that class. Admissibility of a rule in the semantic context is
understood as the preservation of validity.

PROPOSITION 2.8. (Soundness and Completeness for LQ) For a wide class of log-
ics including B and its usual extensions, Ferenz (2023) has shown that LQ is sound and
complete w.r.t. the class of LQ-frames.

To prepare the reader for the proof of γ-admissibility, we will briefly sketch
the technique of normalization and describe its history. Although the problem of
γ-admissibility was tackled by Meyer & Dunn (1969), the algebraic techniques
employed there are relatively involved. Routley & Meyer (1973) offered a new

14 Note that X − Y and Y are defined in the usual set-theoretic sense, but that Prop is not
necessarily closed under either of these operations.
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technique of normalization as a simpler and more elegant form of argument of γ-
admissibility whose development would continue in Routley & Meyer (1972) and
Routley et al. (1982). The shape of the technique is straightforward: A Routley-
Meyer model is described as normal if for some normal point a, a = a∗, i.e., some
normal point is its own star point.15

Not all R models are normal (and a fortiori for weaker relevant logics), but
surprisingly Routley & Meyer (1973) describe a recipe through which one can pick
an arbitrary point o ∈ N and normalize a model to include a point 0 ∈ N such that
o∗ ≤ 0 = 0∗ ≤ o. In particular, the condition for the excluded middle entails that
o∗ ≤ o, and we ensure that the new 0 is a negation-consistent point. We may think
of 0 as a consistentized version of o. If the logic is sound and complete with respect
to normal models with appropriate frame conditions, then, if ¬A ∨ B and A are
theorems, they will be true in 0. Since 0 = 0∗, we can conclude that A is not true
at 0, whence by the truth conditions for disjunction, B will be true at 0 and also at
o. As o was arbitrarily selected, this means that B is semantically valid and thus a
theorem by completeness.

This sketch, of course, has a great many subtleties and nuances. It is the task of
the next section to fill in the gaps and transform this sketch into a proof.

§3. γ-Admissibility for QL and LQ Logics While explicitly stated in some
definitions and lemmata, in this section we assume L to denote a propositional
relevant logic that admits γ via the normal models method and contains (R3) and
(R4): that is, a conventionally normal L3 extension of Gg,d. The keystone of this paper
is the method of normal models, so we present the crucial definition.

DEFINITION 3.9. (Normal Models) For any logic LQ or QL (based on a proposi-
tional relevant logic L with (R3) and (R4) admitting γ by the normal models method)
defined above, an LQ-(QL-)model (-frame) is normal if it satisfies the following:

(Norm) a = a∗, for some a ∈ N.

DEFINITION 3.10. (Normalization of a frame F) Where L is a conventionally nor-
mal L3 logic, 0 6∈ W and o ∈ N, the normalization of a QL-frame or LQ-frame
F = 〈W, N, R, ∗, U, Prop, PropFun〉 is a frame 〈W ′, N′, R′, ∗′, U, Prop′, PropFun′〉,
defined by:16

1. W ′ = W ∪ {0};
2. N′ = N ∪ {0};
3. R′ is given by R′abc iff Rabc, whenever a, b, c ∈W, and when a, b ∈W, R′ satisfies

the following

(a) R′000;
(b) R′00a iff R′ooa;
(c) R′0a0 iff R′oao∗;
(d) R′a00 iff R′aoo∗;

15 N.b. that the definition in Routley & Meyer (1973) is that this property holds for a
distinguished point but the effect is the same.

16 The o and 0 are used as in Seki (2011a), and correspond to T and T′ of Routley et al.
(1982, p. 387).
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(e) R′0ab iff R′oab;
(f) R′a0b iff R′aob;
(g) R′ab0 iff R′abo∗;

4. ∗′ is defined by:

(a) a∗
′
= a∗ when a ∈W;

(b) 0∗
′
= 0;

5. For each X ∈ Prop, add X ∈ Prop′ when o∗ 6∈ X and, when o ∈ X, X ∪ {0} ∈
Prop′;

6. For each ϕ ∈ PropFun, add ϕ and ϕ′ to PropFun′, where ϕ′ is defined by:17

∀ f ∈ Uω, o ∈ ϕ f implies ϕ′ f = ϕ f ∪ {0}

We called this normalized frame the normalization of F at 0 for o ∈ N.

