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Abstract Let A be an irreducible 0-1 matnx such that the non-zero entries in each
row are consecutive Let ©max be the class of piecewise linear Markov transformations
T on [0,1] into [0,1] induced by A for which the absolutely continuous invanant
measure has maximal entropy The main result presents necessary and sufficient
slope conditions on r which guarantee that r e Kmax

1 Introduction
There are two measures which appear prominently in the dynamical systems theory
literature measures which are absolutely continuous with respect to Lebesgue
measure [10,11] and the maximal measures [6-9], le those which maximize the
measure theoretic entropy The maximal measure reflects the maximum randomness
that can be generated by a dynamical system while the absolutely continuous
invanant measure (a c l m ) is the one which arises naturally in physical situations,
as for example in computer simulations When an a c l m is also maximal it says
that the most chaotic situation possible can be realized by the physical system
Transformations, which have this property are, therefore, of interest

In [8] the maximal measures for a restrictive class of piecewise monotonic
transformations is characterized and under a mild restnction uniqueness of the
maximal measure is established In this paper we shall be concerned with piecewise
linear Markov transformations associated with an irreducible 0-1 matrix A Using
the structure of A, we shall derive a system of equations which provide necessary
and sufficient conditions for the unique maximal measure to be absolutely con-
tinuous In [9] it is stated that the 'absolutely continuous invanant measure in
general is not the measure with maximal entropy' For the class of piecewise linear
Markov transformations associated with A, we will be able to make this statement
more precise For example, we shall be able to specify the dimension of the family
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646 W Byers et al

of piecewise linear Markov transformations with the property that the a c 1 m is
maximal

We shall also study the case when A is not irreducible Then it is possible that
there is no a c 1 m which is maximal The study of transformations compatible with
such a matrix clarifies the distinction between a c 1 m and maximal measures

Let A = (a,j) be a fixed n x n 0-1 irreducible matrix such that the non-zero entries
in each row are consecutive Let M denote this class of matrices Let I = [0,1] and
let 0 = a o < a i < < a n = l be a partition of I denoted by ^ We say that a
transformation T I-»I IS Markov if r{{ao,ax, , an})c{a0 , ax, ,an} The
Markov transformation T IS compatible with the matrix A when r ( I , )2 l 7 if and
only if atJ = 1 for all I , , I ,e^3 Let KA be the class of piecewise linear Markov
transformations compatible with A e ^ It is easy to show that xe KA admits a
unique absolutely continuous invariant measure /J. =fm, where m is Lebesgue
measure on I The function / is a r-invariant density and is constant on elements
of the defining partition of T, ?$

The measure-theoretic entropy ^ ( T ) can be computed by means of the formula

[2]

I
JI

K(T)= ln\r'\dn
Jj

The topological entropy of T IS denoted by fctopM If T IS not continuous, we
define ^^(T) = hi A, where A is the maximal eigenvalue of A (We note that i e (£A

is isomorphic to the subshift of finite type associated with A in the sense of Definition
2 4 in [13])

In this paper we completely characterize the piecewise linear Markov transforma-
tions whose a c I m is maximal That is, we find necessary and sufficient conditions
for T € (£A to belong to the subclass

6max = { r e 6 A *M(T) = fctop(T) = lnA}

It is obvious that if T has constant slope, then it is equal to A and reC£mdX

Moreover, if some iterate of T, say T \ has constant slope, then r e KmdX, since

K(T) = ( lM)M^) = (Uk)kop(r
k) = Kop{r)

In the sequel we shall show that Emax is much richer than those examples might
suggest In particular, we will give an example of a r e (£mdx such that no iterate Tk

of T has constant slope
In [4] we treated the foregoing problem for a very restricted class of matrices

s&o, where A e sdo<^ si if there are integers p and q, l^p^qSn such that every
row of A either consists of a block of l's av = 1 if and only if j = p, , q, or else
the row contains a unique nonzero element The main result of [4] is

