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1. Introduction

With limited research personnel, automated platforms for assessing conditions around vessels
are likely to play an increasing part in scientific research. Many of the systems used in polar
regions are not designed for autonomous use, and are used to relay images to human observers
with minimal automatic processing. In this paper, we present the Polar Sea Ice Topography
REconstruction System (PSITRES), a 3D camera system developed for long-term deployment
aboard ice-going vessels. We detail the various deployments of this system, the public dataset
of images, as well as computer vision and image processing techniques we have developed.
The crew of ice-going vessels need to maintain awareness of ice conditions around the ship,
and doing so is critical for safe and efficient passage, furthermore ice conditions are important
for research and archival purposes. Oftentimes, camera systems are used in conjunction with
trained observers on these ships; however, these systems typically do not automate the task of
extracting information about the environment. Observations are carried out by different crew
members at different hours, and each person introduces their own bias. This can lead to dif-
fering results, and non-uniform sampling and reporting. Camera systems with modern com-
puter vision algorithms are capable of extracting high-level information about the scene. The
goal of developing the PSITRES was to develop an autonomous platform for observing and
extracting high-level information about ice. As such, we have developed techniques for 3D
reconstruction, detection, classification and image processing.
Ice observations are carried out from a variety of platforms using a standardized procedure.
The Canadian Manual of Standard Procedure for Observing and Reporting Ice Conditions
(MANICE) (MSC, 2005) has been widely used; more recently, shipborne ice observations
have been carried out using the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)
(Scott Macfarlane and Grimes, 2012). Observers look at the ice 360  around the ship.
Parameters such as freeboard, snow coverage, melt pond coverage, topography type and others
are estimated. Some ships put a scale over the side so when the ship is moving, observers can
directly measure the thickness of floes as they become upturned as the ship moves through
(Worby and others, 2008). Ice observations are done on an hourly basis, but in our experience,
volunteers do not sign up for observation during the middle of the night, and if multiple
observers are carrying out the observations, each can disagree or perform things differently.
We have aimed to develop the capabilities of PSITRES on a number of fronts, but it is not
currently a replacement for ice observers, and will require considerable development before
e replacing human observers is viable. We have worked toward automating some of the mea-
article, distributed under the terms of the . . .
Creative Commons Attribution licence (httpy/ ~ Surements typically carried out by observers. These include melt pond coverage, algae cover-
creativecommons.org/licenses/by/4.0/), which  age, 3D topography and detection of polar bear footprints. These parameters have been
permits unrestricted re-use, distribution, and targeted because spring melt pond coverage is a good indicator of overall melt later in the sea-
reproduction in any medium, provided the son (Schroder and others, 2014), algae is an important source of primary production
original work s properly cited. (Fernandez-Mendez, 2014), and polar bears present a risk to anyone working on the ice.
In the rest of this work, we will outline the camera system itself, and the algorithms we have
developed, as well as the experiments we have conducted. We begin with the details of the spe-
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Fig. 1. The Polar Sea Ice Topography REconstruction System, and its approximate viewing area.

Following that we discuss the computer vision and image process-
ing approaches utilized. We then discuss our experiments con-
ducted on large volumes of image data to validate our
approach. Subsequently, we detail the experimental results of
our algorithms. We close with concluding remarks.

2. The polar sea ice topography reconstruction system
(PSITRES)

The PSITRES is a 3D computer vision system developed for long-
term deployment aboard an ice-going vessel. It was developed as a
research tool for a variety of sea-ice observing tasks, with an initial
focus on habitat classification.

2.1 Design and technical specifications

The PSITRES was built for long-term deployment aboard ice-
going vessels. The environment in which the system operates
presented many design constraints. PSITRES was first built in
anticipation of the ARKXXVII/3 cruise in the summer of 2012
aboard the RV Polarstern. In order to achieve the largest possible
viewing volume, we chose to mount the cameras at the highest
point accessible to us, the flying bridge. To maintain stereo cali-
bration, a rigid stainless steel frame is needed to maintain the rela-
tive orientation of the cameras throughout the entire deployment.
The system is designed to mount to rails on the flying deck of a
ship looking obliquely at the ice to one side of the ship as seen
in Figure 1. The approximate viewing area of the camera system
was determined by surveying the edges of the image on the ice.

