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On pointwise a.e. convergence
of multilinear operators
Loukas Grafakos, Danqing He, Petr Honzík , and Bae Jun Park
Abstract. In this work, we obtain the pointwise almost everywhere convergence for two families of
multilinear operators: (a) the doubly truncated homogeneous singular integral operators associated
with Lq functions on the sphere and (b) lacunary multiplier operators of limited smoothness. The
a.e. convergence is deduced from the L2

× ⋅ ⋅ ⋅ × L2
→ L2/m boundedness of the associated maximal

multilinear operators.

1 Introduction and preliminaries

The pointwise a.e. convergence of sequences of operators is of paramount importance
and has been widely studied in several areas of analysis, such as harmonic analysis,
PDE, and ergodic theory. This area boasts challenging problems (indicatively see [5, 6,
12, 24]), and is intimately connected with the boundedness of the associated maximal
operators; on this, see [27]. Moreover, techniques and tools employed to study a.e.
convergence have led to important developments in harmonic analysis.

Multilinear harmonic analysis has made significant advances in recent years. The
founders of this area are Coifman and Meyer [8], who realized the applicability of
multilinear operators and introduced their study in analysis in the mid-1970s. Focus-
ing on operators that commute with translations, a fundamental difference between
the multilinear theory and the linear theory is the existence of a straightforward
characterization of boundedness at an initial point, usually L2 → L2. The lack of an
easy characterization of boundedness at an initial point in the multilinear theory
creates difficulties in their study. Criteria that get very close to characterization of
boundedness have recently been obtained by the first two authors and Slavíková
[19] and by Kato, Miyachi, and Tomita [25] in the bilinear case. These criteria
were extended to the general m-linear case for m ≥ 2 by the authors of this article
in [18]. This reference also contains initial L2 × ⋅ ⋅ ⋅ × L2 → L2/m estimates for rough
homogeneous multilinear singular integrals associated with Lq functions on the
sphere and multilinear multipliers of Hörmander type.
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The purpose of this work is to obtain the pointwise a.e. convergence of doubly
truncated multilinear homogeneous singular integrals and lacunary multilinear mul-
tipliers by establishing boundedness for their associated maximal operators.

We first introduce multilinear (singly) truncated singular integral operators. Let Ω
be an integrable function, defined on the sphere Smn−1, satisfying the mean value zero
property

∫
Smn−1

Ω dσmn−1 = 0.(1.1)

Then we define

K( y⃗ ) ∶= Ω( y⃗ ′)
∣ y⃗ ∣mn , y⃗ ≠ 0,

where y⃗ ′ ∶= y⃗ /∣ y⃗ ∣ ∈ Smn−1, and the corresponding truncated multilinear operator
L(ε)Ω by

L(ε)Ω ( f1 , . . . , fm)(x) ∶= ∫(Rn)m/B(0,ε)
K( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗

acting on Schwartz functions f1 , . . . , fm on R
n , where x ∈ Rn , y⃗ ∶= (y1 , . . . , ym) ∈

(Rn)m , and B(0, ε), is the ball centered at zero with radius ε > 0 in (Rn)m . More-
over, by taking ε ↘ 0, we obtain the multilinear homogeneous Calderón–Zygmund
singular integral operator

LΩ( f1 , . . . , fm)(x) ∶= lim
ε↘0

L(ε)Ω ( f1 , . . . , fm)(x)(1.2)

= p.v . ∫(Rn)m
K( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗ .

This is still well defined for any Schwartz functions f1 , . . . , fm on R
n . In [18], we

showed that if Ω lies in Lq(Smn−1) with q > 2m
m+1 , then the multilinear singular integral

operator LΩ admits a bounded extension from L2(Rn) × ⋅ ⋅ ⋅ × L2(Rn) to L2/m(Rn).
In order words, given f j ∈ L2(Rn), LΩ( f1 , . . . , fm) is well defined and is in L2/m(Rn).

We now define the doubly truncated multilinear operator L(ε ,ε−1)
Ω by

L(ε ,ε−1)
Ω ( f1 , . . . , fm) ∶= L(ε)Ω ( f1 , . . . , fm) −L(ε

−1)
Ω ( f1 , . . . , fm)

for Schwartz functions f j , j = 1, . . . , m. We observe that if Ω ∈ Lq(Smn−1) for 2m
m+1 <

q ≤ ∞, then

lim
ε→0

L(ε ,ε−1)
Ω ( f1 , . . . , fm) = lim

ε→0
L(ε)Ω ( f1 , . . . , fm)

for f j in the Schwartz class.
We define, for fixed 0 < ε0 < 1,

L∗,ε0
Ω (φ1 , . . . , φm) ∶= sup

ε≥ε0

∣L(ε ,ε−1)
Ω (φ1 , . . . , φm)∣
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and

L∗∗Ω (φ1 , . . . , φm) ∶= sup
ε>0

∣L(ε ,ε−1)
Ω (φ1 , . . . , φm)∣ = lim

ε0→0
L∗,ε0

Ω (φ1 , . . . , φm)(1.3)

for φ j in the Schwartz class. One main difficulty to study the boundedness of L∗∗Ω is to
show that the doubly truncated operator is well defined pointwise a.e. for f j ∈ L2(Rn).
To overcome this difficulty, we need to utilize the boundedness of MΩ introduced in
Section 3 (see Section 5 for the detailed proof).

Our first main result is as follows.

Theorem 1.1 Let m ≥ 2, 2m
m+1 < q ≤ ∞, and Ω ∈ Lq(Smn−1) satisfy (1.1). Then

∥L∗∗Ω ( f1 , . . . , fm)∥L2/m(Rn) ≤ C∥Ω∥Lq(Smn−1)
∞
∏
j=1

∥ f j∥L2(Rn)(1.4)

for f j ∈ L2(Rn). Moreover, the doubly truncated singular integral L(ε ,ε−1)
Ω ( f1 , . . . , fm)

converges to LΩ( f1 , . . . , fm) pointwise a.e. as ε → 0 when f j ∈ L2(Rn), j = 1, . . . , m.
That is, the multilinear singular integral LΩ( f1 , . . . , fm) is well defined a.e. when f j ∈
L2(Rn), j = 1, . . . , m.

In order to achieve this goal, we initially prove the following result, which provides
the boundedness of the associated maximal singular integral operator:

L∗Ω( f1 , . . . , fm)(x) ∶= sup
ε>0

∣L(ε)Ω ( f1 , . . . , fm)(x)∣

for Schwartz functions f j , j = 1, . . . , m.

Theorem 1.2 Let m ≥ 2, 2m
m+1 < q ≤ ∞, and Ω ∈ Lq(Smn−1) satisfy (1.1). Then there

exists a constant C > 0 such that

∥L∗Ω( f1 , . . . , fm)∥L2/m(Rn) ≤ C∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2(Rn)(1.5)

for Schwartz functions f1 , . . . , fm on R
n .

This extends and improves a result obtained in [3] which treated the case m = 2
and q = ∞. Theorem 1.2 follows from Propositions 4.1 and 4.2, which are counterparts
of Propositions 5 and 4 in [3], respectively. We improve the two propositions in the
m-linear settings. Remark that the assumption Ω ∈ L2(S2n−1) in Proposition 5 and
Theorem 2 in [3] should be Ω ∈ L∞(S2n−1). One of the main improvements is the
Lp1 × ⋅ ⋅ ⋅ × Lpm → Lp estimate for T∗∗K in (4.10) with a bound ∥Ω∥L1(Smn−1), while a
simple m-linear extension of the arguments in [3] requires the bound ∥Ω∥L∞(Smn−1)
for the estimate, which originated simply from the kernel estimate

∣K∗∗τ ( y⃗ )∣ ≲N ∥Ω∥L∞(Smn−1)2mnτ(1 + 2−τ ∣ y⃗ ∣)−N ,(1.6)

where T∗∗K is defined in (4.6) and its kernel K∗∗τ is in (4.7). For the improvement, we
incorporate a delicate decomposition, as we are unable to use the kernel estimate (1.6)
(see (4.8)). To obtain the results in Proposition 4.2, we suitably combine Littlewood–
Paley techniques and wavelet decompositions to reduce the boundedness of L♯Ω,μ to
estimates for norms of maximal operators associated with lattice bumps with suitable
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decay. This is the essential contribution of this article in view of the fact that the bilinear
argument in [3, Proposition 4] does not apply due to the complicated structure of
general m-linear operators for m ≥ 3 (see (4.14) for the exact formulation). This result
is actually proved in terms of Plancherel-type inequalities, recently developed in [18]
and stated in Proposition 2.1.

The tools used to establish Theorem 1.1 turn out to be useful in the study of
pointwise convergence problems of several related operators. As an example, let us
take multilinear multipliers with limited decay to demonstrate our idea.

For a smooth function σ ∈ C∞((Rn)m) and ν ∈ Z, let

Sν
σ( f1 , . . . , fm)(x) ∶= ∫(Rn)m

σ(2ν ξ⃗ )(
m
∏
j=1

f̂ j(ξ j))e2πi⟨x ,∑m
j=1 ξ j⟩ d ξ⃗(1.7)

for Schwartz functions f1 , . . . , fm on R
n , where ξ⃗ ∶= (ξ1 , . . . , ξm) ∈ (Rn)m .

We are interested in the pointwise convergence of Sν
σ when ν → −∞. We pay

particular attention to σ satisfying the limited decay property (for some fixed a)

∣∂β σ(ξ⃗ )∣ ≲β ∣ξ⃗ ∣−a

for sufficiently many β. Examples of multipliers of this type include μ̂, the Fourier
transform of the spherical measure μ (see [4, 7, 26] for the corresponding linear
results).

The second contribution of this work is the following result.