The proof of the following Lemma and Corollary are standard. That is, note that
their statement and proof (as in, e.g., Seki (2011a)) relies only on the propositional
machinery of a frame: U, Prop, and PropFun are irrelevant.

LEMMA 3.11. If F is an QL- or LQ-frame (for conventionally normal L3 L) and F′ is
a normalization of F at 0 for o:

1. the relation R′ is well-defined;
2. the ordering ≤′ is such that, for all a, b ∈W:

(a) a ≤′ b iff a ≤ b;
(b) 0 ≤′ b iff o ≤ b;
(c) a ≤′ 0 if a ≤ o∗.

COROLLARY 3.12. If F is an QL- or LQ-frame (for conventionally normal L3 L) and
F′ is a normalization of F at 0 for o, then o∗ ≤ 0 ≤ o.

The next lemma does require extra verification of the first-order machinery. Of
course, U is unaffected, but we must show that Prop and PropFun are well-defined
and closed under the required operations.

LEMMA 3.13. Suppose that L is a propositional relevant logic (extending Gg,d) which
admits γ (by the method of normalizing models). Let F be a QL- or LQ-frame and

F′ = 〈W ′, N′, R′, ∗′, U, Prop′, PropFun′〉

the normalization of F at 0 for o. Then F′ is also a QL- or LQ-frame, respectively.

Proof. Here we must check every frame postulate. By the supposition that L admits
γ by the method of normalization (see appendix), we can use the arguments of
Routley et al. (1982, pp. 389–390) Seki (2011a, pp. 214–216) to cover to show that the
frame postulates corresponding to L (including those of Gg,d) are satisfied (with
respect to W ′, N′, R′ and ∗′).

17 The reader is to especially note that PropFun′ is not that much of an extension of
PropFun. That is, the reader is to note the scope of the universal quantifier in the
definition. There is no ‘mixing’ in the image of a propositional function — that is, a
propositional function in PropFun′ either returns the new elements of Prop′ with 0, or
else the old elements of Prop that do not contain 0.
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γ-ADMISSIBILITY IN FIRST-ORDER RELEVANT LOGICS 13

What remains to show is that Prop′ and PropFun′ and well defined and that
conditions (cq1) and (cq2) hold for QL, and additionally that (cq3) holds for LQ.
Prop′ is well-defined: We need to check that each element of Prop′ is an ≤-upset.
For each such X not containing 0, we need to show that o∗ 6∈ X, but this is so by
definition. Suppose that 0 ∈ X′ ∈ Prop′, and that ∃y ∈ X′(y ≤ z & z 6∈ X′). As X′

comes from an element, say X, of Prop, such a y cannot exist in X′. So let y = 0.
This means that 0 ≤ z and z 6∈ X′. However, by Lemma 3.11.(2).(b), o ≤ z and thus
z ∈ X, a contradiction. Hence Prop is well-defined.
PropFun′ is well-defined: It is easy to see that each element ϕ ∈ PropFun′ is a
function that produces a unique element of Prop′ as output, given a particular
input.
(cq1): Suppose that X′, Y′ ∈ Prop′ (and that X′ = X ∪ {0}, if 0 ∈ X′, for some
X ∈ Prop, a similarly for Y/Y′). We give the cases as follows:

∩ If 0 6∈ X′, Y′, then 0 6∈ X′ ∩Y′ ∈ Prop, and hence in Prop′. If 0 ∈ X′ but 0 6∈ Y′,
then X′ ∩ Y′ = X ∩ Y ∈ Prop′. If 0 ∈ X′, Y′, then X′ ∩ Y′ = {0} ∪ (X ∩ Y),
and X ∩ Y ∈ Prop. (The remaining sub-cases are symmetrical to the second
sub-case.)

∪ This case is similar to the previous case. One sub-case is shown. Suppose that
0 ∈ X′, Y′. Then X′ ∪Y′ = {0} ∪ (X ∪Y), where X ∪Y ∈ Prop.