The system is weatherproof, and can operate using 220 Volt
European electrical systems, as well as American 110 Volt systems.
The cameras mount to the flying deck rails; however, capturing
and storing all the images requires a workstation computer.
Gigabit Ethernet cameras were selected as this protocol supports
high bandwidth at distances up to 100m, and additionally
Ethernet is available for outdoor use. This means it can tolerate
harsh environmental conditions, allowing us to keep the com-
puter storing the data inside the vessel.

PSITRES consists of two or three cameras, two acting as a stereo
pair with a 2 m baseline. The stereo cameras are Point Grey Flea3 5
mega-pixel CCD cameras. These have been deployed with 8mm
wide angle lenses. They are synchronized in hardware by a custom
printed timing circuit. These cameras are housed in Dotworkz
S-Type Ring of Fire enclosures, which are weatherproof and heated.
An optional center camera is a Stardot NetCam SC, a 10 mega-pixel
IP camera designed for security use. It has a wider field of view and
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does not need heating due to its low-temperature tolerance (—
40°C). In practice, this camera has been used for development
and providing context for images captured during development of
the system. Figure 2 shows the cameras and their enclosures.

2.2 Deployments and data

PSITRES has been successfully deployed on three separate
research expeditions in ice-covered waters. These expeditions
were completed aboard three separate vessels in different parts
of the Arctic and at different times of the year. It has imaged vari-
ous ice types ranging from thin newly forming ice, to first-year
floes, to multiyear ice.

In 2012, PSITRES was first deployed aboard the RV Polarstern
for 80d over a large region of the central Arctic, as well as the
Berentz, Kara and Laptev seas. This expedition, the ARKXXVII/
3 cruise, was the longest and northernmost for this system, cover-
ing more than 8750 nautical miles, and reaching as far as 89.283
North. For PSITRES’s first deployment, the stereo cameras were
triggered at a rate of 1/3 frames per second (FPS), and the center
camera was triggered at 1 FPS. PSITRES operated for over 39d,
the vast majority of the time spent in ice-covered waters. In
total, PSITRES recorded 2 700 285 images totaling 1.17 TB.

In 2013, PSITRES was again deployed, this time aboard the
Oden, a Swedish icebreaker as part of the Oden Arctic
Technology Research Cruise (OATRC 2013). OATRC brought
PSITRES to the Fram Strait and the Greenland Sea with larger
multiyear floes due to the transpolar current (Thomas and
SDieckmann, 2009). For this deployment, the frame rate of the
stereo cameras was increased to ~2 FPS as the shorter cruise
and larger hard drive capacity allowed for higher temporal reso-
lution. The central camera remained at 1 FPS. This allowed
PSITRES to capture 3 006 554 images totaling 1.46 TB.

For its most recent deployment, PSITRES was installed and
operated aboard the RV Sikuliaq, an American ice-capable
research vessel for its maiden expedition in ice-covered waters,
the SKQ201505S cruise. This cruise through the Bering Sea
began on 19 March 2015 and lasted 25 days. For this cruise, the
stereo cameras were triggered at ~2 FPS; however, the central
camera was not deployed to save time. PSITRES captured 2 341
876 images totaling 1.87 TB.

In total, PSITRES has spent 118 d at sea, collected 8 048 715
images or 4.5TB of data, endured snow, ice, gale force winds,
and has suffered only one unexpected shutdown. The system is
reliableand capable of running for days on end with little inter-
vention. It has proven robust in diverse environments of the
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Fig. 2. The cameras used in the PSITRES. (a) One of the stereo cameras used in PSITRES. Each one has 2448 x 2048 (5 MP) resolution. (b) A stereo camera in its
enclosure. Both enclosures are linked to allow for simultaneous triggering. (c) The center camera with a wider field of view and 10 MP resolution.

geographic locations. The diversity of the platforms on which it
has been deployed testify to its readily deployable nature. The sys-
tem, once installed and calibrated, needs only basic maintenance
in the form of ice removal when necessary.