Theorem 1.3 Let m ≥ 2 and a > (m−1)n
2 . Let σ ∈ C∞((Rn)m) satisfy

∣∂β σ(ξ⃗ )∣ ≲β ∣ξ⃗ ∣−a(1.8)

for all ∣β∣ ≤ [ (m−1)n
2 ] + 1, where [r] denotes the integer part of r. Then, for f j in L2(Rn),

j = 1, . . . , m, the functions Sν
σ( f1 , . . . , fm) converge to σ(0) f1 ⋅ ⋅ ⋅ fm pointwise a.e. as

ν → −∞ and to zero pointwise a.e. as ν → ∞.

The precise definition of the action of the multilinear operator Sν
σ on L2 functions

will be discussed after Theorem 1.4.
The a.e. convergence claimed in Theorem 1.3 is related to the boundedness of the

associated m-(sub)linear lacunary maximal multiplier operator defined by

Mσ( f1 , . . . , fm) ∶= sup
ν∈Z

∣Sν
σ( f1 , . . . , fm)∣.

Mσ is the so-called multilinear spherical maximal function when σ = μ̂, which was
studied extensively recently by [1, 2, 10, 22, 23]. In particular, a bilinear version of the
following theorem was previously obtained in [17].

Theorem 1.4 Let m ≥ 2 and a > (m−1)n
2 . Let σ ∈ C∞((Rn)m) be as in Theorem 1.3.

Then there exists a constant C > 0 such that

∥Mσ( f1 , . . . , fm)∥L2/m(Rn) ≤ C
m
∏
j=1

∥ f j∥L2(Rn)

for Schwartz functions f1 , . . . , fm on R
n .
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One of the main difficulties in dealing with general m-linear cases for m ≥ 3 is
that the target space L2/m is not a Banach space if 2/m < 1. As a result, the condition
a > (m−1)n

2 cannot be exploited by a simple adaptation of the bilinear argument in
[17]. Additional combinatorial complexity arises from the multilinear extension, and
in order to address these issues, we apply a more refined decomposition, recently intro-
duced in [18], so that l-linear Plancherel-type estimates (1 ≤ l ≤ m) can be applied.
These key estimates are stated in Proposition 2.1.

With the help of Theorem 1.4, we notice that the multilinear operator Sν
σ is also well

defined for f j ∈ L2(Rn). Indeed, given f j in L2(Rn), we find a sequence of Schwartz
functions f k

j that converge to f j in L2(Rn) as k → ∞. Then Theorem 1.4 implies that
the sequence

{Sν
σ( f k

1 , . . . , f k
m)}k

is a Cauchy sequence in L2/m and, thus, it has a unique limit in L2/m which we
call Sν

σ( f1 , . . . , fm). It is easy to verify that this limit does not depend on the
choice of f k

j .
The paper is organized as follows. Section 2 is dedicated to preliminaries, intro-

ducing a wavelet decomposition that is one of the main ingredients to establish
maximal inequalities in Theorems 1.2 and 1.4, and studying general properties of the
decomposition. Another maximal inequality for rough singular integrals will be given
in Section 3. We prove first Theorem 1.2 in Section 4 as it is necessary for the proof of
Theorem 1.1 in Section 5. The proof of Theorems 1.4 and 1.3 will be given in turn in the
last two sections.

2 Preliminary material

We adapt some notations and key estimates from [18]. For the sake of independent
reading, we review the main tools and notation. We begin with certain orthonormal
bases of L2 due to Triebel [30], that will be of great use in our work. The idea is as
follows. For any fixed L ∈ N, one can construct real-valued compactly supported func-
tions ψF , ψM inCL(R) satisfying the following properties: ∥ψF∥L2(R) = ∥ψM∥L2(R) = 1,
∫R xαψM(x)dx = 0 for all 0 ≤ α ≤ L, and moreover, if ΨG⃗ is a function onR

mn , defined
by

ΨG⃗(x⃗ ) ∶= ψg1(x1) ⋅ ⋅ ⋅ψgmn(xmn)

for x⃗ ∶= (x1 , . . . , xmn) ∈ Rmn and G⃗ ∶= (g1 , . . . , gmn) in the set

I ∶= {G⃗ ∶= (g1 , . . . , gmn) ∶ g i ∈ {F , M}},

then the family of functions

⋃
λ∈N0

⋃
k⃗ ∈Zmn

{2λmn/2ΨG⃗(2λ x⃗ − k⃗ ) ∶ G⃗ ∈ I λ}

forms an orthonormal basis of L2(Rmn), where I0 ∶= I and for λ ≥ 1, we set
I λ ∶= I/{(F , . . . , F)}.
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We consistently use the notation ξ⃗ ∶= (ξ1 , . . . , ξm) for elements of (Rn)m ,
G⃗ ∶= (G1 , . . . , Gm) ∈ ({F , M}n)m , and ΨG⃗(ξ⃗ ) = ΨG1(ξ1) ⋅ ⋅ ⋅ ΨGm(ξm). For each
k⃗ ∶= (k1 , . . . , km) ∈ (Zn)m and λ ∈ N0, let

Ψλ
G i ,k i

(ξ i) ∶= 2λn/2ΨG i (2λ ξ i − k i), 1 ≤ i ≤ m,

and

Ψλ
G⃗ , k⃗ (ξ⃗ ) ∶= Ψλ

G1 ,k1
(ξ1) ⋅ ⋅ ⋅ Ψλ

Gm ,km
(ξm).

We also assume that the support of ψg i is contained in {ξ ∈ R ∶ ∣ξ∣ ≤ C0} for some
C0 > 1, which implies that

Supp(Ψλ
G i ,k i

) ⊂ {ξ i ∈ Rn ∶ ∣2λ ξ i − k i ∣ ≤ C0
√

n}.

In other words, the support of Ψλ
G i ,k i

is contained in the ball centered at 2−λ k i and
radius C0

√
n2−λ . Then we note that for a fixed λ ∈ N0, elements of {Ψλ

G⃗ , k⃗
}k⃗ have

(almost) disjoint compact supports.
It is also known in [29] that if L is sufficiently large, then every tempered distribu-

tion H on R
mn can be represented as

H(x⃗ ) = ∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗ ∈Zmn

bλ
G⃗ , k⃗ 2λmn/2ΨG⃗(2λ x⃗ − k⃗ ),(2.1)

and for 1 < q < ∞ and s ≥ 0,

∥( ∑
G⃗ , k⃗

∣bλ
G⃗ , k⃗ Ψλ

G⃗ , k⃗ ∣
2)

1/2
∥

Lq(Rmn)
≤ C2−sλ∥H∥Lq

s (Rmn),

where

bλ
G⃗ , k⃗ ∶= ∫

Rmn
H(x⃗ )Ψλ

G⃗ , k⃗(x⃗ ) dx⃗

and Lq
s is the Sobolev space of functions H such that (I − Δ)s/2H ∈ Lq(Rmn). More-

over, it follows from the last estimate and from the (almost) disjoint support property
of the Ψλ

G⃗ , k⃗
’s that

∥{bλ
G⃗ , k⃗ }k⃗ ∈Zmn∥�q ≈(2λmn(1−q/2) ∫

Rmn
(∑

k⃗
∣bλ

G⃗ , k⃗ Ψλ
G⃗ , k⃗(x⃗)∣2)

q/2
dx⃗ )

1/q

≲ 2−λ(s−mn/q+mn/2)∥H∥Lq
s (Rmn) .(2.2)

Now we study an essential estimate in [18] which will play a significant role in the
proof of both Theorems 1.2 and 1.4. We define the operator Lλ ,γ

G i ,k i
by

Lλ ,γ
G i ,k i

f ∶= (Ψλ
G i ,k i

(⋅/2γ) f̂ )∨, γ ∈ Z.(2.3)

For μ ∈ Z, let

U μ ∶= {k⃗ ∈ (Zn)m ∶ 2μ−2 ≤ ∣k⃗ ∣ ≤ 2μ+2 , ∣k1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣}(2.4)
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and split the set into m disjoint subsets U μ
l as below:

U μ
1 ∶= {k⃗ ∈ U μ ∶ ∣k1∣ ≥ 2C0

√
n > ∣k2∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣}

U μ
2 ∶= {k⃗ ∈ U μ ∶ ∣k1∣ ≥ ∣k2∣ ≥ 2C0

√
n > ∣k3∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣}

⋮
U μ

m ∶= {k⃗ ∈ U μ ∶ ∣k1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣ ≥ 2C0
√

n}.

Then we have the following two observations that appear in [18].
• For k⃗ ∈ U λ+μ

l ,

Lλ ,γ
G j ,k j

f = Lλ ,γ
G j ,k j

f λ ,γ ,μ for 1 ≤ j ≤ l(2.5)

due to the support of Ψλ
G j ,k j

, where f̂ λ ,γ ,μ(ξ) ∶= f̂ (ξ)χC0
√

n2γ−λ≤∣ξ∣≤2γ+μ+3 .
• For μ ≥ 1 and λ ∈ N0,

( ∑
γ∈Z

∥ f λ ,γ ,μ∥2
L2)

1/2
≲ (μ + λ)1/2∥ f ∥L2 ≲ μ1/2(λ + 1)1/2∥ f ∥L2(2.6)

where Plancherel’s identity is applied in the first inequality.
Proposition 2.1 [18, Proposition 2.4] Let m be a positive integer with m ≥ 2 and 0 <
q < 2m

m−1 . Fix λ ∈ N0 and G⃗ ∈ I λ . Suppose that {bλ ,γ ,μ
G⃗ , k⃗

}G⃗∈I λ ,γ ,μ∈Z, k⃗ ∈(Zn)m is a sequence
of complex numbers satisfying

sup
γ∈Z

∥{bλ ,γ ,μ
G⃗ , k⃗

}k⃗ ∈(Zn)m∥�∞ ≤ AG⃗ ,λ ,μ

and
sup
γ∈Z

∥{bλ ,γ ,μ
G⃗ , k⃗

}k⃗ ∈(Zn)m∥�q ≤ BG⃗ ,λ ,μ ,q .