¬ Either 0 = 0∗ ∈ X′ or not. If it is, then o ∈ X. Then o∗ 6∈ ¬X, and o 6∈ ¬X.
From the latter, ¬X′ = ¬X ∈ Prop. On the other hand, the assumption that
0 6∈ X′(= X) implies that o 6∈ X. Thus o∗ ∈ ¬X, and by Lemma 3.12. we
have o ∈ ¬X, and so 0 ∈ ¬X′ = {0} ∪ ¬X.

→ The case where X′ = X and Y′ = Y is trivial. Suppose that X′ = X ∪ {0}
and Y′ = Y. We know that Ra0c iff Raoc, and X′ → Y = {a ∈ W ′ :
∀b, c((Rabc & b ∈ X′) ⇒ c ∈ Y)}, which means that a ∈ X′ → Y iff
a ∈ X → Y, which means that X′ → Y = X → Y ∈ Prop′.
On the other hand, if X′ = X and Y′ = Y ∪ {0}, then we note that R′ab0 iff
Rabo∗. So X′ → Y′ = X → Y′. If a ∈ X → Y′ and R′ab0, then R′abo∗, and so
a ∈ X → Y.
Finally, suppose that X′ = X ∪ {0} and Y′ = Y ∪ {0}. We combine the
reasoning of the previous two cases to show X′ → Y′ = X → Y. (Using
R′a00 iff R′aoo∗ where needed.)

◦ Similar to the→ case.

(cq2): Suppose that ϕ′, ψ′ ∈ PropFun: The cases are as follows:

ϕ′N′ It is easy to check that (ϕN)
′ is our desired ϕ′N′ .

∩ For the remaining cases, we show only the subcases where one of ϕ′ or ψ′

is not in PropFun. It is easy to check that, for each f ∈ Uω, ϕ′ f ∩ ψ′ f =
(ϕ∩ψ)′ f , which shows that PropFun′ is closed under (the lifted operator) ∩.

∪ Similar to the previous case.
¬ We show that ¬(ϕ′ f ) = (¬ϕ)′ f , for each f ∈ Uω. If 0 6∈ ¬(ϕ′ f ) ∪ (¬ϕ)′ f ,

then ¬(ϕ′ f ) = ¬(ϕ f ) = (¬ϕ) f = (¬ϕ)′ f . On the other hand, 0(0∗) ∈
¬(ϕ′ f ) iff 0∗(0) 6∈ (ϕ′ f ) iff o∗ 6∈ (ϕ) f iff o ∈ ¬(ϕ f ) = (¬ϕ) f iff 0 ∈ (¬ϕ)′ f .

→ Fixing an f , we must show that (ϕ′ → ψ′) f = (ϕ→ ψ)′ f . To handle multiple
cases in parallel, let the notation Ja/0K denote a in case a 6= 0 and 0 otherwise.
Then for left-to-right, we prove the contrapositive. If Ja/0K /∈ (ϕ→ ψ)′ f then
Ja/oK /∈ (ϕ→ ψ) f , meaning that there exist b, c ∈W such that RJa/oKbc and
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b ∈ ϕ f and c /∈ ψ f , i.e., there is a counterexample. Counterexamples will
lift to the new model, i.e., R′Ja/0Kbc will hold. Also as ϕ f ⊆ ϕ′ f , b ∈ ϕ′ f
and as ψ′ f ∩W = ψ f , that c /∈ ψ f entails that c /∈ ψ′ f . Together, Ja/0K /∈
(ϕ′ f → ψ′ f ). For right-to-left, if Ja/0K ∈ (ϕ → ψ)′ f then Ja/oK ∈ (ϕ → ψ) f ,
meaning that in the original model for all b, c ∈ W such that RJa/oKbc, if b ∈
ϕ f then c ∈ ψ f . Suppose for contradiction that Ja/0K /∈ (ϕ′ f → ψ′ f ). Then
there are d, e,∈W ′ for which R′Ja/0Kde while d ∈ ϕ′ f and e /∈ ψ′ f . But (using
the same notation) this means that in the original model RJa/oKJd/oKJe/o∗K
with Jd/oK ∈ ϕ f and Je/o∗K /∈ ψ f . But since this takes place in the original
model, Je/o∗K would be forced to be a member of ψ f . Consequently, Ja/0K ∈
(ϕ′ f → ψ′ f ).

