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Lipschitz Retractions in Hadamard Spaces
via Gradient Flow Semigroups

Miroslav Bačák and Leonid V. Kovalev

Abstract. Let X(n), for n ∈ N, be the set of all subsets of a metric space (X , d) of cardinality at
most n. _e set X(n) equipped with the Hausdorò metric is called a ûnite subset space. In this
paper we are concerned with the existence of Lipschitz retractions r∶ X(n) → X(n − 1) for n ≥ 2. It
is known that such retractions do not exist if X is the one-dimensional sphere. On the other hand,
Kovalev has recently established their existence if X is a Hilbert space, and he also posed a question
as to whether or not such Lipschitz retractions exist when X is a Hadamard space. In this paper we
answer the question in the positive.

1 Introduction

Let (X , d) be ametric space. For each n ∈ N, we denote the set of all subsets of X with
cardinality at most n by X(n). _e set X(n) equipped with the Hausdorò metric dH
is called a ûnite subset space. Unlike Cartesian powers Xn or the space of unordered
n-tuples Xn/Sn , ûnite subset spaces admit canonical isometric embeddings

ι∶X(n − 1) → X(n).

Following [6, 7, 9], we are interested in Lipschitz retractions r∶X(n) → X(n − 1).
Kovalev proved their existence for X being a Euclidean space [6] and X being aHilbert
space [7]. On the other hand, a result of Mostovoy [9] yields that in general there is
no continuousmapping r∶X(n) → X(n−1)with r○ ι = id if X is the one-dimensional
sphere S1; here id stands for the identity operator on X(n − 1). It is therefore natural
to ask whether Lipschitz retractions r∶X(n) → X(n − 1) exist if X is a nonpositively
curved metric space. Indeed, this question appears explicitly in [7, Question 3.3].
It was originally motivated by Remark 4.5 in [6], which observes that the existence
of Lipschitz retractions between ûnite subset spaces X(n) enables induction on n
in certain extension arguments. Indeed, under appropriate assumptions, a Lipschitz
map into X(n) can be decomposed as a pair of maps into X(n − 1); a�er applying
an inductive hypothesis one ends up with a map into X(2n − 2), at which point a
retraction onto X(n) is applied to obtain an extended Lipschitz map into X(n). Our
main result (_eorem 3.2) provides the positive solution to [7, Question 3.3].

_e solution for Hilbert spaces from [7] is based on the existence of gradient �ow
trajectories in a ûnite dimensional subspace, which is assured by the classical ODE
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theory. In the present paper, we also deûne the desired retractions via gradient �ows
of certain convex functionals on (the n-th power of) a Hadamard space andmake use
of the Lie–Trotter–Kato formula proved recently in [3, 11].
Finally, note that given a Hadamard space (H, d), we obtain Lipschitz retractions

r∶H(n) → H(n − 1) with Lipschitz constant max(4n 3
2 + 1, 2n2 + n 1

2 ), whereas the
result from [7] for X being a Hilbert space has Lipschitz constant max(2n − 1, n 3

2 ).

2 Preliminaries

We ûrst recall some basic facts about Hadamard spaces as well as more recent results
that shall be used in our proof. For further details, we refer the reader to [2].

Let (H, d) be a Hadamard space, that is, a complete metric space with geodesics
satisfying

(2.1) d (z, xt)2 ≤ (1 − t)d (z, x0)2 + td (z, x1)2 − t(1 − t)d (x0 , x1)2 ,

for each z, x0 , x1 ∈ H and t ∈ [0, 1], where xt ∶= (1 − t)x0 + tx1 is a unique point
on the geodesic [x0 , x1] such that d (x0 , xt) = td (x0 , x1). An equivalent (and more
geometric) formulation of inequality (2.1) is the following relation between a triangle
with vertices p, q, r ∈ H and its comparison triangle with vertices p, q, r ∈ R2 , where
d(p, q) = ∥p − q∥, d(r, q) = ∥r − q∥, and d(p, r) = ∥p − r∥. If x ∶= (1 − t)p + tq and
y ∶= (1 − s)p + sr for some s, t ∈ [0, 1], and we denote their comparison points by
x ∶= (1 − t)p + tq and y ∶= (1 − s)p + sr, respectively, inequality (2.1) implies that

(2.2) d (x , y) ≤ ∥x − y∥ .

