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MAXIMAL AVERAGES A L O N G CURVES O V E R T H E
p-ADIC N U M B E R S

KEITH M. ROGERS

Let Qp denote the p-adic numbers. We consider curves in QJJ defined by p-adic
polynomials of one p-adic variable. We show that maximal averages along these
curves are L9(Q£) bounded, where 1 < q < oo.

1. INTRODUCTION

Let P\,..., Pn be p-adic polynomials of one p-adic variable and define the curve
7 : Qp —> Qp by y(t) = (P i ( t ) , . . . ,Pn( t )) . We shall consider the averages

1

and the maximal average A4yf(x) denned by

1 fM1f{x) - sup -r I f(x- j(t)) dt.
*ez P J\t\<pk

We shall prove the following p-adic version of a theorem due to Stein and Wainger
[4, 5].

THEOREM 1 . Suppose that 1 < q < oo, and that 7 and M-y are defined as above.

Then there is a constant Cq so that

for all f G L"(Q;).

The proof will mainly follow the Euclidean arguments. The difficulty lies in bounding
oscillatory integrals on the p-adics, which was recently partially solved in [2].

We shall 'lift' to a higher dimensional situation and prove a similar theorem where
the curve is denned by monomials. Then we 'descend' back to the original dimension and
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358 K.M. Rogers [2]

curve. This technique goes back to de Leeuw [1]. In order to do this we let R : Q£ —> Q£

be a linear map so that

(1) R(t,t2,...,tN)=(P1(t),...Pn(t)),

where N is the maximal degree of the polynomials. We shall initially consider the curve
j(t) — (t,t2,... ,tN) and the maximal function

Myf(x) = sup 1 f /(s-7(t))dt.
fcez P* J\t\<^

In Sections 2, 3 and 4 we shall introduce Fourier analysis on the p-adic numbers.
In sections 5 and 6 we shall prove a version of the Hardy-Littlewood maximal theorem
and obtain a Calderon-Zygmund type decomposition. In Sections 7 and 8 we shall prove
L2{Qp) and L«(Q^) bounds for M^. Finally, in Sections 9 and 10, we shall finish
the proof of Theorem 1 and consider the differentiation of integrals along curves. The
constants C take different values throughout.

2. INTRODUCTION TO THE P-ADIC NUMBERS

For a more complete introduction to the p-adic numbers, see [3] or [8]. Here we shall
outline what we shall need.

Fix a prime number p. Any nonzero rational number x can be uniquely expressed
in the form pkm/n, where m and n have no common divisors and neither is divisible
by p. Define the p-adic norm on the rational numbers by \x\ — p~k when x ^ 0, and
101 = 0. We obtain the p-adic numbers by completing Q with respect to this norm. It is
not difficult to show that the norm satisfies

and the ultrametric inequality,

\x + y\

It follows from the ultrametric inequality, that every point within a ball can be
considered to be its centre. Similarly, it can be shown that two balls are either disjoint
or one is contained in the other.

A nonzero p-adic number x such that |x| = p~k may be written in the form

where 0 ^ x3 ^ p — 1 and xk ^ 0. This will be called the standard p-adic expansion and
the arithmetic of these expansions is done formally, with carrying.
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[3] Maximal averages 359

As Qp is a locally compact commutative group, there is a Haar measure, that neces-
sarily satisfies d(ax) — \a\ dx, where dx denotes an element of this measure. We normalise
so that {x € Qp : | i | ^ p r} has measure p r .

We shall be concerned with n-dimensional vector spaces over Qp. To this end let QJJ
be the n-dimensional vector space over Qp, and let | • | denote the standard norm on QJ)
defined by

\x\ = max \xA.

It is easy to show that this is also an ultrametric. A Haar measure is given by
dx = dxi... dxn, where dxj is the Haar measure on the j t h copy of Qp.

Balls denned using an ultrametric have some interesting properties. As

{y G Qp" :\y-x\< f) = {y G ®n
p:\y - x K P ' " 1 } ,

we see that they are both open and closed. Balls that contain the origin are subgroups.
Every point within a ball can be considered to be its centre. Also, two balls are either
disjoint or one is contained in the other.

We assume in general that all functions are complex-valued and Borel measurable.
We define the compactly supported, locally constant functions to be the compactly sup-
ported functions that are constant on the cosets of some ball, and denote the space of
these functions by

3. FOURIER ANALYSIS ON THE P-ADIC NUMBERS

In order to do Fourier analysis we shall need an understanding of the characters of

Qp and QJJ. Define x : QP —• C by

{ fl e2'"^^ when | i | > 1

1 otherwise.

The additive characters of <QP are of the form Xa • QP —> C;

Xa{x) = x(ax),

where a € Qp, and the additive characters of Qp are of the form Xo : Qp —> C;

Xa{x) =x(a-x),

where a € Qp and a • x = axxi + ... + anxn.