Then the following statements hold:
(1) For 1 ≤ r ≤ 2, there exists a constant C > 0, independent of , G⃗ , λ, μ, such that

∥( ∑
γ∈Z

∣ ∑
k⃗ ∈U λ+μ

1

bλ ,γ ,μ
G⃗ , k⃗

Lλ ,γ
G1 ,k1

f λ ,γ ,μ
1

m
∏
j=2

Lλ ,γ
G j ,k j

f j∣
r
)

1/r

∥
L2/m

≤ CAG⃗ ,λ ,μ2λmn/2( ∑
γ∈Z

∥ f λ ,γ ,μ
1 ∥r

L2)
1/r m

∏
j=2

∥ f j∥L2

for Schwartz functions f1 , . . . , fm on R
n .

(2) For 2 ≤ l ≤ m, there exists a constant C > 0, independent of G⃗ , λ, μ, such that

∥ ∑
γ∈Z

∣ ∑
k⃗ ∈U λ+μ

l

bλ ,γ ,μ
G⃗ , k⃗

(
l

∏
j=1

Lλ ,γ
G j ,k j

f λ ,γ ,μ
j )(

m
∏

j=l+1
Lλ ,γ

G j ,k j
f j)∣∥

L2/m

≤ CA1− (l−1)q
2l

G⃗ ,λ ,μ
B
(l−1)q

2l

G⃗ ,λ ,μ ,q
2λmn/2[

l
∏
j=1

( ∑
γ∈Z

∥ f λ ,γ ,μ
j ∥2

L2)
1/2

][
m
∏

j=l+1
∥ f j∥L2]

for Schwartz functions f1 , . . . , fm on R
n , where ∏m

m+1 is understood as the
function 1.
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In view of (2.5), (2.6), and Proposition 2.1, we actually obtain

∥( ∑
γ∈Z

∣ ∑
k⃗ ∈U λ+μ

1

bλ ,γ ,μ
G⃗ , k⃗

m
∏
j=1

Lλ ,γ
G j ,k j

f j∣
2
)

1/2

∥
L2/m

≲ AG⃗ ,λ ,μ μ1/22λmn/2(λ + 1)1/2
m
∏
j=1

∥ f j∥L2 ,(2.7)

and for 2 ≤ l ≤ m,

∥ ∑
γ∈Z

∣ ∑
k⃗ ∈U λ+μ

l

bλ ,γ ,μ
G⃗ , k⃗

m
∏
j=1

Lλ ,γ
G j ,k j

f j∣∥
L2/m

≲ A1− (l−1)q
2l

G⃗ ,λ ,μ
B
(l−1)q

2l

G⃗ ,λ ,μ ,q
μ l/22λmn/2(λ + 1)l/2

m
∏
j=1

∥ f j∥L2 .(2.8)

3 An auxiliary lemma

We have the following extension of Lemma 5 in [3].

Lemma 3.1 Let 1 < q ≤ ∞ and Ω ∈ Lq(Smn−1). Suppose 1 < p1 , . . . , pm < ∞ and
1/m < p < ∞ satisfies 1/p = 1/p1 + ⋅ ⋅ ⋅ + 1/pm and

1
p

< 1
q
+ m

q′
.(3.1)

Given f j ∈ Lp j(Rn), there is a set of measure zero E such that for x ∈ Rn/E,

∫…∫
∣ y⃗ ∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

∣ f j(x − y j)∣ d y⃗ < ∞,(3.2)

for all R > 0. Then, for x ∈ Rn/E, the maximal operator

MΩ( f1 , . . . , fm)(x) = sup
R>0

1
Rmn ∫…∫

∣ y⃗∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

∣ f j(x − y j)∣ d y⃗(3.3)

is well defined and maps Lp1(Rn) × ⋅ ⋅ ⋅ × Lpm(Rn) to Lp(Rn) with norm bounded by
a constant multiple of ∥Ω∥Lq(Smn−1). Precisely, there is a constant C > 0 such that

∥MΩ( f1 , . . . , fm)∥Lp ≤ C∥Ω∥Lq(Smn−1)∥ f1∥Lp1 ⋅ ⋅ ⋅ ∥ fm∥Lpm(3.4)

for functions f j ∈ Lp j(Rn), 1 ≤ j ≤ m.

Proof Since ∥Ω∥Lr(Smn−1) ≲ ∥Ω∥L∞(Smn−1) for all 1 < r < ∞ and there exists 1 < q <
∞ such that 1/p < 1/q + m/q′ < m (= 1/∞ + m/1), we may assume that 1 < q < ∞.
Without loss of generality, we may also assume that ∥Ω∥Lq(Smn−1) = 1.

We split

Ω = Ω0 +
∞
∑
l=1

Ω l ,
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where Ω0 = Ωχ∣Ω∣≤2 and Ω l = Ωχ2 l<∣Ω∣≤2 l+1 for l ≥ 1. Then Hölder’s inequality and
Chebyshev’s inequality give

∥Ω l∥L1 ≤ ∣Supp Ω l ∣
1

q′ ≤ ∥Ω∥
q

q′

Lq 2−l q
q′ = 2−l q

q′ ,

and obviously,

∥Ω l∥L∞ ≤ 2l+1 .(3.5)

We first claim that for 1 < r, r1 , . . . , rm < ∞ with 1/r = 1/r1 + ⋅ ⋅ ⋅ + 1/rm , we have

∥MΩ l (S1 , . . . , Sm)∥Lr1× ⋅ ⋅ ⋅ ×Lrm→Lr ≲ 2−l q
q′

m
∏
j=1

∥S j∥Lr j (Rn)(3.6)

for simple functions S j. To verify this estimate, we choose indices μ1 , . . . , μm satisfying

1/μ1 + ⋅ ⋅ ⋅ + 1/μm = 1

and

1 < μ j < r j for each 1 ≤ j ≤ m.

Then a direct computation using Hölder’s inequality yields

MΩ l (S1 , . . . , Sm)(x) ≤ ∫
Smn−1

∣Ω l(θ⃗ )∣
m
∏
j=1

Mθ j
μ j S j(x) dθ⃗ ,

where the directional maximal operator Mθ j
μ j is defined by

Mθ j
μ j g(x) ∶= sup

R>0
( 1

R ∫
R

0
∣g(x − tθ j)∣

μ j dt)
1/μ j

.

It follows from this that

∥MΩ l (S1 , . . . , Sm)∥Lr ≤ ∫
Smn−1

∣Ω l(θ⃗ )∣
m
∏
j=1

∥Mθ j
μ j S j∥Lr j dθ⃗ ,

where Minkowski’s inequality and Hölder’s inequality are applied. Using the Lr j

boundedness of Mθ j
μ j for 0 < μ j < r j with constants independent of θ j (by the method

of rotations), we obtain (3.6).
Then the case p > 1 (for which q > 1 implies the assumption (3.1)) in the assertion

follows from summing the estimates (3.6) over l ≥ 0.
The other case 1/m < p ≤ 1 can be proved by interpolation with the L1 × ⋅ ⋅ ⋅ × L1 →

L1/m ,∞ estimate. LetM be the Hardy–Littlewood maximal operator. Then, using (3.5),
it is easy to verify the pointwise estimate

MΩ l ( f1 , . . . , fm)(x) ≤ 2l+1
m
∏
j=1

M f j(x),

for f1 , . . . , fm in L1(Rn), and this yields that

∥MΩ l ∥L1× ⋅ ⋅ ⋅ ×L1→L1/m ,∞ ≲ 2l ,(3.7)
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using Hölder’s inequality for weak-type spaces [14, p. 16] and the weak (1, 1) bound-
edness of M. Now we fix 0 < p1 , . . . , pm < ∞ and 1/m < p ≤ 1, and choose r > 1 such
that

1
p

< 1
rq

+ m
q′

(< 1
q
+ m

q′
),

or, equivalently,

q(m − 1/p)
q′(m − 1/r) − 1/p − 1/r

m − 1/r
> 0.

Interpolating between (3.7) and (3.6) with appropriate (r1 , . . . , rm) satisfying 1/r =
1/r1 + ⋅ ⋅ ⋅ + 1/rm (using [15, Theorem 7.2.2]) yields

∥MΩ l (S1 , . . . , Sm)∥Lp ≤ C2−l( q(m−1/p)
q′(m−1/r)−

1/p−1/r
m−1/r )∥S1∥Lp1 ⋅ ⋅ ⋅ ∥Sm∥Lpm

for simple functions S j . The exponential decay in l obtained above together with the
fact that ∥ ⋅ ∥p

Lp is a subadditive quantity for 0 < p ≤ 1 implies, for p and q satisfying
(3.1),

∥MΩ(S1 , . . . , Sm)∥Lp ≤ C∥S1∥Lp1 ⋅ ⋅ ⋅ ∥Sm∥Lpm(3.8)

for simple functions S1 , . . . , Sm .
Next, we extend MΩ( f1 , . . . , fm) to functions f j ∈ Lp j(Rn). To achieve this goal,

we choose nonnegative simple functions Sk
j that increase pointwise to ∣ f j ∣ as k → ∞.

It follows from (3.8) that for any R > 0,

{∫
Rn

[ 1
Rmn ∫…∫

∣ y⃗ ∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

Sk
j (x − y j) d y⃗ ]

p

dx}
1
p

≤ C ∥ f1∥Lp1 ⋅ ⋅ ⋅ ∥ fm∥Lpm ,

and from this, we obtain

{∫
Rn

[ 1
Rmn ∫…∫

∣ y⃗ ∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

∣ f k
j (x − y j)∣ d y⃗ ]

p

dx}
1
p

≤ C ∥ f1∥Lp1 ⋅ ⋅ ⋅ ∥ fm∥Lpm

via Lebesgue’s monotone convergence theorem. We conclude that for any R ∈ Z+,
there is a set of measure zero ER such that

1
Rmn ∫…∫

∣ y⃗ ∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

∣ f k
j (x − y j)∣ d y⃗ < ∞(3.9)

for all x ∈ Rn/ER . Setting E = ∪∞R=1ER , we obtain (3.2) for x ∈ Rn/E.
This allows us to define MΩ( f1 , . . . , fm)(x) for f j ∈ Lp j(Rn) and x ∈ Rn/E as the

supremum of the expressions in (3.9). Now, for x ∈ Rn/E,
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MΩ( f1 , . . . , fm)(x) = sup
R>0

1
Rmn ∫…∫

∣ y⃗ ∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

∣ f j(x − y j)∣ d y⃗

= sup
R>0

lim
k→∞

1
Rmn ∫…∫

∣ y⃗ ∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

Sk
j (x − y j) d y⃗

≤ lim inf
k→∞

MΩ(Sk
1 , . . . , Sk

m)(x).

