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Abstract

We demonstrate that many properties of topological spaces connected with the notion of resolvability are
preserved by the relation of similarity between topologies. Moreover, many of them can be characterised
by the properties of the algebra of sets with nowhere dense boundary and the ideal of nowhere dense sets.
We use these results to investigate whether a given pair of an algebra and an ideal is topological.
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1. Introduction

The notion of similarity between two topological spaces was introduced in [5],
although the same relation was mentioned earlier in [16] as a π-relation. Among other
results, [5] shows that every topology is similar to some abstract density topology.

The notion of resolvable space was introduced by Hewitt [12] in 1943. Since
then many authors have examined properties connected with resolvability. The
definitions of maximal resolvability [8] and extraresolvability [10] were introduced.
In particular, maximal resolvability and extraresolvability of some density topologies
were demonstrated in [7, 13, 15, 17] and topologies with very ‘bad’ resolvability
properties were examined, in [1, 2, 18].

In the present work we show that many properties connected with resolvability are
preserved by the relation of similarity. We characterise some of these properties in
terms of the algebra of sets with nowhere dense boundary and nowhere dense sets. We
also give the reason why the analysis of resolvability of abstract density topologies in
some sense exhausts all the possibilities.

In the last part of the paper we use the results to give a partial characterisation of
pairs (A,I) of an algebra and an ideal of sets that can be obtained for some topology
as families of sets with nowhere dense boundary and nowhere dense sets, respectively.
This problem has been investigated previously in [3, 4, 6].
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2. Preliminary facts

2.1. Similarity. For an arbitrary topological space (X,T ) let us denote byNI(X,T ),
ND(X,T ), NB(X,T ), D(X,T ) the families of sets with nonempty interior, nowhere
dense sets, sets of nowhere dense boundary and dense sets, respectively.

Recall that the set A is semi-open in (X,T ) if A ⊂ Cl(Int(A)). We will denote the
family of semi-open sets of the space (X,T ) by SO(X,T ).

Let F ,G ⊂ 2X\{∅}. We say that F is coinitial to G if for every G ∈ G there exists
F ∈ F such that F ⊂ G.

Let T1 and T2 be two topologies on the space X. We say that they are similar when
NI(X,T1) = NI(X,T2). We shall denote the relation of similarity by 's.

The relation of similarity was investigated in [5]. In that paper one can find the
following useful characterisation.

Theorem 2.1. The following statements are equivalent:

• T1 's T2;
• D(X,T1) =D(X,T2);
• (NB(X,T1),ND(X,T1)) = (NB(X,T2),ND(X,T2));
• T1\{∅} and T2\{∅} are mutually coinitial.

It is a simple observation that for every topological space (X, T ) the family
NB(X,T ) forms an algebra of sets andND(X,T ) is an ideal contained inNB(X,T ).

Definition 2.2. Let Φ be an arbitrary property of topological spaces. We will say that
Φ is 's-invariant if and only if, for every space (X,T1) having the property Φ, every
similar topology T2 also has the property Φ.

In [14] there are examples of similar topologies that differ significantly; they may
have no nontrivial common elements, or different cardinality.

2.2. Resolvability. Let (X,T ) be an arbitrary topological space. For any cardinal κ
we say that (X,T ) is κ-resolvable if and only if there exists a family of cardinality κ of
pairwise disjoint dense subsets of X. A 2-resolvable space we call simply resolvable.
If the space is not resolvable, it is called irresolvable.

The cardinal number ∆(X,T ) = min{|G| : G ∈ T ,G , ∅} is called the dispersion
character of the space (X,T ).

A dense-in-itself ∆(X,T )-resolvable space is called maximally resolvable. It is
obvious that no space can be κ-resolvable for κ > ∆.

The space (X,T ) is called extraresolvable if there exists a family D of dense
subsets of X such that |D| > ∆(X, T ) and for every A, B ∈ D we have A = B or
A ∩ B ∈ ND(X,T ).

The space is called:

• hereditary irresolvable (HI) if none of its subspaces is resolvable;
• open hereditary irresolvable (OHI) if none of its open subspaces is resolvable;
• submaximal, if all its dense subsets are open;
• NODEC, if all its nowhere dense subsets are closed.
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Hewitt [12] proved the following theorem.

Theorem 2.3. Every topological space (X, T ) can be uniquely represented as the
disjoint union X = FX ∪GX where FX is closed and resolvable and GX is open and
hereditary irresolvable. This pair of sets is called the Hewitt decomposition of the
space X.

2.3. Abstract density topologies. Let A be an algebra and I ⊂ A be an ideal of
subsets of the given set X. We write B ∼ C if and only if B4C ∈ I. We say that an
operator Φ :A→ 2X is a lower density operator if:

(a) Φ(∅) = ∅,Φ(X) = X;
(b) for all A, B ∈ A, (Φ(A ∩ B) = Φ(A) ∩ Φ(B));
(c) for all A, B ∈ A, (A ∼ B⇒ Φ(A) = Φ(B));
(d) for all A ∈ A, (A ∼ Φ(A)) (the analogue of the Lebesgue density theorem).

