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STRUCTURE INDUCED ON SUBSETS 
OF A LATTICE VIA INFORMATION 

GATHERED FROM TENSOR PRODUCTS 

BRENT SMITH 

ABSTRACT. Suppose that a subset of a finite dimensional lattice has the property 
that there are many orthogonal tensor products that are almost 1 on the set, then the set 
is forced to have unusual concentrations of points in small cartesian products. 

Denote by Ls the integer lattice [s, 2s)2. L e t / , g be functions defined on the integer 

interval [s, 2s). Define the tensor product/ ® g on Ls by (f 0 g)(x,y) = / W • g(y). 

Let R be a subset of Ls having r points on each row and column. We will also consider 

R to be a 0,1 matrix indexed by {s, s + 1 , . . . , 2s — 1 }2 . 

We say R is /3 tensor empty under the following circumstances. Consider the vectors 

in Cs whose y coordinate for y = s,... ,2s — 1 is 

°x(y) = { 
1 if (x,y)eR 
0 otherwise. 

Put âx — ox— j ( l , . . . , 1); that is, crx without its component in the constant direction. R 

is "/? tensor empty" if 

" X "^ x 

whenever \\oc\\\ — s. Ivo Klemes showed that a similar concept was not empty in [2]. 
* When we view R as 0,1 matrix we will call it a. The operator norm of o from s 

dimensional complex space, Cv, to Cs is exactly r. 

||cra||2 < r||a||2, 3 G C'v 

and 
o\ = rï, 

where 1 is the constant vector having all entries equal to 1. 
We use this refinement of the notion of tensor empty. We use "the singular value 

decomposition theorem," [1], from linear algebra explained in the appendix. We fix an 
eigentensor expansion, a is 

( 1 ) (3 tensor empty with fewer than B flat exceptions 
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SUBSETS OF A LATTICE 101 

if it satisfies the property that there are at most B eigentensors that have their correspond­
ing singular value modulus larger than r1_/*, and that have the first component u of the 
eigentensor u 0 v satisfying the flatness condition: 

Nloo < io^= - |H|2, 

where we are computing norms in l°°({s, s+l,...,2s—\}), and l2({s, s + 1 , . . . , 2s — 1}). 
The introduction of the concept of "exceptions" was motivated by examples of non-

tensor empty sets that were still "evenly distributed" that were constructed by Ivo Klemes 
in 1989. 

TENSOR STRUCTURE THEOREM. For any 0 <C 6, c <C 1, there is some f3 — /3(5, c) ^> 0 
such that for a sufficiently large s and for any 1 < B < s, a is not (5 tensor empty with 
fewer than Bflat exceptions implies that there must be some mbyn submatrixX of a (this 
means thatX is the intersection of some m rows and some n columns of a) such that: 

1. Each row ofX has at least rl~€ entries equal to 1, 
2. We have 

m < _ r
1 6 e

 and _ = l04r>^. 
~ B m 

We make some remarks on the theorem. This gives a higher density of points on each 
row of X than the original L

s as soon as B > r] 16 e. Although X is not a square matrix, it is 
not too degenerate a rectangle, in the sense that the row length n is at least r1_e because 
of 1., and the ratio - is 104r^s. 

From a we form a new object <7(2) = <J*CT where * means conjugate transpose and we 
mean standard matrix composition. Hence, a*a is the matrix that puts the integer ox • ay 

at the position (x,y) where crx is used to denote a column vector of o. o\ has ll norm r2 

for each row and column. Let us consider two s dimensional vectors u, v having 2-norm2 

= s. We will view a both as a matrix and as a function of two variables defined on the 
lattice Ls. 

This means 
XXW &v) - a = {au, v). 

We have that | £(« ® v) • a\ > K\\CJ\\\ implies EO (8) u) • cr{2) > «2||cr(2)||i. This is true 
because 

J2(U ® Û) • (J(2) = \\(TU\\J. 

Suppose a satisfies ||a||2 = s and 

| | a a | | 2 > K 2 r £ | H | | . 

Then there is an s dimensional vector j3 with \\(3\\l — s such that 

£(a®/5)-f f > K | H | , . 
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102 BRENT SMITH 

simply put 

Then 

0 = yfî-

5](a(x) /5)U,v)-aU,v) 

aa\\2 

\(aa,0)\ 

r-(<ja,(ja) 
vs~T\ n— 

| |cra| |2 

\A||cr^||2 > «(^)MSII°"-vll2 

And repeating this argument 

(2) (5><g)w) V 2 ) > AC22||<7(2,III implies ( ^ u <g) w) • <r(3) > ti2'\\cj0) 
l 

where cr(3) = <J{2)*<J(2\ The power K,2~ in (2) is called "the correctness" for a{2); the power 

K2 in (2) is called the correctness for a{3). 

