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Abstract

We study the existence of some covers and envelopes in the chain complex category of R-modules. Let
(A, B) be a cotorsion pair in R-Mod and let EA stand for the class of all exact complexes with each
term in A. We prove that (EA, EA⊥) is a perfect cotorsion pair whenever A is closed under pure
submodules, cokernels of pure monomorphisms and direct limits and so every complex has an EA-cover.
As an application we show that every complex of R-modules over a right coherent ring R has an exact
Gorenstein flat cover. In addition, the existence of A-covers and B-envelopes of special complexes is
considered whereA and B denote the classes of all complexes with each term inA and B, respectively.
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1. Introduction

In this paper R denotes a ring with unity. We let C (R) denote the abelian category of
complexes of left R-modules. A complex

· · ·
δ−2

−−−→C−1 δ−1

−−−→C0 δ0

−−−→C1 δ1

−−−→ · · ·

of left R-modules will be denoted by (C, δ) or C. For a left R-module M we will use
M to denote the complex

· · · −→ 0 −→ M
id
−−→ M −→ 0 −→ · · ·

with M in the −1st and 0th positions in R-Mod. We denote by M and M+ the complex
with M in the 0th place and 0 elsewhere, and the character module HomZ(M, Q/Z)
respectively. Given a complex C and an integer m, we denote by C[m] the complex
such that C[m]n = Cm+n and the boundary operators are (−1)mδm+n.

In this paper, we use both subscripts and superscripts. When we use superscripts
for a complex, we use subscripts to distinguish positions within the complexes.
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For example, if (Ki)i∈I is a family of complexes, then Kn
i denotes the degree-n term

of the complex Ki.
We denote by Hom(C, D) the abelian group of morphisms from C to D in C (R) and

by Exti(C, D), where i ≥ 1, the groups that we get from the right derived functor of
Hom. We letHom(C, D) denote the complex of abelian groups with

Hom(C, D)n =
∏
i∈Z

HomR(Ci, Dn+i)

and
δn(( f i)i∈Z) = (δn+i f i − (−1)n f i+1δi)i∈Z

for ( f i)i∈Z ∈ Hom(C, D)n.
Let Z(−), B(−) and H(−) denote the cycles, boundaries, and homology functors

respectively. It is easy to see that

Hom(C, D) = Z0(Hom(C, D)).

General background material can be found in [5–7, 11, 13].
Next we recall some known concepts and facts used in what follows. Let A and

B be classes of objects in an abelian category D which has enough projectives and
enough injectives. Let D be an object of D . We recall some definitions introduced
in [4]. An object B inB is called aB-preenvelope of D if there exists a homomorphism
α: D −→ B such that the diagram

D

β

��

α // B

��
B′

can be completed for each homomorphism β : D −→ B′ with B′ in B. Furthermore, if
the triangle

D

α

��

α // B

��
B

can be completed only by automorphisms, then we say that α : D −→ B is a
B-envelope.

A monomorphism α : D −→ B with B ∈ B is said to be a special B-preenvelope of
D if Coker(α) ∈ ⊥B. A class B is called (pre)enveloping if every object of D has a
B-(pre)envelope. We also have the dual concepts of a (special) B-precover, B-cover
and (pre)covering class.

In [1, Theorem 2.10] the authors proved that every module has an A-cover
whenever it has an A-precover and A is closed under direct limits. A pair of classes
of objects (A, B) is called a cotorsion pair or cotorsion theory (see [17, 22]) ifA⊥ = B

and ⊥B =A where

A⊥ = {B ∈D | Ext1(A, B) = 0 ∀A ∈ A},
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and
⊥B = {A ∈D | Ext1(A, B) = 0 ∀B ∈ B}.

A cotorsion pair (A, B) is called hereditary if whenever

0 −→ A′ −→ A −→ A′′ −→ 0

is exact with A, A′′ ∈ A, then A′ is also inA. This is equivalent to the requirement that
if whenever

0 −→ B′ −→ B −→ B′′ −→ 0

is exact with B′ and B ∈ B, then B′′ is also in B.
A cotorsion pair (A, B) is called complete if every D ∈D has a special

B-preenvelope and a special A-precover. A cotorsion pair (A, B) is called perfect
if every D ∈D has a B-envelope and anA-cover. A cotorsion pair (A, B) is said to be
cogenerated by a set X if X⊥ =A⊥.