Theorem 0 Let A € s£0 and l < p , p + 1, ,q — n denote the indices of the block of
Vs Let T be a piecewise linear Markov transformation on I compatible with A and
having the defining partition 8̂ = {I,, , In} Let fj. be the a c l m associated with T
If fi is maximal, then for those l's, pr£ i < q, for which T(I,) 3 ljt with p<jsq, we
have |T ' | I | = A, where A is the maximal eigenvalue of A
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Maximal absolutely continuous invariant measures 647

In Theorem 3 of [4] this result was stated incorrectly to apply to all l's, p < i < g
The mathematical method of the proof of Theorem 3 was correct, but too general
a conclusion was drawn

2 Background
Let A be an irreducible 0-1 matrix, and let (iX,cr) be the one-sided subshift of
finite type associated with A 2 J is a metric space with metric d(x, y) = 2~N, where
N = mf{n xn*yn} for x = (xo,xx, ) , y = (yo,yi, ) in J.X Let 9 be a set of
Holder continuous functions on 2 j For any <p e 5F, we define the operator

by the formula

(*) = I exp(?00)/(>>)

THEOREM 1

(1) There exist a unique \ v e U, a function hv (unique up to constant multiples), such
that J£vhv - \vhv, and a unique probability measure vv such that i£%vv = k^v^

(2) The measure nv = h^v^, is o--invariant, ergodic, positive on non-empty open sets,
and it is the unique measure which maximizes the expression /iM(cr) + /i,((p) The
measure fiv is called the equilibrium state for <p

(3) For <p, i/f £ &, we have fiv = /i# if and only if there exists a function t e <€(1.%) ana>

a number ceU such that

<p — il> = c + / — t° a

(4) If (p = l n g where

for any xeiX, then \v = 1, h<p = 1, and h^a) + /^(<p) = 0
(5) / / <p, $ e 9, <p = In g,, tp = In g2 with

then nv = (i* implies g, = g2

Proof The proof of this theorem is an extension of the proof of an analogous

theorem for primitive matrices A [1] •

PROPOS'TION 1 Let r I -> I be a piecewise linear Markov map with irreducible transition
matrix A Let //, =fm be the unique absolutely continuous measure invariant under r
Then the dynamical system (I, T, fi) is isomorphic to ( 2 ^ , cr, fi.v), and
(1) the isomorphism ir S^-»I is Holder continuous and 1-1 on the set of full fi^-

measure where <p = —In \T' ° TT\,
(2) for <p = - In \T' ° n\, the measure vlf = m° ir~x, hv =f° IT, and A,, = 1

Proof Let ^ = {I,, I2, , In} be the defining partition of T The standard isomorph-
ism 7T is defined by

TT((XO,X1,X2, )) = lXonT~l(lXl)n nr""( I , , )n
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It can be proved that TT IS Holder continuous It follows that <p = -In \T' ° ir\ belongs
to 3F, and by Theorem 1, there exists the unique measure nv (the equilibrium state
for <p) The fact that TT IS 1-1 on the set of full /^-measure is well known

We now prove that hv=f°ir It is enough to show that

We have

= i koor/O'H i i
y try = x y TV = X

where x = v(x) and y = n(y)
Analogously, we can prove that if*(m ° ir~') = m ° TT'1 From the above it follows

that /i f = /t° TT"1 D
PROPOSITION 2 In the notation of Proposition 1, the function

|T '

f°

satisfies

I «O0=i

/or a«y x e 2 J

/Voo/ Follows by the r-invanance of/ D

3 Blocks and paths
Let A be an « x n irreducible 0-1 matrix with consecutive non-zero entries in each
row A digraph having n vertices can be associated with such a matrix We now
partition the n vertices into blocks
Definition 1 Vertices j and_/* belong to the same block B if and only if there exist
integers ii, ,ik and./], ,jk such that

where j , =j, i2 = i, ,j3 =j2, »4= '3, ,h = h~, ,h =J*

Example 1

"0 0 1 T
0 1 1 0
1 0 0 0

.0 0 1 1 .