◦ Similar to the→ case.
∀n We show that (∀n ϕ′) f = (∀n ϕ)′ f , for every f ∈ Uω. Fix an arbitrary f ∈ Uω.

There are two distinct cases to consider 0 ∈ (∀n ϕ)′ f and 0 6∈ (∀n ϕ)′ f .
For the latter, that is 0 6∈ (∀n ϕ)′ f , this entails that o 6∈ (∀n ϕ) f . That is, for all
X ∈ Prop, X ⊆ ⋂

g∼x f (ϕg) entails o 6∈ X. By definition, it follows that each
ϕ′g ∈ ⋂

g∼x f (ϕ′g) does not contain 0. And so, 0 6∈
d

g∼x f (ϕ′g) = (∀n ϕ′) f .
That (∀n ϕ′) f = (∀n ϕ)′ f follows from the fact that each set belongs to the
original model, where the identity holds.
Now suppose that 0 ∈ (∀n ϕ)′ f . Then o ∈ (∀n ϕ) f and thus o ∈ X ⊆⋂

g∼x f (ϕg) for some X ∈ Prop. Then o ∈ ϕg for every g. Let us denote
X ∪ {0} by X′. Then X′ ⊆ ⋂

g∼x f (ϕ′g), as by definition ϕ′g must include
0. But then 0 ∈ (∀n ϕ′) f . Using the fact that 0 ∈ (∀n ϕ′) f iff 0 ∈ (∀n ϕ)′ f ,
we now show the identity (∀n ϕ′) f = (∀n ϕ)′ f . The a = 0 case is covered by
what we have already shown. If a 6= 0, then the corresponding identity of
the original model is sufficient.

∃n Similar but dual to the previous case.

This completes the QL portion of the lemma. The remaining case concerns LQ.
(cq3): We show only the sub-case for (cEC). Assume that X′, Y′ ∈ Prop′, ϕ′ ∈
PropFun′, n ∈ ω, and f ∈ Uω. Further suppose that X′ − Y′ ⊆ ⋂

j∈U
ϕ′( f [j/n]).

There are two cases.

Case 1: 0 ∈ X′ − Y′, which is 0 ∈ X′ and 0 6∈ Y′. Then 0 ∈ ⋂
j∈U

ϕ′( f [j/n]).

Thus, 0 ∈ ϕ′( f [j/n]) for each j ∈ U. We want to show that there is
an X ∈ Prop′ such that 0 ∈ X ⊆ ϕ′( f [j/n]) for each j ∈ U. Consider
the set ∀n ϕ′ f ∪ {0}. This is indeed an element of Prop′: 0 ∈ ϕ′( f [j/n])
entails o ∈ ϕ′( f [j/n]), which forces in turn both o ∈ ∀n ϕ′ f and 0 ∈
∀n ϕ′ f ∪ {0} ∈ Prop′. This completes the case with X = ∀n ϕ′ f ∪ {0}.
Because the original frame satisfied (cEC), we have shown that every
element of X′ −Y′ is an element of (∀n ϕ′) f , as required.

Case 2: 0 6∈ X′ − Y′. We assume that X′ − Y′ ⊆ ⋂
j∈U

ϕ′( f [j/n]). As 0 6∈ X′ − Y′,

the result follows from the original model satisfying (cEC) and the
fact that both

⋂
j∈U

ϕ′( f [j/n]) and (∀n ϕ′) f are either equal to their cor-

responding sets in the original model, or additionally contain 0.

�
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As each normalized frame is a frame of the right kind, soundness for the corre-
sponding logic is straightforward. We record this fact.

LEMMA 3.14. (Normal Soundness) For any formula A, if A is a theorem of QL or
LQ on L3 L, then A is valid in every normal QL-frame or LQ-frame, respectively.

Given a LQ-model’s valuation, we define the standard valuation for the normal-
ization of the model’s frame in the following definition. Note that other valuations
are possible, but that this standard normalization valuation plays a key role in
what’s to come.