It is well known that a perfect cotorsion pair is complete, but the converse may be
false in general. In [3] Eklof and Trlifaj proved that a cotorsion pair (A, B) in R-Mod is
complete when it is cogenerated by a set. This result actually holds in a Grothendieck
category with enough projectives, as Hovey proved in [19]. For unexplained concepts
and notation we refer the reader to [8, 13, 17, 24].

In [14] Gillespie introduced the following definition.

D 1.1 [14, Definition 3.3]. Let (A, B) be a cotorsion pair on an abelian
category C . Let X be a chain complex.

(1) X is called anA complex if it is exact and ZnX ∈ A for all n.
(2) X is called a B complex if it is exact and ZnX ∈ B for all n.
(3) X is called a dg-A complex if Xn ∈ A for each n and Hom(X, B) is exact

whenever B is a B complex.
(4) X is called a dg-B complex if Xn ∈ B for each n and Hom(A, X) is exact

whenever A is anA complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by
dg Ã. Similarly, the class of B complexes is denoted by B̃ and the class of dg-B
complexes is denoted by dg B̃.

In [14] it was shown that (Ã, dg B̃) and (dg Ã, B̃) are cotorsion pairs in C (R) if
(A, B) is a cotorsion pair in R-Mod. It is also proved that (A, B) is hereditary if and
only if (Ã, dg B̃) is hereditary or, equivalently, if (dg Ã, B̃) is hereditary. But the
question of whether or not the induced cotorsion pairs are complete when the original
cotorsion pair is complete is open (see [14]).

Let (A, B) be a cotorsion pair in R-Mod. In [15, Proposition 3.8] Gillespie proved
that the induced cotorsion pair (dg Ã, B̃) is complete whenever (A, B) is cogenerated
by a set. In [23] it was proved that the induced cotorsion pairs (Ã, dg B̃) and (A,A

⊥
)

are complete whenever A is closed under pure submodules and cokernels of pure
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monomorphisms. Here A stands for the class of all complexes with each term in A.
In [16] it was shown that (EA, EA⊥) is a complete cotorsion pair whenever A is a
Kaplansky class that is closed under direct limits.

In Section 2 of this paper we study complexes in the class EA⊥ and the
completeness of the cotorsion pair (EA, EA⊥). Here EA stands for the class of all
exact complexes with each term in A. It is shown that (EA, EA⊥) is a complete
cotorsion pair whenever (A, B) is a cotorsion pair in R-Mod and A is closed under
pure submodules and cokernels of pure monomorphisms. This does not require A to
be closed under direct limits. In addition, some applications are given.

Section 3 is devoted to studying the existence of A-covers and B-envelopes of
special complexes. We prove that each complex of R-modules that is bounded
above has an A-cover and each complex of R-modules that is bounded below has a
B-envelope wheneverA is a covering class and B is an enveloping class in R-Mod.

2. EA-covers of complexes

Let EA denote the class of all exact complexes C with each term Cn inA.

P 2.1. Let C be a complex. Then C is in EA⊥ if and only if Cn is inA⊥ for
all n ∈ Z andHom(G,C) is exact for each G ∈ EA.

P. Suppose that (C, δ) is in EA⊥ and let

0 −→Cn α
−−→ X −→ F −→ 0

be an extension in R-Mod with F ∈ A. By the factor theorem (see [2, Theorem 3.6])
we have the following commutative diagram

Cn+1

δn+1

��

η // Coker(δn)

θyy

// 0

Cn+2

where η : Cn+1→ Coker(δn) is the natural epimorphism. We form the pushout of

Cn α
−−→ X and Cn δn

−−−→Cn+1 and obtain the following commutative diagram

0 // Cn

δn

��

α // X

µ

��

// F // 0

0 // Cn+1

η

��

ν // P

g

��

// F // 0

Coker(δn)

��

Coker(δn)

��
0 0
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So we have the following commutative diagram

�� �� ��
0 // Cn−2

δn−2

��

id // Cn−2

δn−2

��

// 0

��
0 // Cn−1

δn−1

��

id // Cn−1

αδn−1

��

// 0

��
0 // Cn

δn

��

α // X

µ

��

// F // 0

0 // Cn+1

δn+1

��

ν // P

θg

��

// F

��

// 0

0 // Cn+2

δn+2

��

id // Cn+2

δn+2

��

// 0

��
0 // Cn+3

��

id // Cn+3

��

// 0

��

and can form the complex

W = · · · −→Cn−2 −→Cn−1 −→ X −→ P −→Cn+2 −→ · · · .