Here the symbol ∥ ⋅ ∥ stands for the Euclidean norm on R2 .
Given two geodesics [x0 , x1] and [y0 , y1], we have

(2.3) d (xt , yt) ≤ (1 − t)d (x0 , y0) + td (x1 , y1) ,
for each t ∈ [0, 1]; see [2, (1.2.4)].

Given a function f ∶H → (−∞,∞], denote its domain by
dom f ∶= {x ∈H ∶ f (x) < ∞}

and the set of its minimizers by Min f ∶= {x ∈H ∶ f (x) = inf f }. We say that a func-
tion f ∶H → (−∞,∞] is convex if for each geodesic γ∶ [0, 1] → H, the function f ○ γ
is convex. Given a convex lower semicontinuous (lsc, for short) function f ∶H →
(−∞,∞], point x ∈H, and λ > 0, there exists a unique minimizer of the function

f + 1
2λ
d( ⋅ , x)2 ,

which we denote by Jλx. _e mapping Jλ ∶ x ↦ Jλx is called the resolvent of f with
parameter λ. It satisûes the following important inequality

(2.4) f (Jλx) +
1
2λ
d (x , Jλx)2 + 1

2λ
d (Jλx , y)2 ≤ f (y) + 1

2λ
d(x , y)2 ,

for every x , y ∈ H. Given x ∈ dom f , the gradient �ow semigroup associated to f is
deûned by

(2.5) Stx ∶= lim
k→∞

(J t
k
)kx , x ∈ dom f ,
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for every t ∈ [0,∞). As in Hilbert spaces, the semigroup is comprised of nonexpan-
sive operators, that is

(2.6) d (Stx , St y) ≤ d(x , y),

for each t ∈ [0,∞) and x , y ∈ dom f . _e above-mentioned theory of gradient �ows
in Hadamard spaces was ûrst studied by Jost [5] and Mayer [8]. A more recent result
established the asymptotic behavior of a gradient �ow [1]. It relies upon the notion
of weak convergence in Hadamard spaces, which was introduced by Jost [4]. Let us
recall that a bounded sequence (xk) ⊂H convergesweakly to a point x ∈H provided
limk→∞ d (Pγ (xk) , x) = 0 for each geodesic γ∶ [0, 1] →H with x ∈ γ. Here Pγ stands
for themetric projection onto (the image of) γ. Nowwe are ready to state the theorem
on asymptotic behavior of a gradient �ow.

_eorem 2.1 Let f ∶H → (−∞,∞] be a convex lsc function which attains its inû-
mum on H. _en, given x ∈ dom f , the associated gradient �ow semigroup Stx weakly
converges to a point x∗ ∈ Min f .

Proof See [1] or [2, _eorem 5.1.16].

_e function values then converge to the inûmum of f .

_eorem 2.2 Let f ∶H → (−∞,∞] be a convex lsc functionwhich attains its inûmum
on H. _en, given x ∈ dom f , we have f (Stx) → inf f as t →∞.

Proof _is can be seen from the proof of _eorem 2.1 in [1] or, for instance, as in
[2, Proposition 5.1.12].

_e proof of our main theorem uses gradient �ows of convex functions to deûne a
desired Lipschitz retraction. _ese convex functions have a special form, namely they
are given as a ûnite sum of some elementary convex functions, and their gradient
�ow can be approximated by the Lie–Trotter–Kato formula. We will now state the
necessary facts precisely. Let N ∈ N and consider a function f ∶H → (−∞,∞] of the
form

(2.7) f ∶=
N

∑
j=1
f j ,

where f j ∶H → (−∞,∞] are convex lsc functions for every j = 1, . . . ,N . Let us denote
the resolvent of the function f j by J[ j]λ and the gradient �ow semigroup of f by St .