We say that the pair (A,I) has the hull property if for every set A ⊂ X there exists
a set H ∈ A, H ⊃ A, such that for every P ⊂ H\A if P ∈ A then P ∈ I.

Hejduk and Loranty [11] proved that for every pair (A,I) having the hull property
and a lower density operator Φ on (A,I), the family

TΦ = {G ∈ A : G ⊂ Φ(G)}

is a topology. Moreover, NB(X,TΦ) =A and ND(X,TΦ) = I. Every topology that
can be constructed in this way is called an abstract density topology.

Crossley [9] introduced the operator F . For every topology T on X, the family

F (T ) = {G\N : G ∈ T ,N ∈ ND}

forms a topology finer than T , similar to T and NODEC.
By virtue of [14, Corollaries 3.4 and 3.5] we can state the following proposition.

Proposition 2.4. Let (X, T ) be an arbitrary topological space. The following
statements are equivalent:

• T is an abstract density topology;
• T = F (τ) for some topology τ on X;
• T = F (T );
• T is NODEC.

Moreover for any topology τ on X the topologies τ and F (τ) are similar.

3. Results

Since two similar topologies have the same families of dense sets and nowhere
dense sets and are mutually coinitial, the following notions are 's-invariant:

• κ-resolvability;
• ∆(X,T );
• maximal resolvability;
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• extraresolvability;
• being dense-in-itself.

Let A be an arbitrary algebra. By H(A) we shall denote the maximal hereditary
subfamily ofA:

H(A) = {A ∈ A : ∀B⊂AB ∈ A}.

It is easy to see thatH(A) is the greatest ideal contained inA.

Theorem 3.1. Let (X,T ) be an arbitrary topological space and let (FX ,GX) form the
Hewitt decomposition of the space X. ThenH(NB) = {A ∪ N : A ⊂ GX ∧ N ∈ ND}.

Proof. ‘⊃’. Let A ⊂ GX . Suppose that A < NB. Then there exists an open set H , ∅,
H ⊂ Fr(A). Since A ⊂ GX and Fr(GX) ∈ ND then H ∩GX , ∅. Both sets A ∩ H and
A′ ∩ H ∩GX are dense in H ∩GX , in contradiction to the fact that GX is HI.

‘⊂’. Let B ∈ H(NB) and N = B\GX . We shall show that N ∈ ND. Since N ∈ NB,
it is sufficient to show that Int(N) = ∅. Suppose that Int(N) , ∅. Then Int(N) ⊂ FX , so
Int(N) is resolvable. Let A and A′ be dense in Int(N). Then Int(N) ⊂ Fr(A ∩ Int(N)),
hence A ∩ Int(N) < NB. This contradicts the assumption that B ∈ H(NB). �

Corollary 3.2. (X,T ) is resolvable if and only ifH(NB) = ND.

Proof. By virtue of the last theorem, the condition H(NB) = ND implies that GX is
nowhere dense. But GX is open, hence it is empty. Hence X = FX is resolvable. The
converse implication is obvious. �

Half of this equivalence can be found in [5].

Theorem 3.3. The following statements are equivalent:

(1) (X,T ) is OHI;
(2) NB = 2X;
(3) (H(NB)\ND) is coinitial to (NB\ND).

Proof. (1)⇒ (2). Let (X,T ) be an OHI space. Then FX has empty interior, hence it is a
nowhere dense set. Thus, for every A ∈ 2X , A = (A ∩GX) ∪ (A ∩ FX) ∈ H(NB) ⊂ NB.

(2)⇒ (3). Obvious, sinceH(2X) = 2X .
(3) ⇒ (1). Let G be open, G , ∅. Then G ∈ NB(X, T )\ND(X, T ). Hence

there exists a set P ⊂ G such that P ∈ H(NB(X,T ))\ND(X,T ). As G is open,
P ∈ H(NB(G,T |G))\ND(G,T |G). Hence (G,T |G) is irresolvable. �

Corollary 3.4. OHI is 's-invariant.

In [2] one can find the easy observation that a topological space is submaximal if
and only if it is OHI and NODEC. In [18] it was proved that every submaximal space is
HI, and every HI space is OHI. Taking these facts together with Proposition 2.4 yields
the following corollary.

Corollary 3.5. For every OHI topology T , the topology F (T ) is similar to T and
submaximal (and hence HI).

https://doi.org/10.1017/S0004972715001021 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001021


474 S. Lindner [5]

Example 3.6. Let Tnat denote the natural topology on R2. Let Q = {(x, 0) : x ∈ R}. Let
T = Tnat ∪ 2R

2\Q. Then T is a topology, FX = Q and (R2,T ) is OHI. At the same time,
Q is a resolvable subspace of (R2,T ). Hence (R2,T ) is neither HI nor submaximal.

By virtue of Corollary 3.5 and Example 3.6 we obtain the following results.

Corollary 3.7. Submaximality and HI are not 's-invariant.

Corollary 3.8. The similarity (X, T1) 's (X, T2) does not imply the relation
(A,T1|A) 's (A,T2|A).