Thus we have an exact sequence of complexes

0 −→C −→W −→ F[−n − 1] −→ 0.

By our hypothesis, the sequence splits in C (R) and so the sequence

0 −→Cn −→ X −→ F −→ 0

splits in R-Mod. Therefore, Cn is inA⊥.
For each G ∈ EA we have that Hom(G,C) is exact if and only if for each n

each map of complexes f : G→C[n] is homotopic to 0. This is equivalent to the
requirement that for each n and each map of complexes f : G→C[n] the sequence

0 −→C[n] −→ M( f ) −→G[1] −→ 0

splits or, equivalently, that for each n and each map of complexes f : G→C[n] the
sequence

0 −→C −→ M( f )[−n] −→G[1 − n] −→ 0

splits where M( f ) denotes the mapping cone of f .
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Since G is in EA we also have G[1 − n] in G ∈ EA. By our hypothesis we have
Ext1(G[1 − n],C) = 0. So the sequence

0 −→C −→ M( f )[−n] −→G[1 − n] −→ 0

splits andHom(G,C) is an exact complex.
Suppose that Cn is in A⊥ for all n ∈ Z and that Hom(G,C) is exact for each

G ∈ EA. Each exact sequence

0 −→C −→W −→G −→ 0

of complexes with G ∈ EA splits at the module level. So this sequence is isomorphic
to

0 −→C −→ M( f ) −→G −→ 0

where f : G[−1]→C is a map of complexes.
SinceHom(G[−1],C) is exact the sequence

0 −→C −→ M( f ) −→G −→ 0

splits in C (R) by [13, Lemma 2.3.2]. Therefore

0 −→C −→W −→G −→ 0

also splits and our result is established. �

L 2.2. If G is inA⊥, then G[−n] is in EA⊥ for all n ∈ Z.

P. It is enough to prove that Ext1(F,G[−n]) = 0 for each F ∈ EA. Let

0 −→G[−n]
α
−−→ X −→ F −→ 0

be an extension in C (R) and consider the following commutative diagram

�� �� ��
0 // 0

��

// Xn−2

��

// Fn−2

��

// 0

0 // G // Xn−1

��

// Fn−1

��

// 0

0 // G

��

αn
// Xn

��

// Fn

��

// 0

0 // 0

��

// Xn+1

��

// Fn+1

��

// 0
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Since Fn is inA and G is inA⊥ we have Ext1(Fn,G) = 0. That is, the sequence

0 −→G
αn

−−−→ Xn −→ Fn −→ 0

splits in R-Mod. So there exists hn : Xn→G such that hnαn = 1.
We define hn−1 : Xn−1→G by hn−1 = hnδn−1

X and hi = 0 for i , n, n − 1. Thus we
obtain a map of complexes h : X→G[−n] such that hα = 1. So the sequence

0 −→G[−n]
α
−−→ X −→ F −→ 0

splits in C (R) and our result is established. �

L 2.3. If an injective module I is inA, then I[−n] is in EA⊥ for all n ∈ Z.

P. It is enough to prove that each map f : F→ I[−n] is homotopic to zero for each
F ∈ EA. Since f ndn−1 = 0 we obtain Zn(F) = Bn(F) ⊆ Ker( f n) and so the following
diagram

Fn

f n

��

dn
// Bn+1(F)

θn

{{

// 0

I

commutes.
Again, since I is injective there exists S n+1 : Fn+1→ I such that the diagram

0 // Bn+1(F)

θn

��

// Fn+1

S n+1

zz
I

is commutative. Thus S n+1dn = f n. That is, the map f is null homotopic and our result
follows. �

T 2.4. If (A, B) is a cotorsion pair in R-Mod, then (EA, EA⊥) is a cotorsion
pair in C (R).