There are two blocks B, = {1} and B2 = {2,3,4}

A convenient equivalent way of determining the blocks can be described as
follows let Cj denote the positions of the non-zero entries in the 7th row and let
Cj, dj denote the two extreme integers in C, We say C, and Cf combine if either
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{Cj, dj} nC?*0 or {c*, df} nC}^0 Then we define C* = C, u Cf We continue
this process until we obtain a maximal set This set is a block

In this way we can find the blocks by examining the matrix A In example 1, we
have C, = {3,4} and C2 = {2, 3} Since C, and C2 combine, {2,3,4} is a block

Let us assume that we have m < n blocks- B,, ,Bm

Definition 2 We say there is a path P of length p from Bt to Bk if and only if for
some vertex i € B, and for some vertex jeBk there exist integers
' i . h, , iP-i,Ji, ,JP-\, where is andjs are in the same block ( l < s < p - l ) , such
that

This path will be denoted by (P, p)
Let us now associate with any vertex i a number s, > 0, i = 1, 2, ,n We associate

with a path (P, p) a number

which we shall refer to as a path product associated with a path (P, p) With a path
of length 0, we associate the path product 1

We shall now present a system of equations associated with the matrix A We
consider all paths between blocks B,, ,Bm of A, including paths of length 0
Whenever there are two paths {P\,P\), (P2,/>2) with the same starting and ending
blocks, we write the equation

The system of all such equations will be referred to as the system of structural
equations of A

4 Mam theorem
Let us consider T e GA Let s, be the slope of T on the interval /, e ^ The main
result of this note is

THEOREM 2 r€(Smax if and only if the slopes (sus2, ,sn) of T satisfy the system
of structural equations of A

Proof First we shall prove that this is a necessary condition Let T e ^mdX, and let
TA denote the transformation with constant slope A Clearly, TA € 6max

As in Proposition 1, we construct isomorphisms

1T2 (2A,O-, M2)-*(I, T

Since the measures fi and /iA maximize measure theoretic entropy, the measures
fit, fi2 also maximize entropy and by uniqueness of the equilibrium state, fil = fi2
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By Propositions 1, 2 and property (5) of Theorem 1, we obtain

A(/A °7T2°or) IT 'O^K/OTT, °O-)'

which can be written more conveniently in the form

k'°77-)| = / / ° 7 r , \ //A ° ff2 ° q\
A X/Ao77-2/\/°7r1°O-/

Equation (2) will be used extensively in the sequel
Let w, be the value of ( / ° 7r,//A ° TT2) on the cylinder sets (xo = i), i = 1, , n

We recall that s, is the value of \T' ° ir^\ on (x0 = i), i = 1, , n First we shall prove
that w, is the same for all I'S in the same block

Lety and j * belong to the same block By definition, there exist integers ^, ,ik

and j , , ,jk such that

a n d ji=j, h = i l , j 3 = j 2 , i 4 = i 3 , ,ik = h-i,Jk=J* U s i n g ( 2 ) , i2=ix,ahh = \ a n d

a,2 ,2=l, we get

sj A = w,,/ wM

Therefore, wjx = wj2 Since J3=j2, we get wJt = wj2= wj3 We now proceed by this
argument

Let (J*i,Pi) and (P2,P2) be two paths from B; to Bjt The existence of (PuP^)
and (2) imply

The existence of (P2,p2) and (2) imply

*,/A = w,/wA

Since the pairs i,,j,, , !„,_, , jP l_, , if ,jf, ,!*_,, . /*_, belong to the same
blocks,

and the above set of equations yields

This completes the necessity part of the proof

We shall now prove that the system of structural equations of A provides a
sufficient condition for T to belong to (SmdX By property (3) of Theorem 1, it is
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enough to construct a continuous function t S^~*IR such that

|T ' ° 77,1/A = t/t o a

We will construct this function using the structural equations of A This will be
done by defining t as constants /, on the cylinder sets (xo= i), i = 1,2, , n The
function t will be made constant on blocks of A

Let B, = {J, , , ik} be a block We put t, = a for all i € B, , where a is a fixed
real number Now we consider those j's, 1 < j < n, such that aw = 1, ir € B, For any
such j , we define