DEFINITION 3.15. If M = 〈F, |−|〉 is an QL- or LQ-model (for conventionally nor-
mal L3 logic L), we take as the standard normalization of model M at 0 (for 0 ∈ N) to
be the tuple M′ = 〈F′, |−|′〉, where F′ is the normalization of F (at o), and |−|′ is defined
as follows:18

1. |c|′ = |c|;
2. for all ~j ∈ Un: |Pn|′(~j) = |Pn|(~j), if o 6∈ |Pn|(~j), and (|Pn|(~j)) ∪ {0} if o ∈
|Pn|(~j) ;

3. A propositional function |A|′ is given to each formula in the usual way, given the
previous two clauses.

LEMMA 3.16. Let L be a conventionally normal L3 propositional relevant logic. Given
a QL- or LQ-model M = 〈F, |−|〉, the standard normalization M′ = 〈F′, |−|′〉 of M is
a QL- or LQ-model, respectively.

Proof. The underlying frame is an QL- or LQ-frame, as per Lemma 3.13.. It remains
to be shown that the valuation assigns an element of PropFun′ to each atomic
proposition. That every formula is assigned an element of PropFun′ follows from
each atomic formula being assigned an element of PropFun′ together with the fact
that PropFun′ is closed under the required operations.

It is straightforward to check that each atomic formula is mapped to an element
of PropFun′. As PropFun′ is closed under the appropriate operators, it follows in
the usual way that each formula is mapped to an element of PropFun′. �

LEMMA 3.17. Let M be a QL- or LQ-model with set W (for conventionally normal L3
logic L). Further let M′ be the standard normalization of M. For all a ∈ W, for every
formula A and f ∈ Uω, a ∈ |A| f iff a ∈ |A|′ f .

Proof. The proof is by induction on the complexity ofA. IfA is the atomic Pτ1, . . . , τn,
then |Pτ1, . . . , τn|′ f = |P|′(|τ1|′ f , . . . , |τn| f ). For each |τi|′ f , |τi|′ f = |τi| f . Thus, by
definition, |Pτ1, . . . , τn|′ f restricted to W is |Pτ1, . . . , τn| f , as required. The case for
t is straightforward. For the inductive cases, we only show a couple.

Case A = B ∨ C: Suppose that a ∈ W and f ∈ Uω. If a ∈ |B ∨ C| f , then
by (a couple suppressed steps) the inductive hypothesis either a ∈ |B|′ f or a ∈
|C|′ f , which entails that a ∈ |B ∨ C|′ f , as required. The other direction is similarly
straightforward.

18 Note that this terminology is new, but reflects the usual method of normalization:
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Case A = B → C: Right-to-left is trivial as R′ and R agree on all arguments
from W. For left-to-right, suppose that a ∈ |B → C| f . Then for all b, c ∈ W such
that Rabc and b ∈ |B| f , also c ∈ |C| f . By induction hypothesis, this entails that for
all b, c ∈ W such that R′abc and b ∈ |B|′ f , also c ∈ |C|′ f . This is nearly sufficient
to establish that a ∈ |B → C| f ; it could go awry only in case R′ab′c′, b′ ∈ |B|′ f ,
and c′ ∈ |C|′ f when either b′ = 0 or c′ = 0. But in such cases, one could select
appropriate b′′ = o or c′′ = o∗ such that R′ab′′c′′ while b′′ ∈ |B|′ f and c′′ /∈ |C|′ f .
As a, b′′, c′′ ∈W, though, this is impossible, as it would entail that c′′ ∈ |C|′ f . Thus
a ∈ |B → C|′ f , as required.

Case A = ∀xnB: Suppose that a ∈ W, f ∈ Uω and that a ∈ |∀xnB| f . Then
a ∈ X ∈ Prop and X ⊆ ⋂

g∼xn f |B|g. Then a ∈ |B|g, for each g ∼xn f . By the
induction hypothesis, for all b ∈W, b ∈ |B|′g iff b ∈ |B|′g, for each such g. Thus (i)
a ∈ ⋂

g∼xn f |B|′g and (ii) X ⊆ ⋂
g∼xn f |B|′g (because X ⊆ W). Then a ∈ X ∈ Prop′

and X ⊆ ⋂
g∼xn f |B|g, which is that a ∈ |∀xnB|′ f , as required.