P. It suffices to prove that ⊥(EA⊥) ⊆ EA. If F ∈⊥ (EA⊥), then Ext1(F,C) = 0
for all C ∈ EA⊥. For each n ∈ Z and each G ∈ B =A⊥ let

0 −→G
α
−−→ X

β
−−→ Fn −→ 0
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be an extension in R-Mod. We consider the following commutative diagram

�� �� ��
0

��

// Fn−3

δn−3

��

id // Fn−3

δn−3

��

// 0

0

��

// Fn−2

σθ

��

θ

$$IIIIIIIII
id // Fn−2

δn−2

��

θ

$$

// 0

Zn−1(F)
σ

zzuuu
uu

uu
uu

u
Zn−1(F)

λzzuuuuuuuuu

0 // G // Q

µ

��

ν // Fn−1

δn−1

��

// 0

0 // G

��

α // X

δnβ

��

β // Fn

δn

��

// 0

0

��

// Fn+1

δn+1

��

id // Fn+1

δn+1

��

// 0

0

��

// Fn+2

��

id // Fn+2

��

// 0

where λ : Zn−1(F)→ Fn−1 is the natural inclusion and Q is the pullback of β and δn−1.
We get a complex

W = · · · −→ Fn−2 −→ Q −→ X −→ Fn+1 −→ · · ·

and an exact sequence

0 −→G[−n] −→W −→ F −→ 0 (2.1)

in C (R).
Since G is inA⊥ we have that G[−n] is in EA⊥ by Lemma 2.2. By the hypothesis

Ext1(F,G[−n]) = 0. So the sequence (2.1) splits and the sequence

0 −→G
α
−−→ X

β
−−→ Fn −→ 0

in R-Mod splits. Thus Fn is inA for all n ∈ Z.

https://doi.org/10.1017/S1446788711001352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001352


[9] Covers and envelopes 393

Next we prove that F is exact. Let f n : Fn/Bn(F)→ I be an injection with I
injective. Then f n induces a map f : F→ I[−n] as follows

F = · · · // Fn−1 dn−1
//

��

Fn

f nη

��

dn
// Fn+1 //

��

· · ·

I[−n] = · · · // 0 // I // 0 //// · · ·

where η : Fn→ Fn/Bn(F) is the natural surjection. By Lemma 2.3, f is homotopic to
zero. Let {S n} be the homotopy. Then S n+1dn = f nη and so Zn(F) ⊆ Bn(F). Thus F is
in EA. Therefore, we may deduce that (EA, EA⊥) is a cotorsion pair and our result
is established. �

R 2.5. Proposition 2.1 and Theorem 2.4 are similar to [16, Proposition 3.3] by
Gillespie, but our proofs are more direct.

L 2.6. Suppose that S , T and M are modules such that S ⊆ T ⊆ M. If S is pure
in M and T/S is pure in M/S , then T is pure in M.

We define the cardinality of a complex C to be |
∐

n∈Z Cn|.

L 2.7 [1, Proposition 4.1]. Let |R| ≤ ℵ where ℵ is some infinite cardinal. Then
for each C ∈ C (R) and each element x ∈C (that is, x ∈Cn for some n) there exists an
exact subcomplex L ≤ X such that x ∈ Lk, |L| ≤ ℵ and L j ≤C j is a pure submodule for
all j ∈ Z.

T 2.8. Let (A, B) be a cotorsion pair in R-Mod. If A is closed under taking
pure submodules and cokernels of pure monomorphisms, then the cotorsion pair
(EA, EA⊥) is complete.

P. Suppose that G is in EA and |R| ≤ ℵ for some infinite cardinal ℵ. We will show
that G is equal to the union of a continuous chain (Pα)α<λ of exact subcomplexes of G
where |P0| ≤ ℵ, |Pα+1/Pα| ≤ ℵ and Pi

α is pure Gi for all α and all i ∈ Z.
Set T =

∐
n∈Z Gn. We may well-order the set T so that for some ordinal λ

T = {x0, x1, x2, . . . , xα, . . . }α<λ.

For x0 we use Lemma 2.7 to find an exact subcomplex P1 ⊆G containing x0 such that
|P1| ≤ ℵ and Pi

1 is pure in Gi for all i ∈ Z. Then G/P1 is in EA.
Now x1 ∈G/P1. Therefore we can find an exact subcomplex P2/P1 ⊆G/P1

containing x1 such that |P2/P1| ≤ ℵ and (P2/P1)i is pure in (G/P1)i for all i ∈ Z. Then
(G/P1)/(P2/P1) �G/P2 is in EA, P2 is exact and Pi

2 is pure in Gi by Lemma 2.6.
Note that P1 ⊆ P2 and x0, x1 ∈ P2.