The image data captured by the PSITRES camera system are
truly unique. No other stereo camera system has been deployed
in such an environment, offering certain capabilities unmatched
by 2D counterparts. However, the data itself present numerous
challenges to typical computer vision techniques. There are com-
plications due to rain, fog and snow, and many other environ-
mental issues. In spite of these difficulties, one of the largest
problems is the sheer volume of data. With over 8 million images,
many traditional image processing approaches become com-
pletely unfeasible. For example, a process taking just 1 min per
image would require more than 15 years to complete if run
sequentially. To combat these problems, we have developed new
algorithms and have subsampled the dataset for different tasks.

The raw image data, as well as derived data products, are available
at https://vims.cis.udel.edu/geo/ice/. This site will be updated with
new elements as we develop new approaches and acquire new
data. Additionally, we will be providing metadata in the form of
data provided by other onboard sensors, such as GPS, and heading.

2.3 Comparison to other camera systems

PSITRES is not the first camera system to be deployed aboard ice-
going vessels, and while its capabilities and specific goals are
unique, many other systems have been deployed with the overall
goal of extracting information about the environment around the
ship. In this section, we will briefly discuss several camera systems
and compare them to the PSITRES.

Eiscam 1 and 2 are monocular camera systems developed by
Weissling and others (2009) to observe a swath of ice and water
adjacent to an ice breaker. Both Eiscam were deployed aboard
the icebreaker NB Palmer, during the 2007 SIMBA (Sea Ice Mass
Balance in Antarctic) cruise. The systems recorded at 3 and 10
frames per minute, respectively, recording at 480 television lines
(TVL), in an analog picture format typically with a digital reso-
lution equivalent of 510 x 492. In order to obtain quantitative mea-
surements of the ice, the images were orthorectified by manually
surveying the viewing area of the cameras. The system was used
to derive ice concentration, ice types, floe sizeand area of deformed
ice. These 2D parameters require careful selection of image
sequences however, as ship roll is unaccounted for. Both cameras
operated for ~125h over the course of ~900 km of transit.

In 2009 and 2010, a group from Tokai University Research and
Information Center in Japan constructed and tested a stereo
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camera system aboard a small icebreaker in the Okhotsk sea in
the north of Japan (Niioka and CHO, 2010). The system was
mounted aboard the sightseeing icebreaker the Garinko-2, in
the Monbetsu Bay of Hokkaido. The system was mounted 2.5 m
above sea level with a viewing area of a few square meters. The
system was not built for full 3D reconstruction of ice, but was
used to manually measure the cross-sectional thickness of
upturned floes. The system recorded data over a few kilometers,
taking ~30 image pairs that were evaluated manually.

Unlike these other systems, PSITRES was purpose built for
high-resolution reconstruction of ice. It features a small pixel
footprint, and can be used to measure 3D objects in real-world
units. The camera system developed by Tokai University
Research and Information Center is the only other 3D system,
and therefore most readily compares to PSITRES. However,
they have been developed for different tasks. PSITRES’s viewing
area is larger than this system, and it has been developed for
fully automatic reconstruction with minimal human involvement.
Furthermore, PSITRES has been developed to capture large
volumes over long-term deployments in remote regions.

3. Computer vision methods

In this section, we will detail different computer vision and image
processing algorithms developed for data collected by the
PSITRES camera system. These include methods for stereo recon-
struction, segmentation and detection of polar bear footprints, as
well as algae and melt pond detection. While we have attempted
to write this section so that it is clear to a wide audience, many of
the algorithms discussed are ongoing research topics in the field
of computer vision. We direct the reader to ‘Multiple View
Geometry’ by Hartley and Zisserman (2003) for an overview of
many 3D reconstruction and computer vision approaches.