As MΩ(Sk
1 , . . . , Sk

m)(x) is increasing in k, we obtain from (3.8) by Fatou’s lemma that

∥MΩ( f1 , . . . , fm)∥Lp(Rn) ≲ lim inf
k→∞

∥MΩ(Sk
1 , . . . , Sk

m)∥Lp(Rn) ≲
m
∏
j=1

∥ f j∥Lp j (Rn) .

In particular, this shows that for f j ∈ Lp j(Rn), there is a set E′ of measure zero such
that

sup
R>0

1
Rmn ∫…∫

∣ y⃗∣≤R

∣Ω( y⃗ ′)∣
m
∏
j=1

∣ f j(x − y j)∣ d y⃗ < ∞

for all. x ∈ Rn/E′ 3.9 ∎

4 Proof of Theorem 1.2

Let 2m
m+1 < q < 2 and Ω in Lq(Smn−1). We use a dyadic decomposition introduced by

Duoandikoetxea and Rubio de Francia [13]. We choose a Schwartz function Φ(m)

on (Rn)m such that its Fourier transform Φ̂(m) is supported in the annulus
{ξ⃗ ∈ (Rn)m ∶ 1/2 ≤ ∣ξ⃗ ∣ ≤ 2} and satisfies ∑ j∈Z Φ̂(m)j (ξ⃗ ) = 1 for ξ⃗ /= 0⃗ where

Φ̂(m)j (ξ⃗ ) ∶= Φ̂(m)(ξ⃗ /2 j). For γ ∈ Z, let

Kγ( y⃗ ) ∶= Φ̂(m)(2γ y⃗ )K( y⃗ ), y⃗ ∈ (Rn)m ,

and then we observe that Kγ( y⃗ ) = 2γmn K0(2γ y⃗ ). For μ ∈ Z, we define

Kγ
μ( y⃗ ) ∶= Φ(m)μ+γ ∗ Kγ( y⃗ ) = 2γmn[Φ(m)μ ∗ K0](2γ y⃗ ).(4.1)

It follows from this definition that

K̂γ
μ(ξ⃗ ) = Φ̂(m)(2−(μ+γ) ξ⃗ )K̂0(2−γ ξ⃗ ) = K̂0

μ(2−γ ξ⃗ ),

which implies that K̂γ
μ is bounded uniformly in γ, while they have almost disjoint

supports, so it is natural to add them together as follows:

Kμ( y⃗ ) ∶= ∑
γ∈Z

Kγ
μ( y⃗ ).
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4.1 Reduction

We introduce the maximal operator

L♯Ω( f1 , . . . , fm)(x) ∶= sup
τ∈Z

∣ ∑
γ<τ

∫(Rn)m
Kγ( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗ ∣

for x ∈ Rn . Then we claim that

L∗Ω( f1 , . . . , fm) ≤ MΩ( f1 , . . . , fm)(x) +L♯Ω( f1 , . . . , fm).(4.2)

To prove (4.2), we introduce the notation

K(ε)( y⃗ ) ∶= K( y⃗ )χ∣ y⃗ ∣≥ε , K̃(ε)( y⃗ ) ∶= K( y⃗ )(1 − Θ̂(m)( y⃗/ε)),

setting Θ̂(m)( y⃗ ) ∶= 1 −∑γ∈N Φ̂(m)( y⃗ /2γ) so that

Supp(Θ̂(m)) ⊂ { y⃗ ∈ (Rn)m ∶ ∣ y⃗ ∣ ≤ 2}

and Θ̂(m)( y⃗ ) = 1 for ∣ y⃗ ∣ ≤ 1.
Given ε > 0, choose ρ ∈ Z such that 2ρ ≤ ε < 2ρ+1. Then we write

∣ ∫(Rn)m/B(0,ε)
K( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗ ∣

≤ ∣∫(Rn)m
(K(ε)( y⃗ ) − K̃(2

ρ)( y⃗ ))
m
∏
j=1

f j(x − y j) d y⃗ ∣(4.3)

+ ∣∫(Rn)m
K̃(2

ρ)( y⃗ )
m
∏
j=1

f j(x − y j) d y⃗ ∣.(4.4)

Term (4.4) is clearly less than

∣ ∑
γ∈Z∶γ<−ρ

∫(Rn)m
Kγ( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗ ∣ ≤ L♯Ω( f1 , . . . , fm)(x),

while (4.3) is controlled by MΩ( f1 , . . . , fm)(x) as

∣K(ε)( y⃗ ) − K̃(2
ρ)( y⃗ )∣ ≲ ∣K( y⃗ )∣χ∣ y⃗ ∣≈2ρ ≲ ∣Ω( y⃗ ′)∣

2ρmn χ∣ y⃗ ∣≲2ρ .

Thus, (4.2) follows after taking the supremum over all ε > 0.
Since the boundedness of MΩ follows from Lemma 3.1 with the fact that q > 2m

m+1
implies m

2 < 1
q + m

q′ , matters reduce to the boundedness of L♯Ω .
For each γ ∈ Z, let

Kμ ∶= ∑
γ∈Z

Kγ
μ .
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In the study of multilinear rough singular integral operators LΩ in [18] whose kernel
is ∑γ∈Z Kγ = ∑μ∈Z ∑γ∈Z Kγ

μ = ∑μ∈Z Kμ , the part where μ is less than a constant is
relatively simple because the Fourier transform of Kμ satisfies the estimate

∣∂α K̂μ(ξ⃗ )∣ ≲ ∥Ω∥Lq(Smn−1)∣ξ⃗ ∣−∣α∣Q(μ), 1 < q ≤ ∞,(4.5)

for all multi-indices α and ξ⃗ ∈ Rmn/{0}, where Q(μ) = 2(mn−δ′)μ if μ ≥ 0 and Q(μ) =
2μ(1−δ′) if μ < 0 for some 0 < δ′ < 1/q′, which is the condition of the Coifman–Meyer
multiplier theorem ([9], [15, Theorem 7.5.3]) with constant ∥Ω∥Lq(Smn−1)Q(μ). The
remaining case when μ is large enough was handled by using product-type wavelet
decompositions. We expect that a similar strategy would work in handling L♯Ω .

To argue strictly, we write

L♯Ω( f1 , . . . , fm) ≤ L̃♯Ω( f1 , . . . , fm) + ∑
μ∈Z∶2μ−10>C0

√
mn

L♯Ω,μ( f1 , . . . , fm),

where we set

L̃♯Ω( f1 , . . . , fm)(x) ∶= sup
τ∈Z

∣ ∫(Rn)m
∑
γ<τ

∑
μ∈Z∶2μ−10≤C0

√
mn

Kγ
μ( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗ ∣

and

L♯Ω,μ( f1 , . . . , fm)(x) ∶= sup
τ∈Z

∣ ∑
γ<τ

∫(Rn)m
Kγ

μ( y⃗ )
m
∏
j=1

f j(x − y j) d y⃗ ∣.

Then Theorem 1.2 follows from the following two propositions.

Proposition 4.1 Let 1 < p1 , . . . , pm ≤ ∞ and 1/p = 1/p1 + ⋅ ⋅ ⋅ + 1/pm . Suppose that
1 < q < ∞ and Ω ∈ Lq(Smn−1) with ∫Smn−1 Ωdσ = 0. Then there exists a constant C > 0
such that

∥L̃♯Ω( f1 , . . . , fm)∥Lp ≤ C∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥Lp j

for Schwartz functions f1 , . . . , fm on R
n .

Proposition 4.2 Let 2m
m+1 < q ≤ ∞ and Ω ∈ Lq(Smn−1) with ∫Smn−1 Ωdσ = 0. Suppose

that μ ∈ Z satisfies 2μ−10 > C0
√

mn. Then there exist C , ε0 > 0 such that

∥L♯Ω,μ( f1 , . . . , fm)∥L2/m ≲ 2−ε0 μ∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2

for Schwartz functions f1 , . . . , fm on R
n .

4.2 Proof of Proposition 4.1

We decompose L̃♯Ω further so that the Coifman–Meyer multiplier theorem is involved:
setting

K̃( y⃗ ) ∶= ∑
μ∈Z∶2μ−10≤C0

√
mn

Kμ( y⃗ ) = ∑
μ∈Z∶2μ−10≤C0

√
mn

∑
γ∈Z

Kγ
μ( y⃗ ),
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L̃♯Ω( f1 , . . . , fm)(x) is controlled by the sum of

T∗K̃( f1 , . . . , fm)(x) ∶= sup
τ∈Z

∣ ∫∣y∣>2−τ
K̃( y⃗ )

m
∏
j=1

f j(x − y j) d y⃗ ∣

and

T
∗∗
K ( f1 , . . . , fm)(x) ∶= sup

τ∈Z
∣ ∫(Rn)m

K∗∗τ ( y⃗ )
m
∏
j=1

f j(x − y j) d y⃗ ∣,(4.6)

where

K∗∗τ ( y⃗ ) ∶= ( ∑
μ∈Z∶2μ−10≤C0

√
mn

∑
γ<τ

Kγ
μ( y⃗ )) − K̃( y⃗ )χ∣ y⃗ ∣>2−τ .(4.7)

To obtain the boundedness of T∗K̃ , we claim that K̃ is an m-linear Calderón–
Zygmund kernel with constant C∥Ω∥Lq(Smn−1) for 1 < q < ∞. Indeed, it follows from
(4.5) that

∣∂α ̂̃K(ξ⃗ )∣ ≤ ∑
μ∈Z∶2μ−10≤C0

√
mn

∣∂α K̂μ(ξ⃗ )∣ ≲ ∥Ω∥Lq(Smn−1)∣ξ⃗ ∣−∣α∣

as the sum of Q(μ) over μ satisfying 2μ−10 ≤ C0
√

mn converges. Then K̃ satisfies
the size and smoothness conditions for m-linear Calderón–Zygmund kernel with
constant C∥Ω∥Lq(Smn−1), as mentioned in the proof of [21, Proposition 6]. Since K̃ is
a Calderón–Zygmund kernel, Cotlar’s inequality in [20, Theorem 1] yields that T∗K̃ is
bounded on the full range of exponents with constant C∥Ω∥Lq(Smn−1).