In general, given an ordinal α and having constructed exact subcomplexes P1 ⊆

P2 ⊆ · · · ⊆ Pα where xγ ∈ Pα for all γ < α, we find an exact subcomplex Pα+1 ⊆G
as follows. We have xα ∈G/Pα and so by Lemma 2.7 we can find an exact
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subcomplex Pα+1/Pα ⊆G/Pα containing xα such that |Pα+1/Pα| ≤ ℵ and (Pα+1/Pα)i

is pure in (G/Pα)i for all i ∈ Z. Thus (G/Pα)/(Pα+1/Pα) �G/Pα+1 is in EA, whence
Pα+1 is exact and Pi

α+1 is pure in Gi.
We now have

P1 ⊆ P2 ⊆ · · · ⊆ Pα ⊆ Pα+1

and
x0, x1, . . . , xα ∈ Pα+1.

In the case where α is a limit ordinal we just define Pα =
⋃
γ<α Pγ. Then, as we noted

above, Pα is exact, xγ ∈ Pα and Pi
α is pure in Gi for all i ∈ Z and all γ < α. This

construction gives us the directed continuous chain (Pα)α<λ.
If C is a complex such that Ext1(P0,C) = 0 and Ext1(Pα+1/Pα,C) = 0 whenever

α + 1 < λ, then Ext1(G,C) = 0 by [14, Lemma 4.5]. Let X be a set of representatives
of all complexes G ∈ EA with |G| ≤ ℵ. Then EA⊥ = X⊥. That is, (EA, EA⊥) is
cogenerated by X. Thus (EA, EA⊥) is a complete cotorsion pair. �

R 2.9. In [16] it was shown that (EA, EA⊥) is a complete cotorsion pair
whenever A is a Kaplansky class that is closed under direct limits. In Theorem 2.8
we assume that A is closed under pure submodules and cokernels of pure
monomorphisms. Such a class is automatically a Kaplansky class, but need not be
closed under direct limits.

C 2.10. Let (A, B) be a cotorsion pair in R-Mod. If A is closed under pure
submodules, cokernels of pure monomorphisms and direct limits, then the cotorsion
pair (EA, EA⊥) is perfect.

According to [10] a module M is called Gorenstein flat if there exists an exact
sequence

· · · −→ F−1 −→ F0 −→ F1 −→ · · ·

in R-Mod of flat R-modules such that M = Ker(F0→ F1) and the sequence remains
exact whenever E ⊗ − is applied, where E is an injective right R-module.

Let GF denote the class of all Gorenstein flat left R-modules. In [12,
Theorem 3.1.9] (see also [9]) it was proved that over a right coherent ring, (GF , GF ⊥)
is a perfect and hereditary cotorsion pair.

C 2.11. Every complex over a right coherent ring has an EGF -cover.

P. By [12, Corollary 2.1.9] the class GF is closed under direct limits. Thus it
is enough to prove that GF is closed under pure submodules and cokernels of pure
monomorphisms.

Suppose that
0→ P→ M→ M/P→ 0

is pure exact in R-Mod, where M ∈ GF . Then

0→ (M/P)+→ M+→ P+→ 0

https://doi.org/10.1017/S1446788711001352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001352


[11] Covers and envelopes 395

is split and M+ ∈ GI by [18, Theorem 3.6]. Here GI denotes the class of Gorenstein
injective modules. Thus (M/P)+ and P+ are inGI by [18, Theorem 2.6], which implies
that M/P and P are in GF . �

We use the symbol Fn to denote the class of all left R-modules with flat dimension
less than or equal to a fixed nonnegative integer n. In [21, Theorem 3.4] it was proved
that (Fn, F

⊥
n ) is a perfect and hereditary cotorsion pair. Note that Fn is closed under

pure submodules, cokernels of pure monomorphisms and direct limits. Thus we have
the following result.

C 2.12. Every complex has an EF n-cover.

A left R-module M is called min-flat (see [20]) if Tor1(R/I, M) = 0 for each simple
right ideal I. Let MF denote the class of all min-flat left R-modules. In [20,
Theorem 3.4] it was proved that (MF ,MF ⊥) is a perfect cotorsion pair. Note that
MF is closed under pure submodules, cokernels of pure monomorphisms and direct
limits.

C 2.13. Every complex has an EMF -cover.