For the other direction, assume that a ∈W, f ∈ Uω and that a ∈ |∀xnB|′ f . Then
a ∈ X′ ∈ Prop′ and X′ ⊆ ⋂

g∼xn f |B|′g. Consider X, which is equal to X′ if X′ ⊆W,
and is X′ − {0} otherwise. Clearly X ∈ Prop. Moreover, by the transitivity of the
subset relation, X ⊆ ⋂

g∼xn f |B|′g, and also we have a ∈ X. Now, by the induction
hypothesis, for every b ∈ W, b ∈ |B|′g iff b ∈ |B|′g, for each such g. Thus we infer
that X ⊆ ⋂

g∼xn f |B|g, and so a ∈ |∀xnB| f . �

THEOREM 3.18. For any formulaA and any L3 logic L admitting γ by normal models,
A is a theorem of LQ (QL) iff A is valid in every normal LQ-frame (QL-frame).

Proof. The only if direction is soundness, and is covered by Lemma 3.14.. For the
if direction, suppose that A is not a theorem of LQ (QL). Then there is a canonical
LQ-model (QL-model) with frame F = 〈W, N, R, 0, U, Prop, PropFun〉, (canonical)
valuation |−|, and o ∈ N such that o 6∈ |A| f , for some f ∈ Uω.

For a new 0, take the standard normalization of M (at 0 for o), denoted M′ =
〈F′, |−|′〉. By Lemma 3.16., this M′ is a LQ-model (QL-model). By Lemma 3.17.,
o 6∈ |A|′ f . But 0 ≤ o then entails that 0 6∈ |A|′ f , and since 0 ∈ N′, we have that A
is not valid on F. �

In particular, this proof shows that, for every invalid formula A, there is a nor-
mal point 0 = 0∗ in a normal model at which the invalidity of A is witnessed. In
the proof we took at arbitrary oinN at which A fails and introduced a new point
0 which, because of the excluded middle axiom and out construction, is such that
o∗ ≤ 0 ≤ o. The latter entails that 0 is also a point at which A fails.

COROLLARY 3.19. For the logics LQ and QL, where L3 logic L admits γ by normal
models, the rule γ is admissible.

Proof. Suppose that ¬A ∨ B and A are both theorems of LQ. Then by Theo-
rem 3.18., these formulas are valid on every normal model. Consider an arbitrary
normal model M = 〈W, N, R, ∗, U, Prop, PropFun, |−|〉 with normal point 0 (0 =
0∗). Since 0 ∈ N, 0 ∈ |¬A ∨ B| f ∩ |A| f for every f ∈ Uω. Since 0 ∈ |A| f and
0 = 0∗, we have that 0 6∈ |¬A| f . But then given the definition of |¬A ∨ B| f ,
0 ∈ |B| f , as required. �

We reintroduce the ◦ and t notation in a logic’s name for the next corollary,
which gives a sufficient condition for γ-admissibility in logics without ◦ and t.
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COROLLARY 3.20. For every conventionally normal propositional logic L, if LQ◦t

admits γ and conservatively extends LQ, then LQ admits γ.

Proof. Suppose that `LQ A and `LQ ¬A ∨ B and that A and B do not contain
fusion or t. Then we have `LQ◦t B since LQ◦t admits γ. Moreover, since B is in
the language of LQ, by the conservative extension assumption we have `LQ B. �

As a result, whenever we can show the conservative extension by ◦ and t in the
first-order case, we can extend our admissibility results to the weaker logics.

§4. Concluding Remarks We have shown γ is admissible in a wide range of
first-order relevant logics. A major upshot is that we can conceive of many logics
QL and LQ as having a well-behaved semantics. Well behaved, that is, in the
sense that the machinery for interpreting quantified formulas is sufficiently inde-
pendent from the propositional machinery required for γ-admissibility. Thus, we
have essentially shown that the QL and LQ extensions of L conserve the property
of γ-admissibility (w.r.t. the normal models method).19 From this point of view,
and from the fact that γ-admissibility ensures the set of theorems of a logic is
negation consistent (and that the logic contains the set of theorems of classical
first-order logic in ¬,∨, ∀), we can take the logics that we have shown to admit
γ as well-behaved in yet another sense: that the constant domain extensions QL
and LQ preserve normal models γ-admissiblity, negation consistency of the set of
theorems, and the containment of (the theorems of) their classical counterparts.