To handle the boundedness of the operator T∗∗K , we observe that the kernel K∗∗τ
can be written as

K∗∗τ ( y⃗ ) = ∑
μ∈Z∶2μ−10≤C0

√
mn

( ∑
γ<τ

Kγ
μ( y⃗ )χ∣ y⃗ ∣≤2−τ − ∑

γ≥τ
Kγ

μ( y⃗ )χ∣ y⃗ ∣>2−τ),(4.8)

and thus

T
∗∗
K ( f1 , . . . , fm)(x) ≤ sup

τ∈Z
∑

μ∈Z∶2μ−10≤C0
√

mn
Iμ ,τ(x) +Jμ ,τ(x),

where

Iμ ,τ(x) ∶= ∑
γ<τ

∣ ∫∣ y⃗ ∣<2−τ
Kγ

μ( y⃗ )
m
∏
j=1

f j(x − y j) d y⃗ ∣,

Jμ ,τ(x) ∶= ∑
γ≥τ

∣ ∫∣ y⃗ ∣≥2−τ
Kγ

μ( y⃗ )
m
∏
j=1

f j(x − y j) d y⃗ ∣.

We claim that there exists ε > 0 such that

Iμ ,τ +Jμ ,τ ≲C0 ,m ,n 2εμ∥Ω∥L1(Smn−1)
m
∏
j=1

M f j uniformly in τ ∈ Z(4.9)
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for μ satisfying 2μ−10 ≤ C0
√

mn, where we recallM is the Hardy–Littlewood maximal
operator. Then, using Hölder’s inequality and the boundedness of M, we obtain

∥T∗∗K ( f1 , . . . , fm)∥Lp ≲ ∥Ω∥L1(Smn−1)∥
m
∏
j=1

M f j∥
Lp

≲ ∥Ω∥L1(Smn−1)
m
∏
j=1

∥ f j∥Lp j(4.10)

for 1 < p1 , . . . , pm ≤ ∞ and 0 < p ≤ ∞ satisfying 1/p = 1/p1 + ⋅ ⋅ ⋅ + 1/pm as
∑μ∶2μ−10≤C0

√
mn 2εμ converges. Therefore, let us prove (4.9).

Using (4.1), we have

Iμ ,τ(x) ≲ ∑
γ<τ

∫∣ y⃗ ∣<2−τ ∫∣z⃗ ∣≈1
2γmn2μmn ∣Ω(z⃗ ′)∣dz⃗

m
∏
j=1

∣ f j(x − y j)∣ d y⃗

≲ 2μmn∥Ω∥L1(Smn−1)
1

2−τmn ∫∣ y⃗ ∣<2−τ

m
∏
j=1

∣ f j(x − y j)∣ d y⃗

≲ 2μmn∥Ω∥L1(Smn−1)
m
∏
j=1

M f j(x),

as desired.
In addition,

Jμ ,τ(x) ≤ ∑
γ≥τ

∫∣ y⃗ ∣≥2−τ
2γmn ∣ ∫∣z⃗ ∣≈1

Φμ(2γ y⃗ − z⃗ )Ω(z⃗ ′)d z⃗ ∣
m
∏
j=1

∣ f j(x − y j)∣ d y⃗ .

Since Ω has vanishing mean, we have

∣ ∫∣z⃗ ∣≈1
Φμ(2γ y⃗ − z⃗ ) Ω(z⃗ ′) d z⃗ ∣

≲ 2μ(mn+1) ∫∣z⃗ ∣≈1
∫

1

0
∣∇Φ(2μ+γ y⃗ − 2μ tz⃗ )∣ dt ∣Ω(z⃗ ′)∣ d z⃗ .

Now we choose a constant M such that mn < M < mn + 1 and see that

∣∇Φ(2μ+γ y⃗ − 2μ tz⃗ )∣ ≲M
1

(1 + ∣2μ+γ y⃗ − 2μ tz⃗ ∣)M

≲C0 ,m ,n ,M
1

(1 + 2μ+γ ∣ y⃗ ∣)M ≤ 1
2M(μ+γ)

1
∣ y⃗ ∣M ,

as ∣z⃗ ∣ ≈ 1, 0 < t < 1, and 2μ−10 ≤ C0
√

mn. This yields that

Jμ ,τ(x) ≲ 2μ(mn+1−M)∥Ω∥L1(Smn−1)( ∑
γ≥τ

2−γ(M−mn))

× ∫∣ y⃗ ∣≥2−τ

1
∣ y⃗ ∣M

m
∏
j=1

∣ f j(x − y j)∣ d y⃗ .

Since M > mn, the sum over γ ≥ τ converges to 2−τ(M−mn) and the integral over ∣ y⃗ ∣ ≥
2−τ is estimated by
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∞
∑
l=0

∫
2−τ+l≤∣ y⃗ ∣<2−τ+l+1

1
∣ y⃗ ∣M

m
∏
j=1

∣ f j(x − y j)∣ d y⃗

≲ 2τ(M−mn)
∞
∑
l=0

2−l(M−mn)( 1
2(−τ+l+1)mn ∫∣ y⃗ ∣≤2−τ+l+1

m
∏
j=1

∣ f j(x − y j)∣ d y⃗ )

≲ 2τ(M−mn)
m
∏
j=1

M f j(x).

Finally, we have

Jμ ,τ ≲ 2μ(mn+1−M)∥Ω∥L1(Smn−1)
m
∏
j=1

M f j ,

which completes the proof of (4.9).

4.3 Proof of Proposition 4.2

The proof is based on the wavelet decomposition and the recent developments in [18].
Recalling that K̂0

μ ∈ Lq′ , we apply the wavelet decomposition (2.1) to write

K̂0
μ(ξ⃗ ) = ∑

λ∈N0

∑
G⃗∈Iλ

∑
k⃗ ∈(Zn)m

bλ ,μ
G⃗ , k⃗

Ψλ
G1 ,k1

(ξ1) ⋅ ⋅ ⋅ Ψλ
Gm ,km

(ξm),

where

bλ ,μ
G⃗ , k⃗

∶= ∫(Rn)m
K̂0

μ(ξ⃗ )Ψλ
G⃗ , k⃗ (ξ⃗ ) d ξ⃗ .

It is known in [18] that for any 0 < δ < 1/q′,

∥{bλ ,μ
G⃗ , k⃗

}k⃗ ∥�∞ ≲ 2−δ μ2−λ(M+1+mn)∥Ω∥Lq(Smn−1),(4.11)

where M is the number of vanishing moments of ΨG⃗ . Moreover, it follows from the
inequality (2.2), the Hausdorff–Young inequality, and Young’s inequality that

∥{bλ ,μ
G⃗ , k⃗

}k⃗ ∥�q′ ≲ 2−λmn(1/2−1/q′)∥K̂0
μ∥Lq′ ≲ 2−λmn(1/q−1/2)∥Ω∥Lq(Smn−1) .(4.12)

Now we may assume that 2λ+μ−2 ≤ ∣k⃗∣ ≤ 2λ+μ+2 due to the compact supports of K̂0
μ

and Ψλ
G⃗ , k⃗

. In addition, by symmetry, it suffices to focus on the case ∣k1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣.
Since K̂γ

μ(ξ⃗ ) = K̂0
μ(ξ⃗ /2γ), the boundedness of L♯Ω,μ is reduced to the inequality

∥ sup
τ∈Z

∣ ∑
λ∈N0

∑
G⃗∈Iλ

∑
γ∈Z∶γ<τ

∑
k⃗ ∈U λ+μ

bλ ,μ
G⃗ , k⃗

m
∏
j=1

Lλ ,γ
G j ,k j

f j∣∥
L2/m

≲ 2−ε0 μ∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2 ,(4.13)

where the operators Lλ ,γ
G j ,k j

and the set U λ+μ are defined as in (2.5) and (2.4). We split

U λ+μ into m disjoint subsets U λ+μ
l (1 ≤ l ≤ m) as before such that for k ∈ U λ+μ

l , we
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have

∣k1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣k l ∣ ≥ 2C0
√

n ≥ ∣k l+1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣.

Then the left-hand side of (4.13) is estimated by

(
m
∑
l=1

∑
λ∈N0

∑
G⃗∈Iλ

∥ sup
τ∈Z

∣ ∑
γ∈Z∶γ<τ

T λ ,γ ,μ
G⃗ , l

( f1 , . . . , fm)∣∥
2/m

L2/m

)
m/2

,

where T λ ,γ ,μ
G⃗ , l

is defined by

T λ ,γ ,μ
G⃗ , l

( f1 , . . . , fm) ∶= ∑
k⃗ ∈U λ+μ

l

bλ ,μ
G⃗ , k⃗

(
m
∏
j=1

Lλ ,γ
G j ,k j

f j).