3. Covers and envelopes of special complexes

Let A and B be classes of R-modules. In this section we consider the existence of
a A-cover of a complex that is bounded above and a B-envelope of a complex that is
bounded below. Here A and B stand for the classes of all complexes with each term
inA and B, respectively.

L 3.1. Let C be a complex.

(1) If ϕ : G→C is an A-precover in C (R), then ϕn : Gn→Cn is an A-precover in
R-Mod for all n ∈ Z.

(2) If ϕ : C→G is a B-preenvelope in C (R), then ϕn : Cn→Gn is a
B-preenvelope in R-Mod for all n ∈ Z.

P. (1) Let D be in A and let f : D→Cn be an R-homomorphism. We define a
map of complexes f : D[−n − 1]→C as follows:

· · · // 0 //

��

D
id //

f

��

D //

δn f
��

0 //

��

· · ·

· · · // Cn−1 // Cn // Cn+1 // Cn+2 // · · ·

Since D[−n − 1] is in A there is a map h : D[−n − 1]→G such that ϕh = f . So we
have a commutative diagram

D

f
��

hn

}}||
||

||
||

Gn
ϕn

// Cn

This means that ϕn : Gn→Cn is anA-precover of Cn.
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(2) Let F be in B and let f : Cn→ F be an R-homomorphism. We define a map of
complexes α : C→ F[−n] as follows:

· · · // Cn−2 //

��

Cn−1 //

f δn−1

��

Cn //

f

��

Cn+1 //

��

· · ·

· · · // 0 // F
id // F // 0 // · · ·

Since F[−n] is in B there is a map β : G→ F[−n] such that ϕβ = α. So we have a
commutative diagram

Cn
ϕn

//

f

��

Gn

βn
}}||

||
||

||

F

That is, ϕn : Cn→Gn is a B-preenvelope of Cn. �

T 3.2. LetA be a covering class in R-Mod and let the complex

C = · · · →C−2→C−1→C0→ 0 · · ·

be bounded above. Then:

(1) C has anA-cover;
(2) if ϕ : G→C is anA-cover in C (R), then ϕ0 : G0→C0 is anA-cover.

P. Part (1) follows from some ideas in the proof of [13, Theorem 3.3.10].
(2) We begin by proving that the complex G is bounded. The complex

G∗ = · · · → 0→G0→G1→ · · ·

is in A and the obvious induced map G∗→C is an A-precover. So G is a direct
summand of G∗ and hence G is bounded above.

Next we prove that ϕ0 : G0→C0 is an A-cover of C0. By Lemma 3.1 we know
that ϕ0 : G0→C0 is an A-precover of C0. Let ϕ0 : G(C0)→C0 be the A-cover of C0

in R-Mod. We consider the splitting epimorphism β : G(C0)→C0 such that α0β = ϕ0.
We take the complex

G∗ = · · · −→G−2
δ−2

G
−−−→G−1

βδ−1
G

−−−−→G(C0) −→ 0 −→ · · · .

We also consider the map of complexes given by

G∗ = · · · // G−2 //

ϕ−2

��

G−1 //

ϕ−1

��

G(C0) //

α0

��

0 // · · ·

C = · · · // C−2 // C−1 // C0 // 0 // · · ·
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It is easy to check that the above map, which we call α : G∗→C, is an A-precover.
Thus there exists a splitting epimorphism g : G∗→G such that ϕg = α. That is, the
diagram

G
ϕ

  AA
AA

AA
AA

f
��

G∗

g

��

α // C

G

ϕ
>>}}}}}}}}

commutes and g f is an automorphism. Hence α0βg0 = ϕ0g0 = α0 and so βg0 is an
automorphism, which means that ϕ0 : G0→C0 is anA-cover of C0. �

T 3.3. Let B be an enveloping class in R-Mod and let the complex

(C, δ) = · · · → 0→C0→C1→C2→ · · ·

be bounded below. Then:

(1) C has a B-envelope;
(2) if ϕ : C→G is a B-envelope, then ϕ0 : C0→G0 is a B-envelope.