_eorem 2.3 (Lie–Trotter–Kato formula) Let f ∶H → (−∞,∞] be of the form (2.7).
_en we have

(2.8) Stx = lim
k→∞

( J[N]
t
k

○ ⋅ ⋅ ⋅ ○ J[1]t
k
) kx ,

for every t ∈ [0,∞) and x ∈ dom f .

Proof _e original proof appeared in [11]. For a simpliûed proof, see [3].
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In fact, the gradient �ow we are going to use in the proof of _eorem 3.2 is not on
H, but on its n-th power. _e n-th power ofH, denoted byHn , is equipped with the
metric

d(x , y)∶= (
n

∑
j=1
d (x j , y j)

2)
1
2
, x , y ∈Hn ,

and is then also a Hadamard space. Note that we use the same symbol d for the orig-
inal metric on H, as well as for the metric on Hn . It is always clear from the argu-
ments which one is meant. Given a point x = (x1 , . . . , xn) ∈ Hn , we shall denote
{x} ∶= {x1 , . . . , xn}, a subset of H. However, given x , y ∈ Hn , we shall denote the
Hausdorò distance between {x} and {y} by dH(x , y) instead of dH ({x}, {y}).

3 The Existence of Lipschitz Retractions

_e desired Lipschitz retractions r∶H(n) → H(n − 1) will be deûned via a gradient
�ow of a convex functional on Hn . Speciûcally, we deûne this functional as

(3.1) F(x)∶= ∑
1≤i< j≤n

d(x i , x j), x = (x1 , . . . , xn) ∈Hn .

and show that it is indeed convex and Lipschitz.

Lemma 3.1 _e function F∶Hn → R is convex and n 3
2 -Lipschitz.

Proof Convexity follows from (2.3). For the Lipschitz property, we estimate

∣F(x) − F(y)∣ ≤ ∑
1≤i< j≤n

∣d(x i , x j) − d(y i , y j)∣

≤ ∑
1≤i< j≤n

d (x i , y i) + d(x j , y j) ≤ n
3
2 d(x , y),

where we twice used the triangle inequality and then the Cauchy–Scharz inequality.

We are now ready to prove the main theorem.

_eorem 3.2 Let (H, d) be a Hadamard space. _en for each integer n ≥ 2 there
exists a Lipschitz retraction r∶H(n) →H(n − 1) with Lipschitz constant

max(4n 3
2 + 1, 2n2 + n

1
2 ).

Proof We divide the proof into several steps.
Step 1. Let Jλ and St be the resolvent and gradient �ow semigroup, respectively,

associated with the function F from (3.1). Let us denote

D ∶= {x = (x1 , . . . , xn) ∈Hn ∶ x i = x j for some 1 ≤ i < j ≤ n} .

Given x ∈Hn , we deûne

δ(x)∶= min
1≤i< j≤n

d(x i , x j), and T(x)∶= inf {t > 0 ∶ Stx ∈ D} .
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We will ûrst show that

(3.2) T(x) ≤ 1
2
δ(x).

In order to be able to apply formula (2.8), denote by J[i , j]λ the resolvent associated
with the function x ↦ d(x i , x j), x = (x1 , . . . , xn) ∈Hn , where 1 ≤ i < j ≤ n. One can
easily verify that for the l-th coordinate (l = 1, . . . , n) we have

(J[i , j]λ x)l =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − α)x i + αx j if l = i ,
(1 − α)x j + αx i if l = j,
x l if l ∉ {i , j},

where α = min( 1
2 ,

λ
d(x i ,x j)). Indeed, this value of α minimizes the function

d((1−α)x i+αx j , (1−α)x j+αx i)+
1
2λ

(d((1−α)x i+αx j , x i)2+d((1−α)x j+αx i , x j)2) ,

because for α ≤ 1/2 this function simpliûes to

d(x i , x j)
λ

(λ − 2λα + α2d(x i , x j)).