There are, however, many other ways to axiomatize first-order extensions of
relevant logics. From this work, we plan to extend these results to first-order modal
relevant logics and first-order logics that require neighbourhood semantics. (The
neighbourhood semantics given in Tedder & Ferenz (2022) is apt for a normal
model approach, as negation is treated in a similar way using a star function.
Similarly, the framework of Ferenz & Tedder (2023) may be used for weaker modal
relevant logics.) For the modal cases, the work of Seki (2011a) will again be invalu-
able. In the neighbourhood cases, we are able to better model axiomatizations of
first-order logics that, e.g., drop the axiom forms of universal introduction and
existential elimination.

A further avenue for future work is to extend the investigation in the paper
Author(s) (2024) in which γ admissibility holds in the case of the varying-domain
version of QR described in Mares (2009) to examine varying-domain analogues
of the weaker relevant logics considered in this paper. Notably, Mares’ system
includes an existence predicate that requires some additional consideration when
effecting a normalization. The present paper’s emphasis on considering the conse-
quences of additional connectives—like fusion and t—for the technique of normal
models makes this an especially attractive area to explore.

Finally, as a referee has kindly suggested to us, there appears to be some kinship
between Slaney’s work on reduced models for weak relevant logics in Slaney
(1987) and the techniques employed in this paper. Slaney’s method does not re-
quire that a logic has the principle of excluded middle, and so extending his results

19 We thank an anonymous reviewer for the viewpoint that our results are a kind of
conservative extension result.
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to first-order relevant logics is a natural step to expand on the results of this paper.
We plan on revisiting the connections between normalization and Slaney’s results,
as well as exploring the metavaluation method, for first-order relevant logics in
future work.

A γ-Admissibility for Propositional Logics with Fusion and t In this ap-
pendix we prove Theorem 2.4. which states that, for any conventionally normal
logic L admitting γ, the logic L◦t also admits γ. The proof will largely follow Seki’s
presentation in Seki (2011a) (minus modalities but tending to the cases of ◦ and t).

LEMMA 1.21. The normalization of an L◦t frame is an L◦t frame.

Proof. Let F′ = 〈W ′, N′, R′, ∗′〉 be the normalization of an L◦t frame F = 〈W, N, R, ∗〉.
That ∗′ is a well-defined unary function is immediate; that R′ is a well-defined
ternary relation follows from a similar argument to that found in Routley et al.
(1982, p. 387). �

In particular, we note the following corollaries follow from Lemma 1.21.:

COROLLARY 1.22. In a normalization F′ based on F, the following hold for all a, b ∈
W

a ≤′ b iff a ≤ b 0 ≤′ b iff o ≤ b

COROLLARY 1.23. Let F′ = 〈W ′, N′, R′, ∗′〉 be the normalization of an L◦t frame
F = 〈W, N, R, ∗〉 at 0 for o ∈W. Then o∗

′ ≤′ 0 ≤′ o.

From the soundness of L◦t, the following follows immediately:

LEMMA 1.24. If A is provable in L◦t then A is valid in every normal L◦t frame.

At this point, we lift the notion of normalization of a frame to define the normal-
ization of a model:

DEFINITION 1.25. Let 〈F, ‖−‖〉 be an L◦t model. Then let its normalization be 〈F′, ‖−‖′〉
where F′ is the normalization of F and ‖−‖′ is defined so that for atoms p,:

‖p‖′ =
{
‖p‖ if o /∈ ‖p‖
‖p‖ ∪ {0} if o ∈ ‖p‖

Now, we introduce two lemmata establishing that the normalization of a model
will enjoy appropriate properties:

LEMMA 1.26. In a normalized L◦t model, ‖p‖′ is an upset with respect to ≤′ for every
atom p.

Proof. By appeal to the model of which the model is a normalization. If o /∈ ‖p‖,
then this follows. Otherwise, ‖p‖′ = ‖p‖ ∪ {0}. Take an arbitrary a ∈ ‖p‖′ and b
such that a ≤′ b. We prove that b ∈ ‖p‖′.