The last corollary implies that the relation of similarity is not hereditary. However,
similarity of subspaces does occur under additional assumptions:

Proposition 3.9. Let (X,T1) 's (X,T2). If A ∈ SO(T1) ∩ SO(T2) then (A,T1|A) 's
(A,T2|A).

Proof. Let H ⊂ A, H ∈ T1|A, H , ∅. Then there exists G ∈ T1 such that H = A ∩G.
Since A ∈ SO(X,T1), IntT1 (H) , ∅. From the definition of 's, we have IntT2 (H) , ∅.
Hence IntT2 |A (H) , ∅. �

Remark 3.10. The bijection f : X→ Y between two topological spaces is called a faint
homeomorphism if both f and f −1 preserve the sets of nonempty interior. Corollary 3.4
can be also obtained from [18, Theorem 6.9] and the fact that for similar topologies
the identity function is a faint homeomorphism.

4. When is the pair (A, I ) topological?

Let A be the algebra and I ⊂ A the ideal of subsets of a given set X. We say that
the pair (A,I):

(1) is topological (abbreviated as top) (compare [6]) when (A,I) = (NB,ND) for
some topology T on X;

(2) has the LDO property if there exists a lower density operator on (X,A,I).

The following implications are known (compare [11]):

LDO ∧ hull ⇒ top ⇒ hull.

By Proposition 2.4, every topology is similar to some LDO topology. Hence,

top ⇒ LDO

and consequently
LDO ∧ hull ⇐⇒ top.

We make a further definition: the pair (A,I) has the LDO+ property if there exists
a lower density operator Φ on (X,A,I) such that, for every B ⊂ A,⋃

B∈B

B ∩ Φ(B) ∈ A.
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Proposition 4.1.
LDO ∧ hull ⇐⇒ LDO + .

Proof. First observe that the hull property is equivalent to the following kernel
property: for every set A ⊂ X there exists a set K ∈ A (a kernel of A) with K ⊂ A,
such that for every P ⊂ A\K, if P ∈ A then P ∈ I. Suppose that (A,I) has the LDO+

property. We have to show that the kernel property is also satisfied. To do this, let
P ⊂ X and let B = {B ∈ A : B ⊂ P}. The set C =

⋃
B∈B B ∩ Φ(B) is the desired kernel

of P. In fact, if A ∈ A, A ⊂ P\C, then A ∩Φ(A) = ∅, hence A ∈ I. Conversely, suppose
that (A,I) has the property LDO ∧ hull, B ⊂ A, C =

⋃
B∈B B ∩ Φ(B) and K be the

kernel of C. Then for every B ∈ B we have B ∼ B ∩ K. Hence

K ⊂
⋃
B∈B

B ∩ Φ(B) =
⋃
B∈B

B ∩ Φ(B ∩ K) = Φ(K) ∩
⋃
B∈B

B ∩ Φ(B) ⊂ Φ(K). �

By Theorem 3.3, Corollary 3.5 and the fact that, for the algebra 2X and an arbitrary
ideal, the hull property is trivial, we obtain the following characterisation.

Proposition 4.2. Let I ⊂ 2X be an arbitrary ideal. The following statements are
equivalent:

• (2X ,I) is top;
• there exists a submaximal topology T on X such that (A,I) = (NB,ND);
• (2X ,I) is LDO.

Let us consider the third condition from Theorem 3.3. We say that an ideal I is
small in the algebra A if and only if H(A)\I is coinitial to A\H(A). The name for
this property can be justified by the following simple observation.

Proposition 4.3. If I and J are ideals contained in the algebra A, I is small in A
and J ⊂ I, then J is small inA.

Proposition 4.4. Let (A,I) be such that I is small inA. Then

top⇒A = 2X .

Proof. Assume that T is a topology on X such that NB =A and ND = I. The fact
that I is small inA implies the third condition of Theorem 3.3. The second condition
of that theorem gives the conclusion of the proposition. �

Let L be the σ-algebra of Lebesgue measurable sets, so that H(L) = N is the
σ-ideal of null sets. For α ∈ [0, 1) let Iα = {E ∈ L : dimH(E) ≤ α} where dimH(E)
denotes the Hausdorff dimension of the set E. For every α, the family Iα forms a
σ-ideal contained in N .

In [19, Theorem 7.6], Zindulka proved that every analytic set B ⊂ R contains a
universal measure-zero set E such that dimH E = dimH B.

Since every set of positive Lebesgue measure contains a Borel (hence, analytic) set
of positive measure and every universal measure zero set is in particular a null set, we
obtain the following corollaries.
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Corollary 4.5. For α ∈ [0, 1), the ideal Iα is small in L.

Corollary 4.6. For α ∈ [0, 1), the pair (L,Iα) is not top.

The following example shows that there exists a pair (A,I) such that I is not small
inA although I (H(A).

Example 4.7. LetM be the σ-ideal of meagre sets on R. Then the σ-ideal N ∩M is
not small in L.

In fact, let R = M ∪ N be a decomposition of the real line such that M ∈ M and
N ∈ N . Then M ∈ L\N but M contains no set from N\(N ∩M).
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