_en (2.8) reads

(3.3) Stx = lim
k→∞

(R t
k
)kx , x ∈ dom f ,

where

R t
k
∶= J[n−1,n]

t
k

○ ⋅ ⋅ ⋅ ○ J[1,6]t
k

○ J[4,5]t
k

○ J[3,5]t
k

○ J[2,5]t
k

○ J[1,5]t
k

○ J[3,4]t
k

○ J[2,4]t
k

○ J[1,4]t
k

○ J[2,3]t
k

○ J[1,3]t
k

○ J[1,2]t
k

.

Next we turn our attention to the ûrst two coordinates. _is choice will be justiûed
by (3.4). We want to show that applying the mapping J[2, i]λ J[1, i]λ can extend the ûrst
two coordinates of a given point only if they were less than λ apart, and this extension
is at most λ. More precisely, we claim that for λ > 0 and i = 3, . . . , n, the following
holds for every y = (y1 , . . . , yn) ∈Hn and z ∶= J[2, i]λ J[1, i]λ y:
(i) if d (y1 , y2) ≥ λ, then d (z1 , z2) ≤ d (y1 , y2).
(ii) if d (y1 , y2) < λ, then d (z1 , z2) ≤ d (y1 , y2) + λ.
We will now show both (i) and (ii) by using comparison triangles. To this end denote
u ∶= J[1, i]λ y and consider the triangle with vertices y1 , y2 , u i in H along with its com-
parison triangle with vertices y1 , y2 , u i ∈ R2. _en denote the comparison points of
z1 and z2 by z1 and z2, respectively. Next observe that (i) and (ii) hold true if we re-
place all the points involved by their comparison points (and consider the Euclidean
distance inR2, of course). _is can be seen by elementary geometry arguments about
triangles in R2, presented below this proof as Lemma 3.3 (where A = y1, B = y2,
C = u i). Finally, applying (2.2) gives (i) and (ii).
Choose x ∈ Hn and k ∈ N. Denote λ ∶= δ(x)

2k . Without loss of generality one may
assume

(3.4) d (x1 , x2) = δ(x).
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Deûne now x l ,[i , j] ∶= J[i , j]λ ○ ⋅ ⋅ ⋅ ○ J[2,3]λ ○ J[1,3]λ ○ J[1,2]λ ○ (Rλ)l−1 x, for each l = 1, . . . , k
and 1 ≤ i < j ≤ n, and observe that (i) and (ii) imply

(3.5) d(xk ,[1,n]
1 , xk ,[2,n]

2 ) ≤ λ = δ(x)
2k

,

where the subscript indices denote the coordinates inHn . Indeed, each application of
J[1,2]λ shortens the distance between the ûrst two coordinates by additive constant 2λ,
while the application of J[2, i]λ J[1, i]λ , with i = 3, . . . , n, does not expand it, or expands
it by the additive constant λ at most, as we know from (i) and (ii). More precisely, we
have

d (x1 , x2) = δ(x),

d(x 1,[1,2]
1 , x 1,[1,2]

2 ) = max(0, δ(x) − δ(x)
k

) ,

d(x 1,[n−1,n]
1 , x 1,[n−1,n]

2 ) ≤ max( δ(x)
k

, δ(x) − δ(x)
k

) ,

d(x2,[1,2]
1 , x2,[1,2]

2 ) ≤ max(0, δ(x) − 2
δ(x)
k

) ,

d(x2,[n−1,n]
1 , x2,[n−1,n]

2 ) ≤ max( δ(x)
k

, δ(x) − 2
δ(x)
k

) ,

⋮

d(xk−1,[n−1,n]
1 , xk−1,[n−1,n]

2 ) ≤ max( δ(x)
k

, δ(x) − (k − 1)δ(x)
k

) = δ(x)
k

,

d(xk ,[1,2]
1 , xk ,[1,2]

2 ) = 0.

and hence (3.5) holds true.
Passing to the limit k →∞ in (3.5) and recalling (3.3), then give

d((S 1
2 δ(x)x)1 , (S 1

2 δ(x)x)2) = 0,

or, in other words, we have just proved (3.2).