Note again that both o ∈ ‖p‖ and 0 ∈ ‖p‖′. If b = 0, the result is immediate,
so assume that b ∈ W. Now, if a = 0, because 0 ≤′ b holds precisely when o ≤ b
holds in the original model. If a 6= 0, then because b 6= 0, a ≤′ b holds when a ≤ b
holds in the original model. In both cases, as ‖p‖ is an upset, b ∈ ‖p‖ and a fortiori
b ∈ ‖p‖′ �
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LEMMA 1.27. In a normalized L◦t model, ‖A‖′ is an upset with respect to≤′ for every
formula A.

Proof. As 〈F, ‖−‖′〉 is a model, closure of propositions from the basis of Lemma
1.26. follows through a standard inductive argument. �

This brings us to the key fact, namely, that a normalized model will agree with
the model from which it was constructed. We ensure especially that the semantic
clauses for ◦ and t do not somehow prove problematic:

LEMMA 1.28. In a normalized L◦t model and point a ∈W, a ∈ ‖A‖ iff a ∈ ‖A‖′.

Proof. By induction on complexity ofA. The basis step is provided by definition of
the normalized model and most cases are covered as in Routley et al. (1982, p. 391).
Given our interest in t and ◦, we provide these steps:

• If A = t then ‖t‖′ =‖t‖ ∪ {0}, so this holds for every a ∈W.

• If A = B ◦ C then to show left-to-right, pick an a ∈ ‖B ◦ C‖; this holds precisely
when b ∈ ‖B‖ and c ∈ ‖C‖ such that Rbca. By induction hypothesis, this entails
that b ∈ ‖B‖′ and c ∈ ‖C‖′. Additionally, by construction of the normalized frame,
R′bca holds, whence a ∈ ‖B ◦ C‖′. For right-to-left, on the other hand, pick an
a ∈ ‖B ◦ C‖′ such that a ∈ W. Then there are b ∈ ‖B‖′ and c ∈ ‖C‖′ such that
R′bca. Now, fix the following:

b′ =

{
b if b 6= 0
o if b = 0

and c′ =

{
c if c 6= 0
o if c = 0

Notably, b′ and c′ are elements of W. Then either trivially or by construction of R′,
we have that Rb′c′a and either trivially or by construction of ≤′, also b ≤ b′ and
c ≤ c′, whence by Corollary 1.27., b′ ∈ ‖B‖′ and c′ ∈ ‖C‖′. In other words, there
are b′ ∈ ‖B‖ and c′ ∈ ‖C‖ such that Rb′c′a, i.e., a ∈ ‖B ◦ C‖. �

One final lemma will suffice to prove Theorem 2.4.:

LEMMA 1.29. L◦t proves A iff A is valid in every normal L◦t frame.

Proof. We prove the right-to-left direction via contraposition. Suppose that A is
not provable in L◦t. Then there exists a model 〈F, ‖−‖〉 and a normal point o ∈ N
such that o /∈ ‖A‖. By Lemma 1.28., in the normalization 〈F, ‖−‖′〉, o /∈ ‖A‖′. By
Corollary 1.23., 0 ≤′ 0, entailing that 0 /∈ ‖A‖′. Because 0 ∈ N′, F′ witnesses that
A is not valid in every normal L◦t frame. �

This brings us to the main theorem concerning L◦t:

THEOREM 2.4.. γ is admissible for L◦t.

Proof. Suppose for contradiction that γ fails, i.e., that there are L◦t theorems ¬A∨
B and A such that B is not provable. By Lemma 1.29., there exists an L◦t model
〈F′, ‖−‖′〉 with F′ normal such that 0 /∈ ‖B‖′. As 0 ∈ N′, however, 0 ∈ ‖¬A ∨
B‖′ and 0 ∈ ‖A‖′. Consequently, either 0 ∈ ‖¬A‖′ or 0 ∈ ‖B‖′. Because 0 =

0∗
′
, the requirement of the former case that 0∗

′
/∈ ‖A‖′ translates to 0 /∈ ‖A‖′,

contradicting the hypothesis that 0 ∈ ‖A‖′. The latter case is ruled out insofar as 0
was assumed not to be a member of ‖B‖′. As both disjuncts lead to contradiction,
we conclude that γ holds. �
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