Moreover, we define t* = t, for all j * for which j * and j are in the same block We
now prove that this assignment of values is consistent The only situation in which
a contradiction can occur is if there are two different ways of reaching the same
block a,r Jt = l and a,r J2 = \, where 7, and j2 are in the same block But then from
(2) we obtain

s,rJ\ = s,J\
and there is no contradiction

Proceeding in this way, we can define values for t on all cylinder sets At every
step we check that there is no contradiction in defining the f,'s Such a contradiction
can occur only if we use two different paths between the same starting and ending
blocks,

(/, = k,, lv = kH) to define tjUv), wherej(lv)e B(i>, and tj*(k^, wherej*{kn)e Bk =B( i

We have

j(h)eBlit !*(*,)€«*,, j*(k2),i*(k2)£Bk2,

and

k,)> 0*<M = ti*<k2)^-/ Si*(k2)> >

'/*(*» > = 'i*(fc,,-i)^/5i*(*,,_i)

On the other hand we have the structural equation

Hence /,(/i, = f,.(ku, This proves that the function r is well defined and thus proves
the sufficiency part of the theorem •
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COROLLARY 1 If the matrix A admits exactly one block, then the piecewise linear
Markov transformations compatible with A for which the a c 1 m is maximal are
precisely those of constant slope A

5 Consequences of the Mam Theorem
Let T e SA be a transitive piecewise linear Markov transformation (the transitivity
of T is equivalent to the irreducibility of A) It is known that T IS conjugate via a
homeomorphism <1> to a transformation TA of constant slope [12] Using our main
theorem we now prove some properties of O

THEOREM 3 If <£ (I, T ) - » ( I , TA) IS a topological conjugation, then <1> is absolutely
continuous if and only if the slopes of T satisfy the system of structural equations

Proof If the slopes of r satisfy the system of structural equations, then the absolutely
continuous T-invariant measure is maximal As a maximal measure, it is equal to
/tA o <J>~', where /AA IS an a c I m for TA Hence 4> is absolutely continuous

If the slopes of r do not satisfy the structural equations, then /J. is not maximal
Hence the maximal measure /*A ° <J>~' is different from /x and so it is singular (since
fi is ergodic) Hence <J> is singular •

Example 2 For the matrix

the structural equations are s^ = A, s2 = A, A = 2 Let, for 0 < a < 1

T(a)(x) =.(«>,-.* !* /«

By Theorem 3 we obtain that for any a ^ \ the conjugacy $ a between T'"1 and x(1/2)

is singular
This result is proved by a completely different method in [3]

Remark The method of § 4 has, in effect, solved an optimization problem which is
difficult to handle by the standard method of Lagrange multipliers To write the
metric entropy in a manner that would be amenable to Lagrange multipliers would
require defining 3n variables The natural constraints yield 2n + 2 equations The
large number of variables and the nonlinear appearance of these variables renders
this approach intractable

6 Examples
In the following examples we shall illustrate a number of points in regard to the
foregoing theory

Example 3 There exists a transformation T I->I such that no iterate T" of T has
constant slope, yet Te(Smax Let

A =

0
1

0

1

0

0

1

0

1
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and let 9* = {I,, I2,13} be the partition of I It is easy to see that the sets D = I3 n
(O*_, T~*(I 3 ) ) and £ = I , n ( n ; _ , T"* ( I 3 ) ) are non-empty and \(T")'\1D = S^, while
| (T" ) ' | | £ = s ,^" 1 , where s, = |r'||,,, i = 1,2,3

Now the system of structural equations for A is

53 = A and = A2

If we choose Si ̂  s2, then

Hence x" does not have constant slope, yet T G Emax

By Corollary 1 we see that if A has one block only, the system of structural
equations of A only yields the constant slope solutions In general, the number of
degrees of freedom among the variables {s,, s2, , sn} can vary from 0 (as in the
case of a single block) to n - 1 We shall show this by means of the following three
examples
Example 4 One degree of freedom Let