P. (1) By the hypothesis we may choose a B-envelope ϕ0 : C0→G0. By analogy
with the proof of [13, Theorem 3.3.10] we are going to construct a complex

G = · · · −→ 0 −→G0 −→G1 −→ · · ·

with each term in B and a map of complexes ϕ : C→G in the following way. For i < 0
we take Gi = 0 and ϕi = 0. For i = 0 we take the above envelope. Now for i > 0 we
proceed inductively. Suppose that we have constructed

Ci−1 δi−1
//

ϕi−1

��

Ci

ϕi

��

δi
// Ci+1

Gi−1 αi−1
// Gi

We consider the pushout diagram

Ci

ϕi

��

δi
// Ci+1

νi+1

��

Gi

ηi

��
Coker(αi−1)

µi+1
// Pi+1
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where ηi : Gi→ Coker(αi−1) is the natural epimorphism. Then we take aB-envelope of
Pi+1, βi+1 : Pi+1→Gi+1. We define αi : Gi→Gi+1 to be the composition αi = βi+1µi+1ηi

and define ϕi+1 : Ci+1→Gi+1 by ϕi+1 = βi+1νi+1. It is not hard to check that this
construction gives a complex G with terms in B and a map of complexes ϕ : C→G.

Let

F = · · · −→ F i γi

−−→ F i+1 γi+1

−−−−→ F i+2 −→ · · ·

be in B and let ψ : C→ F be a map of complexes. We are going to construct
a morphism of complexes h : G→ F such that hϕ = ψ. For i < 0 we take hi = 0.
For i = 0, since ϕ0 : C0→G0 is a B-envelope, there exists h0 : G0→ F0 such that
h0ϕ0 = ψ0. We proceed by induction. Suppose that hi : Gi→ F i is defined such that
hiϕi = ψi and hiαi−1 = γi−1hi−1. By the factor theorem (see [2, Theorem 3.6]) we have
the commutative diagram

Gi

γihi

��

ηi
// Coker(αi−1) //

θi

vv

0

F i+1

We consider the commutative diagram induced by the pushout

Ci

ηiϕi

��

δi
// Ci+1

νi+1

��
ψi+1

��

Coker(αi−1)
µi+1

//

θi --

Pi+1

ωi+1

""
F i+1

Since Gi+1 is a B-envelope of Pi+1 there exists hi+1 : Gi+1→ F i+1 such that the diagram

Pi+1

ωi+1

��

βi+1
// Gi+1

hi+1
||

F i+1

can be completed commutatively. It is easy to see that in this way we obtain a map of
complexes h : G→ F such that hϕ = ψ.

Now let f : G→G be a map of complexes such that fϕ = ϕ. For i < 0 we have
f i = 0. For i = 0 we know that f 0 is an automorphism because ϕ0 : C0→G0 is a
B-envelope. For i > 0 we proceed inductively. Suppose that f i−1 and f i are automor-
phisms.
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We show that f i+1 : Gi+1→Gi+1 is also an automorphism. We consider the commuta-
tive diagram

Gi−1

f i−1

��

// Gi

f i

��

// Coker(αi−1) //

gi

��

0

Gi−1 // Gi // Coker(αi−1) // 0

and get that gi is an automorphism. By the properties of a pushout diagram, we get
that the diagram

Ci

ηiϕi

��

δi
// Ci+1

νi+1

��
νi+1

��

Coker(αi−1)
µi+1

//

µi+1gi --

Pi+1

qi+1

""
Pi+1

commutes and qi+1 : Pi+1→ Pi+1 is an automorphism. Since f i+1αi = αi f i, we get
f i+1βi+1µi+1 = βi+1qi+1µi+1 and so we obtain the commutative diagrams

Ci

ηiϕi

��

δi
// Ci+1

νi+1

�� ϕi+1

��

Coker(αi−1)
µi+1

//

f i+1βi+1µi+1
--

Pi+1

f i+1βi+1
EE

E

""EE
E

Gi+1

and

Ci

ηiϕi

��

δi
// Ci+1

νi+1

�� ϕi+1

��

Coker(αi−1)
µi+1

//

f i+1βi+1µi+1
--

Pi+1

βi+1qi+1
EE

E

""EE
E

Gi+1

By the properties of pushout diagrams, f i+1βi+1 = βi+1qi+1. That is, the diagram

Pi+1

qi+1

��

βi+1
// Gi+1

f i+1

��
Pi+1

βi+1
// Gi+1
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is commutative. Since βi+1 : Pi+1→Gi+1 is a B-envelope and qi+1 is an automorphism,
it follows that f i+1 is an automorphism.

Part (2) follows by an argument like that to prove [13, Proposition 3.2.14]. �
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