3.1 3D scene reconstruction

Stereo vision is a technique of using two images to generate a 3D
model. This technique is a form of bio-mimicry that emulates one
of the ways eyes perceive depth. Coarsely speaking, the scene
forms two images on the different cameras, and then points in
these images are matched and 3D position can be triangulated.
To begin discussing 3D computer vision, it is important to
start with the camera model, and how projection of points in a
3D scene onto an image is modeled. The pinhole camera is
used for many tasks in computer vision. Intuitively, this is a
point in 3D space with a vector defining the direction the camera
is looking. To simplify matters, we treat the left camera of the
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Fig. 3. Calibrating the system at an ice station using a checker-
board calibration pattern. . i

stereo pair as the origin of our coordinate system, and its look vec-
tor along the positive Z dimension. Mathematically, the camera

fi s X
can be modeled by the 3x3 matrix [ 0 f, yo | where f,
0 0 1

and f, are the focal lengths in the X and Y dimensions of the
image, and s models image skew. (xo, o) is the coordinates of
the ‘principal point’ or the intersection of the camera’s view vec-
tor with the image plane, in image coordinates.

Projecting a point from the 3D scene to the corresponding
image point is simply a matter of multiplying this camera matrix
and the 3D vector of the point’s location. The X and Y terms
resulting 3D vector are then divided by the Z component resulting
in the image coordinates of the 3D point.

To project points to the right camera which is not centered at
the origin, we apply the inverse of the transformation of the cam-
era to the points, and project them using the same scheme. In
order to identify these parameters, calibration is needed.

Stereo calibration is the process of fitting a model to the phys-
ical properties of the camera setup. This model incorporates the
intrinsic parameters of the cameras, encapsulating lens para-
meters, the extrinsic parameters which model the translation
and rotation of the different cameras. The process of calibrating
PSITRES involves photographing a calibration pattern (a planar
checkerboard) and using an optimization framework to iteratively
improve estimates for the various parameters based on Zhang
(2000). This involves using the 3D position of the corners of
each square on the checkerboard to solve for the intrinsic and
extrinsic parameters of the camera system and the position of
the system relative to the calibration board by over-constraining
a system of equations. PSITRES was calibrated at ice stations by
bringing a large checkerboard pattern onto the ice and into its
viewing area, as shown in Figure 3. Once calibrated, matching pix-
els can be triangulated by identifying the closest point of intersec-
tion of two rays going from the camera pinhole through the image
plane into the 3D scene.

3.1.1 Reconstruction

After calibration, stereo image pairs can be reconstructed by
matching points in each image and finding the closest intersection
of rays created by corresponding pixels. To do this, the images are
first rectified as the cameras on PSITRES are not co-planar. The
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relationship between a given image point and its matching
point on the other image is called epipolar geometry. Epipolar
geometry relates corresponding points between images according
to the depth of the scene point. Rectifying the images allows us to
transform the images such that correspondences lie on horizontal
scanlines. Rectification is done using uncalibrated techniques
(Forsyth and Ponce, 2003). This allows for dense matching
using disparity estimation.

Disparity estimation, or disparity matching, allows for dense
correspondences between two stereo images. The resulting corre-
spondences are often called a disparity map. Computing the dis-
parity map of a given set of images is however not trivial and
there are numerous techniques that have been developed in this
line of research. In image regions where there is little texture
information, the problem is inherently ill defined (Baker and
others, 2001). This poses a problem for scenes with large areas
with little image texture information such as those with uniform
ice. We have used low texture matching techniques (Rohith and
others, 2009) to generate dense correspondences between stereo
pairs, and these correspondences are triangulated according to
the calibration parameters to yield dense point clouds in metric
scale (using real-world units).

After reconstructing a 3D scene, we are left with a 3D point
cloud (set of 3D vertices with associated color values) in real-
world units, which allows us to quantify the physical properties
of the sea-ice surface. First, we fit a plane to the 3D point cloud
using Principle Component Analysis (PCA). The coefficients
from PCA give a surface normal for a plane that best fits to the
3D point cloud. We then compute a centroid and take it to define
a plane using point-normal form.