We claim that for each 1 ≤ l ≤ m, there exists ε0 , M0 > 0 such that

∥ sup
τ∈Z

∣ ∑
γ∈Z∶γ<τ

T λ ,γ ,μ
G⃗ , l

( f1 , . . . , fm)∣∥
L2/m

≲ 2−ε0 μ0 2−λM0∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2 ,
(4.14)

which concludes (4.13). Therefore, it remains to prove (4.14).

4.3.1 Proof of (4.14)

When 2 ≤ l ≤ m, we apply (2.8) with 2 < q′ < 2m
m−1 , along with (4.11), and (4.12) to

obtain

∥ sup
τ∈Z

∣ ∑
γ∈Z∶γ<τ

T λ ,γ ,μ
G⃗ , l

( f1 , . . . , fm)∥
L2/m

≤ ∥ ∑
γ∈Z

∣T λ ,γ ,μ
G⃗ , l

( f1 , . . . , fm)∣∥
L2/m

≲ ∥{bλ ,μ
G⃗ , k⃗

}k⃗ ∥
1− (m−1)q′

2m

�∞
∥{bλ ,μ

G⃗ , k⃗
}k⃗ ∥

(m−1)q′

2m

�q′ 2λmn/2(λ + 1)l/2 μ l/2
m
∏
j=1

∥ f j∥L2

≲ ∥Ω∥Lq(Smn−1)2−δ μ(1− (m−1)q′

2m )μm/22−λCM ,m ,n ,q(λ + 1)m/2
m
∏
j=1

∥ f j∥L2 ,

where

CM ,m ,n ,q ∶= (M + 1 + mn)(1 − (m − 1)q′

2m
) + mn(1/q − 1/2)(m − 1)q′

2m
− mn

2
.

Here, we used the fact that l−1
2l ≤ m−1

2m for l ≤ m. Then (4.14) follows from choosing M
sufficiently large so that CM ,m ,n ,q > 0 since 1 − (m−1)q′

2m > 0.
Now let us prove (4.14) for l = 1. In this case, we first see the estimate

∥( ∑
γ∈Z

∣T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣2)
1/2

∥
L2/m

≲ 2−ε0 μ2−M0 λ∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2(4.15)
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for some ε0 , M0 > 0, which can be proved, as in [18, Section 6], by using (2.7) and
(4.11).

Choose a Schwartz function Γ on R
n whose Fourier transform is supported in the

ball {ξ ∈ Rn ∶ ∣ξ∣ ≤ 2} and is equal to 1 for ∣ξ∣ ≤ 1, and define Γk ∶= 2kn Γ(2k ⋅) so that
Supp(Γ̂k) ⊂ {ξ ∈ Rn ∶ ∣ξ∣ ≤ 2k+1} and Γ̂k(ξ) = 1 for ∣ξ∣ ≤ 2k .

Since the Fourier transform of T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm) is supported in the set {ξ ∈ Rn ∶
2γ+μ−5 ≤ ∣ξ∣ ≤ 2γ+μ+4}, we can write

∑
γ∈Z∶γ<τ

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm) = Γτ+μ+3 ∗ ( ∑
γ∈Z∶γ<τ

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm))

and then split the right-hand side into

Γτ+μ+3 ∗ ( ∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)) − Γτ+μ+3 ∗ ( ∑
γ∈Z∶γ≥τ

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)).

Due to the Fourier support conditions of Γτ+μ+3 and T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm), the sum in
the second term can be actually taken over τ ≤ γ ≤ τ + 9. Therefore, the left-hand side
of (4.14) is controlled by the sum of

I ∶= ∥ sup
ν∈Z

∣Γν ∗ ( ∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm))∣∥
L2/m

(4.16)

and

II ∶=
9
∑
γ=0

∥ sup
τ∈Z

∣Γτ+μ+3 ∗ T λ ,τ+γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣∥
L2/m

.(4.17)

First of all, when 0 ≤ γ ≤ 9, the Fourier supports of both Γτ+μ+3 and
T λ ,τ+γ ,μ

G⃗ ,1
( f1 , . . . , fm) are {ξ ∈ Rn ∶ ∣ξ∣ ∼ 2τ+μ}. This implies that for any 0 < r < 1,

∣Γτ+μ+3 ∗ T λ ,τ+γ ,μ
G⃗ ,1

( f1 , . . . , fm)(x)∣

≲ 2(τ+μ)(n/r−n)(∫
Rn

∣Γτ+μ+3(x − y)∣r ∣T λ ,τ+γ ,μ
G⃗ ,1

( f1 , . . . , fm)(y)∣r d y)
1/r

≲ (M(∣T λ ,τ+γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣r)(x))
1/r

,

where the Nikolskii inequality (see [28, Proposition 1.3.2]) is applied in the first
inequality. Setting 0 < r < 2/m, and using the maximal inequality for M and the
embedding �2 ↪ �∞ we obtain

II ≲ ∥ sup
τ∈Z

∣T λ ,τ ,μ
G⃗ ,1

( f1 , . . . , fm)∣∥L2/m(4.18)

≤ ∥( ∑
γ∈Z

∣T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣2)
1/2

∥
L2/m

.

Then the L2/m norm is bounded by the right-hand side of (4.14), thanks to (4.15). This
completes the estimate for II defined in (4.17), and we turn our attention to I defined
in (4.16).
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In the sequel, we will make use of the following inequality: if ĝγ is supported on
{ξ ∈ Rn ∶ C−12γ+μ ≤ ∣ξ∣ ≤ C2γ+μ} for some C > 1 and μ ∈ Z, then

∥{Φ(1)j ∗( ∑
γ∈Z

gγ)}
j∈Z

∥
Lp(�q)

≲C ∥{g j} j∈Z∥Lp(�q) uniformly in μ(4.19)

for 0 < p < ∞. The proof of (4.19) is elementary and standard, so it is omitted here (see
[16, equation (13)] and [31, Theorem 3.6] for related arguments).

To obtain the bound of I, we note that

I ≈ ∥ ∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∥
H2/m

,

where H2/m is the Hardy space. We refer to [15, Corollary 2.1.8] for the above estimate.
Then, using the Littlewood–Paley theory for Hardy space (see, for instance, [15,
Theorem 2.2.9]) and (4.19), there exists a unique polynomial Q λ ,μ ,G⃗(x) such that

∥ ∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm) − Q λ ,μ ,G⃗∥
H2/m

≲ ∥( ∑
γ∈Z

∣T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣2)
1/2

∥
L2/m

≲ 2−ε0 μ2−M0 λ∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2 ,(4.20)

where (4.15) is applied. Furthermore,

∥ ∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∥
H2/m

≈ ∥ sup
ν∈Z

∣Γν ∗ ( ∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm))∣∥
L2/m

= ∥ sup
ν∈Z

∣Γν ∗ ( ∑
γ∈Z∶γ≤ν−μ+5

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm))∣∥
L2/m

≲ ∥ sup
ν∈Z

∣ ∑
γ∈Z∶γ≤ν−μ+5

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣∥
L2/m

≤ ∥ ∑
γ∈Z

∣T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm)∣∥
L2/m

,

where the argument that led to (4.18) is applied in the first inequality. As we have dis-
cussed in [18, Section 6.1], this quantity is finite for all Schwartz functions f1 , . . . , fm .
Accordingly, we have

∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm) − Q λ ,μ ,G⃗ ∈ H2/m

and

∑
γ∈Z

T λ ,γ ,μ
G⃗ ,1

( f1 , . . . , fm) ∈ H2/m ,
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and thus Q λ ,μ ,G⃗ = 0. Now it follows from (4.20) that

I ≲ 2−ε0 μ2−M0 λ∥Ω∥Lq(Smn−1)
m
∏
j=1

∥ f j∥L2 ,

as expected. This completes the proof of (4.14).

5 Proof of Theorem 1.1

We now prove Theorem 1.1 by making use of Theorem 1.2. Recall that in Theorem 1.2 we
established the boundedness only for Schwartz functions. An important obstacle we
address is the pointwise definition of the maximal operator L∗∗ (see (1.3)) for general
L2 functions. This definition can be given via an abstract extension (see [11]), but this
is not as useful for our purposes. We provide below a concrete approach that preserves
the pointwise bounds provided by the supremum.

5.1 A variant of Theorem 1.2 for general L2 functions

We note that when f j ∈ L2(Rn), by Lemma 3.1, there exists a set EΩ
f1 , . . . , fm

of measure
0 such that

MΩ( f1 , . . . , fm)(x) < ∞

when x ∉ EΩ
f1 , . . . , fm

. Therefore, for x ∉ EΩ
f1 , . . . , fm

, we have

∫
ε0≤∣ y⃗ ∣≤ε−1

0

∣Ω( y⃗ ′)∣
∣ y⃗ ∣mn

m
∏
j=1

∣ f j(x − y j)∣ d y⃗ ≤ C 1
ε2mn

0
MΩ( f1 , . . . , fm)(x),(5.1)

and thus L(ε ,ε−1)
Ω ( f1 , . . . , fm)(x) and L∗,ε0

Ω ( f1 , . . . , fm)(x) are well defined, for f j in
L2(Rn) and Ω in Lq(Smn−1). Moreover,

L(ε ,ε−1)
Ω ( f1 , . . . , fm)(x) ≤ L∗,ε0

Ω ( f1 , . . . , fm)(x)

pointwise for x ∈ Rn/EΩ
f1 , . . . , fm

.
For given f j ∈ L2(Rn), we pick sequences of Schwartz functions f k

j converging to
f j in L2 as k → ∞, by density. Using the identity

a1a2 ⋅ ⋅ ⋅ am − b1b2 ⋅ ⋅ ⋅ bm =
m
∑
j=1

b1 ⋅ ⋅ ⋅ b j−1(a j − b j)a j+1 ⋅ ⋅ ⋅ am(5.2)

(with the obvious modification when j = 1 or j = m), the inequality

L∗,ε0
Ω ( f1 , . . . , fm) ≤ 2L∗Ω( f k

1 , . . . , f k
m) +

m
∑
j=1

L∗,ε0
Ω ( f k

1 , . . . f k
j−1 , f j − f k

j , f j+1 . . . , fm)

is valid pointwise on the complement of the set

EΩ ∶= EΩ
f1 , . . . , fm

∪ (
∞
⋃
k=1

EΩ
f k

1 , . . . , f k
m
) ∪ (

m
⋃
j=1

∞
⋃
k=1

EΩ
f k

1 , . . . f k
j−1 , f j− f k

j , f j+1 . . . , fm
),(5.3)
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which is a set of measure zero. Now we take the L2/m quasi-norm on both sides
and apply Theorem 1.3 for Schwartz functions and the estimate (5.1), combined with
Lemma 3.1, for the terms in the sum. Taking k → ∞, we obtain

∥L∗,ε0
Ω ( f1 , . . . , fm)∥L2/m(Rn) ≤ C∥Ω∥Lq(Smn−1)

∞
∏
j=1

∥ f j∥L2(Rn).