Step 2. Let x , y ∈Hn . By (2.4) we have

1
2λ
d (Jλx , y)2 ≤ F(y) − F (Jλx) +

1
2λ
d(x , y)2 .

Consider now t ∈ [0, T(x)]. Fix k ∈ N and employ the above inequality k times to
obtain

d(J t
k
x , y)2 ≤ 2t

k
[F(y) − F(J t

k
x)] + d(x , y)2 ,

d((J t
k
)2x , y)2 ≤ 2t

k
[F(y) − F((J t

k
)2x)] + d(J t

k
x , y)2 ,

⋮

d((J t
k
)kx , y) 2 ≤ 2t

k
[F(y) − F((J t

k
)kx)] + d((J t

k
)k−1x , y) 2

.
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Summing up these inequalities, dividing by t2, and putting x ∶= y gives

d((J t
k
)kx , x) 2

t2
≤ 2
F(x) − F((J t

k
)kx)

t
≤ 2n

3
2
d(x , (J t

k
)kx)

t
,

and a�er taking lim supk→∞, we obtain
d(S tx ,x)

t ≤ 2n 3
2 . Hence, by virtue of (3.2),

(3.6) dH (Stx , x) ≤ d (Stx , x) ≤ 2tn
3
2 ≤ δ(x)n 3

2 .

For future reference we also record that the nonexpansiveness of the gradient �ow
semigroup (2.6) implies

(3.7) dH(Stx , St y) ≤ d(Stx , St y) ≤ d(x , y) ≤ n
1
2 max

1≤ j≤n
d(x j , y j).

Step 3. Given x ∈ H(n), we number its elements {x1 , . . . , xn} and consider x′ ∶=
(x1 , . . . , xn) ∈ Hn . We may assume that d (x1 , x2) = δ (x′). _en we deûne r(x) ∶=
{ST(x′)x′}. However, we will write x instead of x′ in the sequel. Let us now show that
r∶H(n) →H(n− 1) is a Lipschitz retraction. First of all, observe that r is the identity
on (the canonical embedding of) H(n − 1). To prove the Lipschitz property, choose
x , y ∈H(n) and examine the following two alternatives. If δ(x) + δ(y) ≤ 4dH(x , y),
then

dH (r(x), r(y)) ≤ dH (r(x), x) + dH (x , y) + dH (y, r(y))

≤ n
3
2 δ(x) + dH(x , y) + n

3
2 δ(y) ≤ (4n 3

2 + 1)dH(x , y)

where we used (3.6) to obtain the second inequality.
If, on the other hand, δ(x) + δ(y) > 4dH(x , y), then we may assume δ(x) >

2dH(x , y)without loss of generality. _e fact that δ(x) > 2dH(x , y) then implies that
we can renumber the points {y1 , . . . , yn} in such a way that

(3.8) d (x j , y j) ≤ dH(x , y)

for each j = 1, . . . , n. In the remainder of the proof, we will use (3.8) only, with-
out referring to δ(x) > 2dH(x , y). We can, hence, without loss of generality assume
T(x) ≤ T(y) on account of the fact that the roles of x and y in (3.8) are interchange-
able. Recall that r(x) = ST(x)x and put z ∶= ST(x)y. Inequality (3.7) implies that
dH (r(x), z) ≤ n 1

2 dH(x , y). Consequently, δ(z) = δ(z) − δ (r(x)) ≤ 2dH (z, r(x)) ≤
2n 1

2 dH(x , y). By (3.6) we have dH (z, r(z)) ≤ n 3
2 δ(z) ≤ 2n2dH(x , y). Finally, one

arrives at

dH (r(x), r(y)) ≤ dH (r(x), z) + dH (z, r(z)) + dH (r(z), r(y))

≤ n
1
2 dH(x , y) + 2n2dH(x , y) + 0,

where the zero on the right-hand side is due to the semigroup property of the gradient
�ow. _e proof is complete.