P.n+d=0 (D
where P is a point in the plane (the centroid), # is the plane nor-

mal and d is a constant. We solve for d, and this allows us to
define the plane implicitly as

ax+by+cz+d=0 2)
where a, b, ¢ are the coefficients from PCA.

This plane allows us to measure 2D image regions in real-
world units via reprojection. Projecting 2D components while
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preserving scale can be done by calculating the homography
between the image plane and the scene plane. This requires
four correspondences (Goshtasby, 1986, 1988). Since both planes
are defined in the same coordinate system, we generate correspon-
dences by randomly selecting points in the scene plane and pro-
jecting them to the image plane. To convert to homogeneous
coordinates, the scene plane is defined in terms of a point on
the plane, P, and fwo linearly independent vectors contained
within the plane, b; and b,.

In this implementation, P is the centroid of the point cloud,
and b; and b, are the first and second coefficients obtained
from PCA of the point cloud. Using randomly generated numbers
Q and R, we generate points on the plane using

— g o
x;i=P+S*Qx*x b, +S*Rx b, 3)

The homogenous coordinate is then (Q, R). The corresponding
point on the image plane, X5, is the projection of X1; onto the
image using the camera parameters obtained from calibration. $
is a scale factor relating pixels to the units of the 3D model,
and is used to determine the size of the resulting reprojection.
This allows us to reproject the image and maintain scale similar
to the orthorectification technique used in Weissling and others
(2009).

The surface roughness of sea ice is an important geophysical
parameter that effects momentum transfer from the atmosphere
to ice (Cole and others, 2017) and the suitability of the ice pack
as habitat for marine mammals (Ferguson and others, 2000).
Surface roughness is affected by dynamic processes such as ridge-
building as well as summertime melt processes in the case of mul-
tiyear sea ice. Following the approach described by Manninen
(1997), we can parameterize ice surface roughness using the
root-mean-square (RMS) distance of all the vertices in the point
cloud, P,, from the fitted plane:

Di: x}’l+d (4)

where D; is point-plane distance. Surface roughness is then mea-
sured using RMS point-plane distance from the fit plane by

1 n
,/;;Di (5)

3.2 2D sea-ice parameters

We have developed a novel technique to rapidly detect algae and
melt ponds present in PSITRES images using a color space trans-
formation and vectorized thresholding scheme. This technique
was developed for real-time detection and the emphasis is on
computational efficiency. We have modeled these parameters in
terms of their surface extent, and therefore only 2D measurement
is needed.

3.2.1 Color space transformation

We have utilized a novel color transformation and thresholding
scheme which is fast and discriminative. The transformation is
expressed as f(rgb) = N; — N, and transforms pixels from
RGB to RGBI or red, green, blue, intensity space. It is computed:

m = min(r, g, b).
={r—m,g—m,b—m, m}.

f(r, g b) ©

This formulation is independent per pixel and is easily paralle-
lized. Moreover, it is incredibly fast, requiring on average
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Fig. 4. A sample point cloud reconstructed from PSITRES imagery, showing a small
ridge.

0.0258 s per image. On its own, m is similar to a grayscale
image but with darker artifacts. At least one of r—m, g—m, b
—m will be 0 for a given pixel. This transformation preserves
the relative differences between channels, making it robust to
slight differences in illumination or intensity. The RGBI color
space is also discriminative of colored regions in scenes where
the primary variation is in luminosity, such as PSITRES images.
These properties make it well suited for segmenting out melt
ponds and algae, each of which can be distinguished from the ice.