0
0
0
1

0
0

0
1

1
0
0

0

1
1
1
0

There are two blocks B, = {1, 2} and B2 = {3,4}, and the structural equations are

s l /A=s2 /A 5-,/A = 1 S!S4/A2=1,

which yield s, = s2, s3 = A, s,s4 = A2 There are 4 unknowns and three independent
equations Hence there is one degree of freedom

Example 5 Three degrees of freedom Let

0
0
0
0

1

0
0
1
0
1

0
0
0
1
0

1
0
0
0
0

1
1
0

0
0

There are two independent structural equations

\2 and 23A = A 3

Hence there are 3 degrees of freedom

Example 6 n — 1 degrees of freedom Let A be an n x n irreducible matrix with only
one non-zero entry in each row Then there is only one structural equation Since
there are n unknown slopes, there are n-\ degrees of freedom

Remarks
(1) The matrices in the foregoing examples are all primitive, indicating that

pnmitivity and the degree of freedom are not dependent on each other
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(2) If A has one block only, we obtain a unique solution Conversely, if r e (Smax

only when T has constant slope A, it is easy to see that A must consist of a unique
block

(3) In order to determine 6 m a x , we need to find the lengths of the intervals of
the partition ^ associated with a given set of slopes This is accomplished by means
of the Frobenius-Perron operator Consider Example 4 The Frobenius-Perron
operator is given by the matrix

0 1/5,

0 0

0 0

l /5 4 0

0
0

0

. l / 5 4

The lengths of the partition of T G Gm

1/5,

1/5,

l/53

0

are given by the normalized right eigenvector

I 1 e Ml= I, where I = (/,, l2, h, h) Thus,

* = h

(h + l2)/s4=l4

subject to /, + /2 + /3 + /4 = 1 Solving this system, we obtain

/1 = (54-l /5,)/4 /2 = /4/5, /3

On normalizing, we get

Thus, there is also one degree of freedom in the partition

7 Reducible matrices
To motivate the material of this section, consider the 4 x 4 reducible matrix

A

1

0

,,

1

0

0

A22

where

a n d

The maximal eigenvalue of A is the same as the maximal eigenvalue of A22 which
is equal to 2 Therefore, /i,Op(T) = ln2 On the other hand, the support of any
T-invanant absolutely continuous measure is on the intervals corresponding to the
block A,, [5] Hence, for any r-invanant absolutely continuous measure fi, we have

/IM(T) < In A, </!«„,(T),

where A, < 2 is the maximal eigenvalue of A,,
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The above example illustrates the difference between topological and metric
entropy Whereas ^^{T) IS determined by the submatnx A22, the metric entropy
/IM(T) for any a c 1 m ju is determined by A u

Let A be an n x n reductible 0-1 matrix such that all the non-zero entries in each
row are consecutive By relabelling, A can be written in the form

0

where A,, are irreducible submatnces Let A be the maximal eigenvalue of A Since
A' is derived from A by a similarity transformation, A is also the maximal eigenvalue
of A' From this it follows that at least one of the A,,'s has A as its maximal eigenvalue

Definition 3 We say the irreducible submatnx A,, is final if Au = 0 for j # i

THEOREM 4 Suppose A is reducible Then one of the following must occur
(1) there exists no final irreducible submatnx A,, having maximal eigenvalue A In

this case, Gmax = 0
(2) There exist final irreducible submatnces A,,,,, , A,m,m such of which has maximal

eigenvalue A Then r e 6max if and only if there exists some i, i, < i < im, such that
T satisfies the structural equations associated with A,, on the intervals corresponding
to A,,

Proof The topological entropy of r is equal to In A By graph theoretic methods
[6], it can be shown that any ergodic a c I m must have support on intervals
corresponding to a final irreducible submatnx Then the proof of (1) is obvious
since /iM(r)<lnA for all a c i m /x, To prove (2) we choose any final irreducible
submatnx, say A,,, which has maximal eigenvalue A On the intervals corresponding
to A,, we proceed as in section 4 to construct T using the structural equations derived
from A,, •
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