Finally, letting ε0 → 0 and using the monotone convergence theorem, we conclude

∥L∗∗Ω ( f1 , . . . , fm)∥L2/m(Rn) ≤ C∥Ω∥Lq(Smn−1)
∞
∏
j=1

∥ f j∥L2(Rn)(5.4)

for f j ∈ L2(Rn).

5.2 Proof of Theorem 1.1

Let f1 , . . . , fm be given L2 functions and pick sequences { f k
j } of Schwartz functions

such that f k
j converges to f j in L2(Rn) as k → ∞. Recall thatLΩ( f1 , . . . , fm) is defined

as the L2/m limit of LΩ( f k
1 , . . . , f k

m) as k → ∞. Then there exists a subsequence {k l}
of {k} such that LΩ( f k l

1 , . . . , f k l
m ) → LΩ( f1 , . . . , fm) pointwise on R

n/E, for some
set E of measure zero. Let us denote the subsequence {k l} still by {k} for notational
convenience. Then, on R

n/(E ∪ EΩ), where EΩ is as in (5.3), we have

∣L(ε ,ε−1)
Ω ( f1 , . . . , fm) −LΩ( f1 , . . . , fm)∣

≤ ∣L(ε ,ε−1)
Ω ( f1 , . . . , fm) −L(ε ,ε−1)

Ω ( f k
1 , . . . , f k

m)∣

+ ∣L(ε ,ε−1)
Ω ( f k

1 , . . . , f k
m) −LΩ( f k

1 , . . . , f k
m)∣

+ ∣LΩ( f k
1 , . . . , f k

m) −LΩ( f1 , . . . , fm)∣.

We first take the lim supε→0 on both sides and then the middle term on the right
vanishes. Then we apply lim inf k→∞ so that the last term vanishes. Consequently, we
have

lim sup
ε→0

∣L(ε ,ε−1)
Ω ( f1 , . . . , fm) −LΩ( f1 , . . . , fm)∣

≤ lim inf
k→∞

m
∑
j=1

L∗∗Ω ( f1 , . . . , f j−1 , f j − f k
j , f k

j+1 , . . . , f k
m)

on R
n/(E ∪ EΩ), where the identity (5.2) is applied. It follows that

∣{x ∶ lim sup
ε→0

∣L(ε ,ε−1)
Ω ( f1 , . . . , fm) −LΩ( f1 , . . . , fm)∣ > λ}∣

≤ ∣{x ∶ lim inf
k→∞

m
∑
j=1

L∗∗Ω ( f1 , . . . , f j−1 , f j − f k
j , f k

j+1 , . . . , f k
m) > λ}∣

≤ λ−
2
m

m
∑
j=1

∥ lim inf
k→∞

m
∑
j=1

L∗∗Ω ( f1 , . . . , f j−1 , f j − f k
j , f k

j+1 , . . . , f k
m)∥

2
m

L
2
m
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by Chebyshev’s inequality. But this last expression tends to zero as k → ∞ in view of
Fatou’s lemma and (5.4). We conclude that

lim sup
ε→0

∣L(ε ,ε−1)
Ω ( f1 , . . . , fm) −LΩ( f1 , . . . , fm)∣

equals zero a.e. and this finishes the proof.

6 Proof of Theorem 1.4

Let μ0 be the smallest integer satisfying 2μ0−3 > C0
√

mn and

Θ̂(m)μ0−1(ξ⃗ ) ∶= 1 −
∞
∑

μ=μ0

Φ̂(m)μ (ξ⃗ ).

Clearly,

Θ̂(m)μ0−1(ξ⃗ ) +
∞
∑

μ=μ0

Φ̂(m)μ (ξ⃗ ) = 1,

and thus we can write

σ(ξ⃗ ) = Θ̂(m)μ0−1(ξ⃗ )σ(ξ⃗ ) +
∞
∑

μ=μ0

Φ̂(m)μ (ξ⃗ )σ(ξ⃗ ) =∶ σμ0−1(ξ⃗ ) +
∞
∑

μ=μ0

σμ(ξ⃗ ).

Note that σμ0−1 is a compactly supported smooth function and thus the corresponding
maximal multiplier operator Mσμ0−1 , defined by

Mσμ0−1( f1 , . . . , fm)(x)

∶= sup
ν∈Z

∣ ∫(Rn)m
σμ0−1(2ν ξ⃗ )(

m
∏
j=1

f̂ j(ξ j))e2πi⟨x ,∑m
j=1 ξ j⟩d ξ⃗ ∣,

is bounded by a constant multiple of M f1(x) ⋅ ⋅ ⋅M fm(x), where M is the Hardy–
Littlewood maximal operator on R

n as before. Using Hölder’s inequality and the L2-
boundedness of M, we can prove

∥Mσμ0−1( f1 , . . . , fm)∥L2/m ≲
m
∏
j=1

∥ f j∥L2 .

It remains to show that

∥
∞
∑

μ=μ0

Mσμ( f1 , . . . , fm)∥
L2/m

≲
m
∏
j=1

∥ f j∥L2 .(6.1)

Using the decomposition (2.1), write

σμ(ξ⃗ ) = ∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗ ∈(Zn)m

bλ ,μ
G⃗ , k⃗

Ψλ
G1 ,k1

(ξ1) ⋅ ⋅ ⋅ Ψλ
Gm ,km

(ξm),(6.2)

where

bλ ,μ
G⃗ , k⃗

∶= ∫(Rn)m
σμ(ξ⃗ )Ψλ

G⃗ , k⃗ (ξ⃗ )d ξ⃗ .
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Let M ∶= [ (m−1)n
2 ] + 1 and choose 1 < q < 2m

m−1 such that

(m − 1)n
2

< mn
q

< min (a, M).(6.3)

In view of (2.2), we have

∥{bλ ,μ
G⃗ , k⃗

}k⃗ ∈(Zn)m∥�q ≲ 2−λ(M−mn/q+mn/2)∥σμ∥Lq
M((Rn)m)

≲ 2−λ(M−mn/q+mn/2)2−μ(a−mn/q),(6.4)

where the assumption (1.8) is applied in the last inequality.
We observe that if μ ≥ μ0, then bλ ,μ

G⃗ , k⃗
vanishes unless 2λ+μ−2 ≤ ∣k⃗ ∣ ≤ 2λ+μ+2 due to

the compact supports of σμ and Ψλ
G⃗ , k⃗

, which allows us to replace the sum over k⃗ ∈
(Zn)m in (6.2) by the sum over 2λ+μ−1 ≤ ∣k⃗ ∣ ≤ 2λ+μ+1. Moreover, we may consider only
the case ∣k1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣km ∣ as in the previous section. Therefore, in the rest of the section,
we assume

σμ(ξ⃗ ) = ∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗ ∈U λ+μ

bλ ,μ
G⃗ , k⃗

Ψλ
G1 ,k1

(ξ1) ⋅ ⋅ ⋅ Ψλ
Gm ,km

(ξm)

=
m
∑
l=1

∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗ ∈U λ+μ

l

bλ ,μ
G⃗ , k⃗

Ψλ
G1 ,k1

(ξ1) ⋅ ⋅ ⋅ Ψλ
Gm ,km

(ξm)

=∶
m
∑
l=1

∑
λ∈N0

∑
G⃗∈Iλ

σ λ ,G⃗
μ , l (ξ⃗ ),

where the sets U λ+μ and U λ+μ
l are defined as before. Then the left-hand side of (6.1)

can be controlled by

(
m
∑
l=1

∞
∑

μ=μ0

∑
λ∈N0

∑
G⃗∈Iλ

∥Mσ λ ,G⃗
μ , l

( f1 , . . . , fm)∥2/m
L2/m)

m/2

.(6.5)

Now we claim that

∥Mσ λ ,G⃗
μ , l

( f1 , . . . , fm)∥L2/m

≲ 2−λ(M−mn/q)(λ + 1)l/22−μ(a−mn/q)μ l/2
m
∏
j=1

∥ f j∥L2 .(6.6)

Then (6.5) is less than a constant multiple of ∏m
j=1 ∥ f j∥L2 as desired, due to the choice

of q in (6.3).
In order to prove (6.6), we use the estimates (2.7) and (2.8). We first rewrite

Mσ λ ,G⃗
μ , l

( f1 , . . . , fm)(x) = sup
γ∈Z

FFFFFFFFFFFFFF
∑

k⃗ ∈U λ+μ
l

bλ ,μ
G⃗ , k⃗

(
m
∏
j=1

Lλ ,γ
G j ,k j

f i(x))
FFFFFFFFFFFFFF

,

where Lλ ,γ
G ,k is defined as in (2.3).
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When l = 1, applying the embeddings �2 ↪ �∞, �q ↪ �∞, and (2.7), the left-hand
side of (6.6) is less than

∥( ∑
γ∈Z

∣ ∑
k⃗ ∈U λ+μ

1

bλ ,μ
G⃗ , k⃗

m
∏
j=1

Lλ ,γ
G j ,k j

f j∣
2
)

1/2

∥
L2/m

≲ ∥{bλ ,μ
G⃗ , k⃗

}k⃗ ∈(Zn)m∥�q μ1/22λmn/2(λ + 1)1/2
m
∏
j=1

∥ f j∥L2

≲ 2−λ(M−mn/q)(λ + 1)1/22−μ(a−mn/q)μ1/2
m
∏
j=1

∥ f j∥L2 ,

where (6.4) is applied in the last inequality.
For the case 2 ≤ l ≤ m, we can bound the left-hand side of (6.6) by

∥ ∑
γ∈Z

∣ ∑
k⃗ ∈U λ+μ

l

bλ ,μ
G⃗ , k⃗

m
∏
j=11

Lλ ,γ
G j ,k j

f j∣∥
L2/m

≲ ∥{bλ ,μ
G⃗ , k⃗

}k⃗ ∈(Zn)m∥�q μ l/22λmn/2(λ + 1)l/2
m
∏
j=1

∥ f j∥L2 .