3.2.2 Segmentation scheme

Segmentation is carried out on a per channel basis and is formu-
lated formally for every pixel p;={R;, G;, B;,} where R;, G; and B;
are the red, green and blue color channels, we compute

f(p:) = {Rui> Gmi> Bii» m} (7)
We use two vectors,
t =ty by, oy by ®
and
U = Uy, Ug, Uy, Uy 9)

where ,, t,, t, t,,, are the thresholds along each channel, and u = u,,
Ug, Uy, Uy, is a four-element trinary vector with three possible values,
indicating whether the threshold should be done using the < or >
operator or the channel should be ignored. The individual results are
combined together using logical AND. Like many threshold-based
methods, this can lead to noisy segments. To mitigate this, morpho-
logical closing and opening are used. We use a small diamond-
shaped structuring element of a radius of 12, as this is an efficient
process which deals with most of the noise in these images.
PSITRES records an area adjacent to the ship, and as a result,
the animals who are wary of a large, noisy ship do not often enter
the field of view of the cameras. During the ARKXXVII/3 cruise,
in 2012, PSITRES observed a large number of polar bear foot-
prints, and we have developed a technique for detecting these
prints in PSITRES images using a Convolutional Neural
Network (CNN) (Sorensen and others, 2017). We have trained
a CNN to classify image patches as containing prints or not.
We have created a training and testing dataset by manually
labeling ~5000 prints in PSITRES images. We extract a small
patch around each print, and experiment with different patch
sizes. We have collected an identical number of patches that do
not contain prints from elsewhere in the same scenes to create
a set of negative samples. Figure 6 shows a few positive samples
with prints and negative samples for a patch size of 160 x 160.
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Fig. 5. InceptionNet architecture (Szegedy and others,
2014).

Training is done using a transfer learning for classification. We
treat the problem as a binary classification of patches containing
polar bear prints or patches without polar bear prints. We initial-
ize the network using the InceptionNet (Szegedy and others,
2014) implementation in Google’s Tensor Flow deep learning
framework (Abadi and others, 2015). The network architecture
is shown in Figure 5.

The network was originally trained on the ImageNet Large
Scale Visual Recognition Challenge dataset (Russakovsky and

https://doi.org/10.1017/a0g.2020.21 Published online by Cambridge University Press

others, 2015) which consists of 1000 different image classes.
This network consists of 22 layers, composed of convolution,
pooling and softmax operations. This architecture was designed
so that they are not fully connected to the previous layer, followed
by aggregation in the form of pooling. This allows the network to
perform well without drastically increasing the size. We have for-
mulated our problem as a binary classification. To accommodate
the large change in the number of labels, we have modified the
network using a new softmax layer with the corresponding
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Fig. 6. Positive samples with patches (left three images), and negative samples without patches (right three images).

Table 1. Color space transformation times

Transformation Grayscale LAB HSV CMYK RGBI
time (s) Matlab 0.0083 0.0370 .6596 4.7150 0.0105
time (s) C++ 0.0073 0.0334 0.0382 N/A 0.0258

number of outputs to the classification domain (positive samples
containing prints and negative samples containing no prints).

4. Experiments and results

We have conducted a number of experiments to assess the validity
of these approaches as well as assess their viability toward process-
ing large volumes of images in reasonable time frames.

4.1 Color space transformation and segmentation

In this section, we compare the colorspace transformation and
segmentation technique described above and discuss performance
both in terms of accuracy and speed. Tests have been conducted
on the same machine, with a Core i7-4930 k CPU and 64 GB of
RAM. For results specified as using Matlab, Matlab 2014A was
used and C++ results using OpenCV 3.4.9 and gcc 4.6.3.

To test the segmentation approach, two experiments were con-
ducted. First we focused on timing, as accuracy depends on the
threshold selected, however computation time does not. We com-
pare with fourtraditional color transformations. Each approach
was tested on a set of 50 images and the mean is reported.
Timing results are shown in Table 1. It is clear that this trans-
formation is well suited for big data. Application of the threshold
is quite fast, taking 0.0376's, and the morphological operations
take 0.126 s. In total, this scheme takes 0.174 s, meaning the entire
dataset could be processed in a little less than 12 d.