We continue this process k steps to arrive at r Z1 norm on each row and column 

^ \ - — 

with ti2 correctness in regards to u (8) u. Suppose r = / and K — 

2k = (I) — , then 

At the k-th step 

(3) 

If we put 

Y,(u <8> û) • a(k) > K 
Jk)\ 

we call this ti2 correctness. And there is r2 mass on each row and column. 

Let kax denote the x-th column vector ofa{k). And we use this normalization r 2
 kax = 

kcx. A crucial observation is that \\kcx\ + • • - + kcxj\\l*
s a decreasing function of k. We see 

this by looking at the situation from k to k+ 1. We may think of kcx\ + • • • +kcxJ = ^0 ( ) as a 

sum of 1 -step step functions with decreasing supports under inclusion written C\ + • • +C/. 

In other words upon putting m = min{,r©{)(/) : kS{)(i) ^ 0} 

C0Hn iff0°-M0 
{0 otherwise. 

Put kB\ = kQ0 — C\ and repeat the above in regards to the new 0 to get Ci. 

Let C\ be the image of C\ in *+1 cvi + • • • + k+\ cxJ. That is, 

(4) C\(x) = C\ • kcx. 

We view ~ as a map from Cs —>• C \ and the dependence of ~ on k will be implicit and 

understood by context. We first check that max C\ < max C\, because this implies that 

for all ij we have C, • C, < C\ • Cj. Recall that there is exactly r mass on each row 

and column of Rk. A fixed column kax inner producted against C\ can give max C\ r2 
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SUBSETS OF A LATTICE 103 

if and only if its support is completely contained within that of C\. This is the only way 
possible for C\ to take on the value max C. Recall that supp C, D supp Cj for / < j . And 
so 

Ct - Cj — max Ci • \\Cj\\ \ > max C, • \\Cj\\ 1 

= max Ci - \\Cj\\ i > Ci • Cj. 

And this proves that the 2 norms are decreasing. 
Now let us restrict our interest to kcX{) where XQ is fixed. When k — Hlog2 \ogrs in 

cr(k) we can still maintain correctness r~~ïw if the initial correctness was chosen to be 
K = r~^'b . This means simply that 

2k ^ 
K > r"*>. 

We refer to [s -1 , r_1 ] as "the possibility interval" for \\kcX{) \\\ because it is the case that 

lUcjcolli ^ [s~\r~1]. 

We explain the left hand end point s~x. 

lk.Vo | |2= sup (kcXo,t) > Uc,0, — , . . . , — ) 

and this is \\kcX() ||, • -j= = -̂ =. The right hand end point is due to the decreasing 2-norm2 

and to the initial calculation 

We make two claims. 

CLAIM 1. Let ho = log2 logr s. and 

(5) h = H- h0, 

where H= ^ . 
We show there is k < h such that 

CLAIM 2. There is xo G {s,..., 2s — 1} such that 

I! 112 \ & -^-

We begin with the first claim. Putyk = log2(— logr H^olli)- We knowyk is increasing 
because ll̂ c^JÎ  is decreasing. Because 

\\kcXo\\ls[s-\r-1]. 

we also know 0 < yk < ho. We claim there is yk such that yk+] — yk < jj. Suppose not, 
then for all k = 0 , 1 , . . . , /z, we have yk+\ — )>* > 77, a nd this implies 

* ^ h hoH 
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104 BRENT SMITH 

and this contradicts the lower bound estimate for these 2-norm2. Let H > H satisfy 

y M ~yk = j j . Hence 

log2(-log r | |A.+,cX() | |?) = l og 2 ( - l og r 11^,11^)+ -^. 
ti 

Exponientiating twice then gives 

i 
II II2 _ / | | 112x2// 

IU+lc.voll2 — y\\kcx{)\\2) • 

This is then the proof of C la im 1. Because H = - ^ and 

we have 

\\k+\cX()\\\ >r~^{\\kcXt\\\). 

Thus, the 2-norm2 of column x normalized has remained almost constant here. 

We want to compute correctness at stage h. We want to see if K2 = r (', then 

K = r '«>. 