Here, we used the inequality (2.8) and the embedding �q ↪ �∞. Then the preceding
expression is estimated by

2−λ(M−mn/q)(λ + 1)l/22−μ(a−mn/q)μ l/2
m
∏
j=1

∥ f j∥L2

in view of (6.4). This completes the proof of (6.6).

7 Proof of Theorem 1.3

We now prove Theorem 1.3 taking Theorem 1.4 for granted.
First of all, it is easy to see that if f j are Schwartz functions on R

n , then

lim
ν→−∞

Sν
σ( f1 , . . . , fm)(x) = σ(0) f1(x) ⋅ ⋅ ⋅ fm(x)(7.1)

and

lim
ν→∞

Sν
σ( f1 , . . . , fm)(x) = 0,

using the Lebesgue dominated convergence theorem and the property that

lim
ν→∞

σ(2ν ξ⃗ ) = 0.

7.1 Extension of Theorem 1.4 to general f j ∈ L2(Rn)

Let f1 , . . . , fm be given L2 functions on R
n . As Sν

σ( f1 , . . . , fm) is finite a.e. for each ν ∈
Z, there exists a set Eν of measure zero so that ∣Sν

σ( f1 , . . . , fm)∣ < ∞on the complement
of Eν . Since ν ranges over a countable set Z, the measure of E ∶= ⋃ν∈Z Eν is clearly zero
and thus we can define
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Mσ( f1 , . . . , fm) = sup
ν∈Z

∣Sν
σ( f1 , . . . , fm)∣

on Ec . That is,Mσ( f1 , . . . , fm) is well defined pointwise a.e. Moreover, it controls every
∣Sν

σ( f1 , . . . , fm)∣ pointwise, whenever the latter is finite.
We now extend Theorem 1.5 to f j ∈ L2(Rn) using the above definition. Without

loss of generality, we only consider the case when ν → −∞ as the case ν → ∞ follows
similarly. As every sequence that converges in L2/m has a subsequence that converges
a.e., there are a set of measure zero E1

f1 , . . . , fm
and a subsequence

k1
1 < k1

2 < k1
3 < ⋅ ⋅ ⋅ < k1

� < ⋅ ⋅ ⋅

of the sequence of k’s such that

S−1
σ ( f k1

�

1 , . . . , f k1
�

m )(x) → S−1
σ ( f1 , . . . , fm)(x)

for all x ∈ Rn/E1
f1 , . . . , fm

. Next, there are a set of measure zero E2
f1 , . . . , fm

and a subse-
quence

k2
1 < k2

2 < k2
3 < ⋅ ⋅ ⋅ < k2

� < ⋅ ⋅ ⋅

of

k1
1 < k1

2 < k1
3 < ⋅ ⋅ ⋅ < k1

� < ⋅ ⋅ ⋅

such that

S−2
σ ( f k2

�

1 , . . . , f k2
�

m )(x) → S−2
σ ( f1 , . . . , fm)(x)

for all x ∈ Rn/(E2
f1 , . . . , fm

∪ E2
f1 , . . . , fm

). There are a set of measure zero E3
f1 , . . . , fm

and a
subsequence

k3
1 < k3

2 < k3
3 < ⋅ ⋅ ⋅ < k3

� < ⋅ ⋅ ⋅

of

k2
1 < k2

2 < k2
3 < ⋅ ⋅ ⋅ < k2

� < ⋅ ⋅ ⋅

such that

S−3
σ ( f k3

�

1 , . . . , f k3
�

m )(x) → S−3
σ ( f1 , . . . , fm)(x)

for all x ∈ Rn/(E1
f1 , . . . , fm

∪ E2
f1 , . . . , fm

∪ E3
f1 , . . . , fm

). Iterating this process, we can take a
diagonal sequence

k1
1 < k2

2 < k3
3 < ⋅ ⋅ ⋅ < k�

� < ⋅ ⋅ ⋅ ,

which is a subsequence of all subsequences, for which f k�
�

j (x) → f j(x) for all 1 ≤ j ≤ m
and

Sν
σ( f k�

�

1 , . . . , f k�
�

m )(x) → Sν
σ( f1 , . . . , fm)(x),

as � → ∞ for x ∈ Rn/⋃∞ρ=1 Eρ
f1 , . . . , fm

and all ν = −1, −2, . . . .
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Now, on the set Rn/⋃∞ρ=1 Eρ
f1 , . . . , fm

, we have

∣Sν
σ( f1 , . . . , fm)∣ = lim

�→∞
∣Sν

σ( f k�
�

1 , . . . , f k�
�

m )∣ = lim inf
�→∞

∣Sν
σ( f k�

�

1 , . . . , f k�
�

m )∣,

for every ν = −1, −2, . . . , and thus

∣Sν
σ( f1 , . . . , fm)∣ ≤ lim inf

�→∞
Mσ( f k�

�

1 , . . . , f k�
�

m ).

This deduces

Mσ( f1 , . . . , fm)∣ ≤ lim inf
�→∞

Mσ( f k�
�

1 , . . . , f k�
�

m )

on R
n/⋃∞ρ=1 Eρ

f1 , . . . , fm
. Taking the L2/m quasi-norm on the both sides and using Fatou’s

lemma and Theorem 1.4 for Schwartz functions, we finally obtain

∥Mσ( f1 , . . . , fm)∥L2/m(Rn) ≲
m
∏
j=1

∥ f j∥L2(Rn)(7.2)

for f j ∈ L2(Rn).

7.2 Proof of Theorem 1.3

Let f j , j = 1, . . . , m, be functions in L2(Rn) and { f k�
�

j }� be sequences that appeared
above so that on (⋃∞ρ=1 Eρ

f1 , . . . , fm
)c ,

lim
�→∞

Sν
σ( f k�

�

1 , . . . , f k�
�

m ) = Sν
σ( f1 , . . . , fm)(7.3)

for each ν = −1, −2, . . . .
On (⋃∞ρ=1 Eρ

f1 , . . . , fm
)c , we write

∣Sν
σ( f1 , . . . , fm)(x) − σ(0) f1(x) ⋅ ⋅ ⋅ fm(x)∣

≤ ∣Sν
σ( f1 , . . . , fm) − Sν

σ( f k�
�

1 , . . . , f k�
�

m )∣

+ ∣Sν
σ( f k�

�

1 , . . . , f k�
�

m ) − σ(0) f k�
�

1 ⋅ ⋅ ⋅ f k�
�

m ∣

+ ∣σ(0) f k�
�

1 ⋅ ⋅ ⋅ f k�
�

m − σ(0) f1 ⋅ ⋅ ⋅ fm ∣.
We first take lim supν→−∞ and use (7.1) to make the middle term on the right vanish,
and then apply lim inf�→∞ to handle the last term on the right which will vanish as
well. As a result, we obtain

lim sup
ν→−∞

∣Sν
σ( f1 , . . . , fm) − σ(0) f1 ⋅ ⋅ ⋅ fm ∣

≤ lim inf
�→∞

sup
ν<0

∣Sν
σ( f1 , . . . , fm) − Sν

σ( f k�
�

1 , . . . , f k�
�

m )∣.

Using the identity (5.2), we control the preceding expression pointwise by

lim inf
�→∞

m
∑
i=1

Mσ( f k�
�

1 , . . . , f k�
�

i−1 , f k�
�

i − f i , f i+1 , . . . , fm)
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on the complement of the set

∞
⋃
ρ=1

[Eρ
f1 , . . . , fm

∪ (
m
⋃
i=1

∞
⋃
�=1

Eρ

f
k�
�

1 , . . . , f
k�
�

i−1 , f
k�
�

i − f i , f i+1 , . . . , fm

)],

which has full measure. Since

∥ lim inf
�→∞

m
∑
i=1

Mσ( f k�
�

1 , . . . , f k�
�

i−1 , f k�
�

i − f i , f i+1 , . . . , fm)∥
L2/m(Rn)

= 0

in view of Fatou’s lemma and (7.2), we finally obtain

lim sup
ν→−∞

∣Sν
σ( f1 , . . . , fm) − σ(0) f1 ⋅ ⋅ ⋅ fm ∣ = 0

for almost all points in R
n , which proves one part of the claimed a.e. convergences.

8 Concluding remarks

As of this writing, we are uncertain how to extend Theorem 1.4 in the nonlacunary
case. A new ingredient may be necessary to accomplish this.

We have addressed the boundedness of several multilinear and maximal multi-
linear operators at the initial point L2 × ⋅ ⋅ ⋅ × L2 → L2/m . Our future investigation
related to this project has two main directions: (a) to extend this initial estimate to
many other operators, such as the general maximal multipliers considered in [17, 26]
and (b) to obtain Lp1 × ⋅ ⋅ ⋅ × Lpm → Lp bounds for all of these operators in the largest
possible range of exponents possible. Additionally, one could consider the study of
related endpoint estimates. We hope to achieve this goal in future publications.
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