To evaluate the accuracy, we have manually labeled 50 images
containing algae and melt ponds and iterate over each possible
value on two channels (melt ponds along green and blue channels
and algae along red and green). Results are shown in Figures 7
and 8. This scheme performs well for classifying melt ponds,
but algae is a more difficult task as it appears as a subtle difference
in color in small regions. Furthermore, even under ideal perform-
ance, this sort of technique would only work for algae that is vis-
ible at the surface, so is unlikely to be useful for measuring
biomass, for example. Figure 9 shows some results of the pro-
posed segmentation scheme.

4.2 Paw print detection

To test our convolutional neural network classifier, we have used
ten-fold cross-validation. This means we train ten models with
non-overlapping testing sets spanning our data. We evaluate
accuracy on the testing set for each fold and average the results.
The main criterion for evaluation is accuracy on the testing set
averaged across each fold. In the following subsection, we discuss
different patch sizes used.
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4.2.1 Patch size
Since we extract patches around individual prints (which can con-
tain other prints), we have experimented with different patch sizes
to evaluate how this affects accuracy. We measured cross-fold valid-
ation accuracy on eight different paw print datasets of varying size.
These patches range from 20 x 20 pixels to 160 x 160. Figure 10
shows the accuracy at different scales and includes the average across
all ten folds as well as the performing classifier at each scale. We
found a larger patch size resulted in higher accuracy, so our resulting
accuracy of 90.67% corresponds to a patch size of 160 x 160.
Below we will discuss the results of applying these algorithms
to large portions of the PSITRES image data. In practice, these
experiments are done to subsets, typically one cruise at a time,
as these techniques can require considerable processing time.

4.3 3D results

We have used the low texture stereo technique and carried out a
large-scale experiment in reconstructing pairs from the OATRC
2013 cruise aboard the Oden. We have reconstructed every 50th
synchronized pair of images (which corresponds to roughly
every 20s) and evaluated the surface roughness of each scene.
The resulting roughness estimates are noisy, so we have applied
a 1D running Gaussian filter over 100 samples. The results are
shown in Figure 11. These results show variance in a physically
plausible range. They are however likely an overestimate, as
ships would avoid larger ridges.

4.4 Algae and melt ponds

We have used the techniques described above to identify algae
presence as well as melt pond fraction throughout the cruise
track of the RV Polarstern during the ARKXXVII/3 cruise. To
do this, we have used just the left stereo images, as the right
image would be almost identical and is therefore redundant. We
compute the fraction of coverage in terms of fraction of the
image. Admittedly, this is not a true measurement for something
like melt pond fraction, but in the process of manual ice observa-
tion, these parameters are reported per floe type, and we have not
addressed many of these broader issues in developing a proof of
concept. We present the results in the form of North Polar
Stereographic maps of the cruise track with color representing
concentration. For each map, concentration is the portion of pix-
els classified as containing algae or melt ponds naively ignoring
spatial pixel coverage. The results for melt ponds are shown on
the left in Figure 12 and algae results are shown on the right.

4.5 Polar bear prints

We have used the best trained CNN to identify prints across the
entire cruise track. We have subsampled PSITRES images at a rate
of approximately one image every 5min. Each image was split
into equally sized patches and the patches were classified using
the trained model. The resulting frequency of patches was then fil-
tered using a moving average filter over ten samples. Results are
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Fig. 7. True- and false-positive rate for melt ponds.
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Fig. 8. True- and false-positive rate for algae.

Fig. 9. Segmentation using the proposed scheme. The top row shows the input image with results on the bottom row for melt ponds (bright region, left), algae
(bright region, center) and open water (red region, right).
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shown in Figure 13. Vertical lines denote days with photographed These results show peaks on days where polar bears were
sightings of bears, and days with ice stations where humans would  spotted, including a strong peak on 17 September where over
appear on the ice. a dozen bears were sighted, but also shows peaks at days
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Fig. 13. Polar bear paw print frequency over the entire ARKXVII/3 cruise. Red vertical lines indicate days for which we have photo evidence of bears, and green lines

indicate days with ice stations, where there are likely to be human prints.

with ice stations, such as around 14 August, where many of
these tracks were left by humans. The classifier was not pre-
sented with the challenge of classifying bear prints and
human prints separately, and as a result identifies human
prints as well.