Now from (5) we know h — - ^ log2 logr s. We want 

That is 

The conclusion is that 

And we know 

r 

And this demonstrates the choice of 

Now we prove Claim 2. We list the first components of the B exceptional eigentensors 

given in the definition (1) as u\, w 2 , . . . , uB. 

A first remark is that it must be the case that there exists x E {s,...,2s—\} such that 

\(ù\(x)u\ + --- + QB{x)uB,h(jx)\ > r^Br2". 

This remark is a consequence of our iteration of ( 1 ) which stated that we had these B flat 

exceptions, and so we know exactly that 

\(crih)uu ux ) + (a{h)u2, u2) + • • • + (cr(h)uB, uB)\ > s • r^Br2*. 

j log: 

« * • 

K 

' = 

f 

/ 

,b <V 

1(X) 

= 

= r 

— Y Too ' 

= 2 

= r 

e 

TOO 

r l(X) . 

~Tôô # 

KX) 

10 

100 
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SUBSETS OF A LATTICE 105 

If we write our matrix composition as a sum of column applications we get that our 
previous statement must happen on average in x. 

We can use the linear combination U\(x)u\ + • • • + UB(X)UB of these vectors to show 
for the chosen x there is a fixed set of cardinality at most | r 4 w that must contain at least 
r~2ïoô of the lx norm of hcx where h = H\og2 \ogrs; this is done via an application of 
Chebyshev: 

Cardinality {y : I J2 «/(*)KI|O0 > Br~2^ ) -B2r~4^ < \\j2 H*)u\ = s-J2 k(*)|2 . 

And because of the flatness assumption in (1), the last expression is bounded by \OBs. 
Put F = {y : I E/=i,2,...,£ w,(x)w/|(j) > Br^2^}. Put U = û\(x)u\ + • • • + ûB(x)uB. We 
wish to see that 

WhCx\F\\\ >r~2^. 

We suppose not and obtain a contradiction. 

r'^B < \{U,hcx)\ = \(U\F,hcx\F) + {U\P-,hcx\P)\ 

< B • Î CJCIFIII + Br~2~^ • 1 < Br~2^ + Br~2^. 

We estimated the two inner products above using supremum norm times 1 -norm. Now 
we want to test the 2-norm of hcx with \F. 

*F - \ - - - 2 ^ 1 

hCx\\2 > TTTTHihCx) > r 
F\xl2 xI - \F\]/2' 

We then square both sides to get Claim 2. 
Now we want to find E with |£j < | • r20"^ and such that \\kcx\E< H2 *s small. If we 

think of our column vector kcx as a function of the row index y, then it has a finite range 
because the domain of rows is finite. Write kcx = T\ + • • • + 7V_i + TT + • • • + Tt as a 
decomposition into 1-step step functions with increasing supports. Thus T\ is supported 
where kcx takes on its maximal value and to each member of its support assigns this 
maximal value. Then T2 is defined in the analogous manner for kcx — T\. Suppose that 
TT is the first step function with support cardinality > | • r 2 0^, and put E = supp(7V_i ). 
We will prove that E works by using: 

\\kcM\l<\\TT + -'' + Tt\\i 

We note that max TT < | • r~20^, because if | supp(7V)| = n, and max TT = m. Then 
n • m < 1, and we know n > | • r20 Tœ . 

(7V + . . . + r r ,rT + . . . + r f ) < | | . | | 0 0 | | . | | I . 

And 
max(7T + • • • + Tt) — max(rr) + • • • + max(7)) 

Il T II II T II 

|supp(7r)| |supp(r,)| 
1 
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106 BRENT SMITH 

Hence, 
I I l|2 ^ B _2()_ 

Therefore, 

k-Cvl^lb > WkCxh - \\kCx\vh > v - • r m - \\ - •> -10-i 
:K) ^> f KK) . 

B 

Vs' 
So 

i r I EV IU <C r KM» . Il , r 
&cJt |£ ( ||2 _ ' l|A.c.v 

£ 2 -

We wish to verify a Claim 1 analogous statement involving a restriction to E. Note 
that because 

WikCxwm < \\kcx\B\\i 
we have also that 

WikCxlvYh <r~5^ • ||*C.V|E||2. 

We now prove the analogue. 

||G-c,U)i|2 = ||Gc,ur+Gc,Uvr-Gc,uol|2 > ||(*cv)i|2 - \\(kcxyn2 
> r - ^ | | a c , ) | | 2 - r ~ 5 ^ . | | , c , | £ | | 2 

> r~^ô(l - r"5Tfx») . ||^A-|£||2 - r5^ • \\kcx\E\\2 

= ( r~^( l -r"5ïïK>)-r~5^ô) • H^UIh > r~^ |kx'A.|£||2. 