_e following lemma provides justiûcation for inequalities (i) and (ii) used in the
preceding proof.
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Lemma 3.3 Let ABC be a triangle in R2. Fix λ > 0. Let A1 ,C1 be two points on the
segment AC such that ∣AA1∣ = ∣CC1∣ = min(∣AC∣/2, λ). Also let B1 be the point on BC1
such that ∣BB1∣ = min(∣BC1∣/2, λ). _en

∣A1B1∣ ≤
⎧⎪⎪⎨⎪⎪⎩

∣AB∣ if ∣AB∣ ≥ λ,
∣AB∣ + λ if ∣AB∣ < λ.

Proof _e inequality ∣A1B1∣ ≤ ∣AB∣ + λ holds because A1 , B1 are obtained by trans-
lating the points A, B toward C1 by amounts between 0 and λ. It remains to prove that
∣A1B1∣ ≤ ∣AB∣ when ∣AB∣ ≥ λ. _ere are three cases to consider.
Case 1: ∣AC∣ ≥ 2λ and ∣BC1∣ ≥ 2λ. _en both A1 and B1 are obtained from A and B by
translating them toward C1 by the same distance λ. Hence ∣A1B1∣ < ∣AB∣.
Case 2: ∣AC∣ < 2λ and ∣BC1∣ ≥ 2λ. _en A1 = C1, hence ∣A1B1∣ = ∣A1B∣ − λ. And since
∣A1B∣ ≤ ∣AB∣ + λ, we have ∣A1B1∣ ≤ ∣AB∣ again.
Case 3: ∣BC1∣ < 2λ. _en ∣A1B1∣ = 1

2 ∣A1B∣ ≤ 1
2 (∣AB∣ + λ) ≤ ∣AB∣.

Remark 3.4 (Asymptotic behavior of the �ow) Given x ∈ Hn , denote ∆(x) ∶=
max1≤i< j≤n d(x i , x j). Using the same arguments as in the previous proof, we can show
that for τ ∶= 1

2∆(x), one obtains Sτx ∈ Min F. Alternatively, we can obtain the asymp-
totic behavior of the �ow as follows. By _eorem 2.1, given x ∈ Hn , the �ow Stx
weakly converges to a point x∗ = (x∗1 , . . . , x∗n) ∈ Min F; and obviously x∗1 = ⋅ ⋅ ⋅ = x∗n .
Next we show that this convergence is in fact strong. To this end, we ûrst observe that
x∗1 ∈ ⋂t∈[0,∞) co{Stx}. Indeed, by virtue of (2.5) and the semigroup property it is
suõcient to show that {Jλx} ⊂ co{x}. _is inclusion however follows directly by a
projection argument. Now use _eorem 2.2 to conclude F (Stx) → 0 and therefore
diamco{Stx} → 0. Hence we have Stx → x∗.

Remark 3.5 (Open questions) We end the paper by posing a few questions, many
of which have appeared already in [7]. _e Lipschitz constant of r∶H(n) →H(n− 1)
guaranteed by _eorem 3.2 is max(4n 3

2 + 1, 2n2 + n 1
2 ). Can one improve upon this

constant? Can one show that, for every n ∈ N with n ≥ 2, there exist Lipschitz retrac-
tions r∶H(n) →H(n−1)with Lipschitz constants independent of n? Can one extend
_eorem 3.2 into spaces of nonpositive curvature in the sense of Busemann? In par-
ticular, does an analog of _eorem 3.2 hold in strictly convex or uniformly convex
Banach spaces? Can one extend_eorem 3.2 into p-uniformly convex spaces? Recall
that a geodesic metric space (X , d) is called p-uniformly convex (for p ≥ 2) if there
exists K > 0 such that

d (z, xt)p ≤ (1 − t)d (z, x0)p + td (z, x1)p − Kt(1 − t)d (x0 , x1)p

for each z, x0 , x1 ∈ H and t ∈ [0, 1], where xt ∶= (1 − t)x0 + tx1. _is deûnition
was introduced in [10, Deûnition 3.2] as a generalization of p-uniform convexity in
Banach spaces.