4.6 Comparison to ASSIST observations

We have compared these results with ice observations made dur-
ing the cruise to facilitate a comparison with available data.
ASSIST (Scott Macfarlane and Grimes, 2012) reports ice para-
meters in terms of partial coverages based on different ice
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Table 2. PSITRES ASSIST correlation

Correlation coefficient

Algae estimation —0.1009
Melt pond estimation 0.0629
3D estimation —0.1982

types. This means that algae, melt pond and 3D parameters are
reported per ice type, and up to three can be reported during a
single observation. Since PSITRES reports these values over an
entire scene, we have aggregated ASSIST results. For melt
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ponds, total coverage Tpc is calculated using

3
Tvpe = ZO.I .ePC- 0.1 - eMPC.

e=1

(10)

where e is either primary, secondary or tertiary, PC is the partial
coverage, and MPC is the melt pond coverage.

Using ASSIST, algae is reported more coarsely aggregated into
the categories of 0, <30, <60 and > 60%. We have collapsed
these ranges into discrete values to facilitate aggregation. These
values were selected for partial coverage eA as eA = {0, 0.25, 0.5,
0.75}. Scene level algae coverage, Ty, is then calculated using

3
Ty = ZO.LePC'eA.

e=1

an
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For 3D comparison, we have used ridge height as a 3D meas-
urement for which to compare. Surface roughness is not directly
reported in the ASSIST framework; however, large ridges would
contribute heavily to surface roughness changes over level ice,
and so we expect these values to correlate. ASSIST reports ridge
height in terms of ice types as well so we calculate the weighted
sum ridge height Try by

3
Try = 20.1 . ¢PC - eRH.

e=1

12)

We have averaged PSITRES results over corresponding 1 h per-
iods and compared these results in the graphs below. We have also
carried out statistical analysis in the form of measuring the
Pearson Correlation Coefficient of the two sequences and the
results are reported in Table 2. Figure 14 shows resulting algae
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estimate comparison. Figure 15 shows a comparison for melt
ponds. In the case of comparing algae concentration, there are
some confounding factors that likely affect reported observations.
Some observers did not report algae concentration, which is
shown in the fluctuating reports. Additionally, days later in
September had significantly less light and more oblique lighting.

5. Conclusion and discussion

Results presented in this paper show that an automated camera
system can be used to supplement the role of trained ice obser-
vers. In polar summers, constant daylight allows for
round-the-clock operation and an automated platform does not
exhibit the same biases and potential for errors that humans do.
This is not to say that the camera system is perfect, and we are
actively developing both the hardware and software. These results
are a starting point, and as we develop new techniques, we will
improve upon them. We will make our data and the results of
our continually developed algorithms available to the community.

In the future, we hope to continue to develop the capabilities
of the PSITRES camera system. We are developing real-time tech-
niques for the camera system to allow it to be reliably used during
a cruise, as opposed to processing the data after the trip. We are
exploring more deep learning approaches to develop robust tech-
niques for estimating other key parameters of sea ice, and to lever-
age GPU hardware for real-time processing while underway.

We intend to improve the physical robustness and ease of
deployment by creating a self-contained system that can be
more easily mounted and deployed by someone unfamiliar with
the system. On the software side, improvements to robustness
and ease of use are also a priority. Requiring an expert user for
assembly, calibration and maintenance limits the scope of deploy-
ing PSITRES and it is our goal to eliminate these barriers.

In this work, we have presented the PSITRES, a 3D camera
system capable of high-resolution 3D reconstruction, and algo-
rithms for automated extraction of parameters related to sea ice.
PSITRES has been successfully deployed on three separate
research expeditions in Arctic and Subarctic. We have also pre-
sented a series of computer vision and image processing techni-
ques we have developed to extract high-level information about
conditions around the ship. These techniques are aimed at
extracting some of the more important parameters of sea ice,
and ones that are reported by trained ice observers.
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