Our next objective will be to make another analogous statement that replaces kcx\t: by 
a characteristic function that is supported within E. 

Recall the définition of ~ from (4). If we fix a function P and 1 > 0 > 0 satisfies 

\\P\\\>O-\\P\& 

then we say that P was 0 preserved; we use 0 generically in what follows and note that 
there will be slight decreases in its value at each stage. The starting choice will be 

(6) 0\ = r~™. 

We argue the 9 preservation of a characteristic function supported within E. Write 
kCx\E — d\ + d2 + • • • + do + g where each d\ is a dyadic step function meaning that it is a 
sum of 1-step step functions having heights exactly equal to a power of 2, and where 

3/+HI2 < 2 " « . 

Put 
F\ = supp* cx\E - {y 'k cx\E(y) < s~~2} 

define d\ as follows: For y £ F\ 

J,(>0 = max{2 ' :2 '< , cx\E(y)}. 
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SUBSETS OF A LATTICE 107 

And for y $ F\ put 

Replacing kcx\E by kcx\E — d\ (y) we repeat the same procedure to get diiy). In particular 
the new Fi would be 

F2 = supp(kcx\E - d\(y)) - {y :k cx\E(y) - d\{y) < s~~2}. 

And where the garbage g is built from the smaller than s~2 values. The g has 2-norm 
smaller than s~ 2, because we are working in l2({s, s + 1, . . . , 2s — 1}), and allows us to 
assume that the number of 1-step step functions involved in a dyadic building block dj 
has cardinality smaller than 2 • (log2 s). And that D < 2 • (log2 s). We claim one of the d\ 
is "S preserved". d[ is "^-preserved" means that 

ltëll!>0R||i. 

We are using 0 in a generic sense to avoid notational complexity; it becomes slightly 
smaller at each step of the argument. Suppose not. Then 

IK^, 0 |E)1 |2< E I$ll2 + lllll2< E v^-IWh + llslk 
/=1,2,...,D /'=1,2,...,D 

<^E(1 + ^ + J_ + . . . ) | M l | | 2 + , - f 

<Vë-3-\\kcJEh. 

So we can assume that d\, say, is 

preserved. Write d\ = P\ + • • • + Pq where each P is a 1-step step function and we know 
q < 2 • (log2 5), and where each P is supported within E. Recall that: For y £ F\ 

dt(y) = max{2i: 2* <kcx\E(y)}. 

And for y $ F\ put 
di(y) = 0. 

Let 
{2/',2/'2,...,2/"} 

be the list of powers of 2 used in this expression to define d\, and let 

Z),Z2,... ,Z„ 

be the sets on which d\ takes on the given power of 2. Then 

Pj = 2jXZj. 
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108 BRENT SMITH 

We want to show that one of these P's is at least 0 preserved. Suppose not. 

||^l||2<||JPl||2 + --- + | |^||2 

<yro\\Pxh + '-- + >/Ô\\Pq\\2 

< vO • q - max \\Pq\\i < 2V9\ogs • ||di||2-

Hence, we get 

and so we take 

(8) 

463(\ogs)2>62, 

#2 0] 

4(logs)2 36(logs)2' 

We have now reached our major objective that there is a characteristic function x with 
supp x C E where 

(9) \E\ < ^ r 2 0 ^ 
B 

and 

Thus, 

(10) e3 > r™ 
because of (6) when the dimensions of the lattice become sufficiently large. Now to 
arrive at the theorem statement we need to unravel the information contained in the above 
equation. 

Put | supp x | = /• From (9) we know 
(11) / < ^ r 2 0 ^ . 

B 

We claim there is an indexing set D of /-^ column vectors satisfing 

for z G D. D will be the choice of our some n columns. We suppose not and obtain a 
contradiction. Let 

and so we are assuming that |D| < ^ • /. Then 

HxllI = llx|D|li + llxlixiii<|D| + ^ - / < ^ - / + ^ - / , 
which is a contradiction. The estimates come from bounding the inner product by supre-
mum norm times 1 -norm. 
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Next we would like to estimate || T,ZED kCzlh-

And hence 

Put 

(12) 

X 
/ ' / 2 

e3 l 
To ' W2 ~ io2 

7f=D / 

TtkCz 
ZED 

2>4. 
2 ~ 104 

Now because || • \\\ decreases we obtain in regard to the original R: 