Acknowledgement Wewould like to thank the referee for carefully reading the pre-
print and suggesting several improvements on the exposition.

https://doi.org/10.4153/CMB-2016-033-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-033-3


Lipschitz Retractions 681

References

[1] M. Bačák,_e proximal point algorithm in metric spaces, Israel J. Math. 194(2013), no. 2, 689–701.
http://dx.doi.org/10.1007/s11856-012-0091-3

[2] , Convex analysis and optimization in Hadamard spaces. De Gruyter Series in Nonlinear
Analysis and Applications, 22. De Gruyter, Berlin, 2014. http://dx.doi.org/10.1515/9783110361629

[3] , A new proof of the Lie–Trotter–Kato formula in Hadamard spaces. Commun. Contemp.
Math. 16(2014), p. 1350044 (15 pages). http://dx.doi.org/10.1142/S0219199713500442

[4] J. Jost, Equilibrium maps between metric spaces. Calc. Var. Partial Diòerential Equations 2(1994),
173–204. http://dx.doi.org/10.1007/BF01191341

[5] , Nonlinear Dirichlet forms. In: New directions in Dirichlet forms, AMS/IP Stud. Adv.
Math. 8. Amer. Math. Soc., Providence, RI, 1998, pp. 1–47.

[6] L. V. Kovalev, Symmetric products of the line: embeddings and retractions. Proc. Amer. Math. Soc.
143(2015), 801–809. http://dx.doi.org/10.1090/S0002-9939-2014-12280-5

[7] , Lipschitz retraction of ûnite subsets of Hilbert spaces. Bull. Aust. Math. Soc. 93(2016),
146–151. http://dx.doi.org/10.1017/S0004972715000672

[8] U. F. Mayer, Gradient �ows on nonpositively curved metric spaces and harmonic maps. Comm.
Anal. Geom. 6(1998), 199–253. http://dx.doi.org/10.4310/CAG.1998.v6.n2.a1

[9] J. Mostovoy, Lattices in C and ûnite subsets of a circle. Amer. Math. Monthly 111(2004), 357–360.
http://dx.doi.org/10.2307/4145248

[10] A. Naor and L. Silberman, Poincaré inequalities, embeddings, and wild groups. Compos. Math.
147(2011), 1546–1572. http://dx.doi.org/10.1112/S0010437X11005343

[11] I. Stojkovic, Approximation for convex functionals on non-positively curved spaces and the
Trotter-Kato product formula. Adv. Calc. Var. 5(2012), 77–126.

Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04 103 Leipzig, Germany
e-mail: bacak@mis.mpg.de

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA
e-mail: lvkovale@syr.edu

https://doi.org/10.4153/CMB-2016-033-3 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s11856-012-0091-3
http://dx.doi.org/10.1515/9783110361629
http://dx.doi.org/10.1142/S0219199713500442
http://dx.doi.org/10.1007/BF01191341
http://dx.doi.org/10.1090/S0002-9939-2014-12280-5
http://dx.doi.org/10.1017/S0004972715000672
http://dx.doi.org/10.4310/CAG.1998.v6.n2.a1
http://dx.doi.org/10.2307/4145248
http://dx.doi.org/10.1112/S0010437X11005343
mailto:bacak@mis.mpg.de
mailto:lvkovale@syr.edu
https://doi.org/10.4153/CMB-2016-033-3