ZED 

> / • 

104 ' 

^ = \y-E0cz(y)>^0 

D\ will be the indexing set of our m rows. We claim that \D\ \ > j ^ -^l. Again we argue 
the contrapositive by assuming this is not true. 

i l2 H H 2 il 

Eodl H Z V Z I D J + EOQ|D,< 
ZED

 ll2
 "ZED

 ll2
 "ZGD 

2 ~ 104 10 104 10' 

And this last expression computes to 

Al + ^L°i i 
104 10 105 10 ' 

Now we can get the theorem. Choose D\ to be a subset of D\ having cardinality 
JQJJQ'I- Then put X — D x D\. The number of points in X after we convert back to the 

o4 i original a's is \D\ | • j ^ -^ • r which is 

(13) VTQÏTfj) ' r ' 1 p o i n t s i n a 77j ' l c o l u m n s b y 77>4 7n 'Z r ° W S r e c t a n S l e * 

Recalling from (10) that 63 can be taken as 

we compute the numbers of (13) as follows: 

(r 198 1 \ ^ 
(14) (lëTîô) 
And from (11) 

^ 198 f 198 1 

r • / points in a • / columns by — • / rows rectangle. 

~ B 

We want to see that we have satisfied the 2 statements of the theorem for large s. 

https://doi.org/10.4153/CMB-1994-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-016-2


110 BRENT SMITH 

1. Each row of X has at least r1 ( entries equal to 1, 
2. We have 

m < -r 16f a n d - = 104r^. 
- B m 

To check 1 we note from ( 12) that each row has at least 

e\ l _ r-h i 
Tô4Tô r_ Tô^Tô r 

points. And this last is at least r'~f for large r. 
To check 2a. we see that 

Ï 198 1 .V 7 n , 5 / 9 n/LW S 

m < • - r 2 0 ^ < _/-2"- ( )4) f < _ r 

- 104 10 B - B ~ B 
for large s. 

And finally checking 2b. we get 

m 0 
104r> 

Roozbeh Vakil is responsible for eliminating many extraneous parameters that were 
in an earlier version of this paper. 

APPENDIX: EIGENTENSORS. We present some useful linear algebra that can be found 
in [11 under the topic of the singular value decomposition. 

Suppose we have a matrix, a, that has dimension C. Let r\, r2 , . . . , re be a collection 
of orthonormal functions: {1,2, . . . , C} —> C. Then there exist normal (meaning they 
have 2-norm2 = 1) vectors s\, 52,..., sc such that 

a = ai (ri <S> s\) + - - • +ac(rc ® sc) 

is an orthonormal expansion. For example, if a\ ^ 0, s\ must be (modulo a signum 
choice) the normalization (this means 2-norm2 = 1) of the vector 

orx. 

This is because the C orthogonal vectors span the C dimensional row vectors of a, and so 
we are simply taking orthogonal expansions. If we choose a\,r\ so that \a\ \ is maximal 
as r\ ranges over the complete Hilbert space, and then chose ai, r2 so that \ci2\ is maximal 
as r2 ranges over the complementary space to that generated by r\, and so on, then the 
generated tensor products are called "eigentensors". 

The point being that in this case the s's must also be orthogonal. Let us suppose this 
is not the case and obtain a contradiction. We would have normal vectors: w, v, w,x with 
(u, v) = (w,x) = 0 that upon putting 

ou — aw; (jv — bw + ex 
u + tv \ aw + tbw + tcx 

V\ +t2J vT + r 
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satisfy: 

(15) (a + tb)2 + t2c2 <{\+t2)a2. 

This is because we could take 
u = r;-, v = rj 

with / < j providing a contradiction about the pairwise orthogonality of $/, Sj, and the fact 
that tensor value a for st was maximal. But inequality ( 15) is impossible if t is sufficiently 
small. 

Eigentensors are "biorthogonal"; the first factors are pairwise orthogonal and the sec­
ond factors are pairwise orthogonal. 

Then because the s's must be orthogonal 

cr* -a = |<3i|20i ® ?\) + \a2\
2(r2 ® h) + ' - • + \ac\

2(rc ® rc). 

We identify rk with the vector (rk{ 1 ) , . . . , f>(C)). Thus r\,..., rc are the eigenvectors for 
this hermitian matrix, and s\,..., sc are the eigenvectors for the hermitian matrix a • cr*. 
If a is normal then r, = S[. We call {r, (g) ^-} the eigentensor system for G. And we call 
the a's the singular values. 
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