The following result can be shown using the fact that balls have multiple centres. A

proof can be found in [2] or [8].
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LEMMA 2 . Suppose that a € Qp and \a\ > 1. Tien

/ x(at) dt = 0.

The following van der Corput lemma for p-adic polynomials was recently proven
in [2]. It will be key to the proof of Theorem 1.

LEMMA 3 . Suppose that a i , . . . , an e Qp. Tien

1/
l./ltl<l

ant
n) dt

where A = max |a_,|.

The Fourier transform is defined by

(-£ • x) dx

for all / € . a n d

for all finite Borel measures /x. The Fourier transform maps functions in <S(Qp) to func-
tions in <S(<Q>;j), and 5(QJ) is dense in ^(QJ), where 1 < g < oo. Thus, ^(Qp1) will take
the role of the Schwartz function space.

Convolution is defined as usual by

f*g(x)= f(x-y)g(y)dy= f(y)g{x - y)dy = g * f{x),
Jqn JQ™

and
f(x) = / /(x - y) dfi{y) = f* n(x),

for all functions / , g, and finite Borel measures \i for which the integral is defined. The
following results follows as usual from the definitions and Fubini's theorem.

THEOREM 4 . Suppose that f,g £ Ll(Q£), and fi is a finite Borel measure. Then

and

wiere
M

\\f

is the total variation of (i.
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[5] Maximal averages 361

THEOREM 5 . Suppose that f,g(= Ll(Qp) and fi is a finite Borel measure. Then

f *9 = / ? , and A* * / = VJ-
Finally, we present p-adic versions of the Fourier inversion theorem and Plancherel's

theorem. For proofs see [8].

THEOREM 6 . Suppose that f € Ll(<Q£). Then for almost every x £ QJ,

/ f{y)Xx{y)dy->f(x)

as k —> oo.

THEOREM 7 . Suppose that f € L^Qp) n L2(Q^). Tien H/lli^Qn) = ||/iU»(Q.).

As Ll(Qp) n L2(Qp) is dense in L2(Qp) we can extend the definition of the Fourier
transform to the whole of L2(<Q§), as usual.

4. BESSEL POTENTIALS ON THE P-ADIC NUMBERS

It will be convenient to define Tn by

where s is a nonzero complex number. We shall require a p-adic analogue of the Bessel
potential ( l + | z | 2 ) s / 2 . Note that

where | | ( l , i ) | | is the (n + l)-dimensional Euclidean norm of (l,x) e R n + l . Now the
(n + l)-dimensional p-adic norm of ( l , i ) € Qp + 1 is max{l , | x |} , so, following Taibleson
[7, 8], we define the n-dimensional p-adic Bessel potential J' : QJ) —> C by

(2)

where s € C. We also define Ks : Q£ —> C by

- p~n~s) / r n ( s ) when

0 otherwise,

when s ^ —n, and

K ,\-W- p~n> loeP (p/lxD when lxl < l

I 0 otherwise.

It is easy to calculate that K, € Ll(Q£) when Re(s) < 0. We shall require the following

results due to Taibleson [7, 8].

https://doi.org/10.1017/S0004972700034602 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034602
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PROPOSITION 8 . Suppose that Re(s) < 0, and Js and Ks are defined as above.
Then J°(O = K,(t).

LEMMA 9 . Suppose that 3s is defined as above and that Re(s) < 0. Then there
is a constant C, so that

for all j / e Q J .

5. T H E HARDY-LITTLEWOOD MAXIMAL THEOREM

We shall make use of non-isotropic dilations pk : Q£ —> Q£ defined by

Pk(x) = {pkxup
2kx2,... ,pNkxN),

and the norm d : Q^ —> K defined by

in Sections 7 and 8. From now on balls will be defined using d, unless specified otherwise,
so that

B{x,pk) = {y : d(x - y) ^ pk} = {y : \y, - Xj\ < jfk for all j = 1 , . . . , TV},

and \B(x,pk)\ = pMk, where M = l + 2 + . . . + Â  = N(N + l)/2. Balls denoted by B*

for some j € N, will also be defined using d, but will have no specified radius or position.
It is not difficult to show that d is an ultrametric. Thus, all points within a ball can be
considered to be its centre, and two balls are disjoint or one is contained in the other, as
before.

We begin with a covering lemma in the style of N. Wiener. We note that the
technicality is significantly reduced when dealing with ultrametrics.

LEMMA 10. Suppose that E C Q£ has finite Haar measure, and is covered by

balls defined with an ultrametric. Suppose that the balls have uniformly bounded mea-

sure. Then there exists a countable and disjoint subcover.

PROOF: We choose a refinement from the original cover. We start with a ball with
largest measure, and discard all the balls contained within it. Then we choose a ball
with largest measure from the remaining balls, and discard the balls which are contained
within it. We continue until all the balls have been chosen or discarded.

The refinement is disjoint as any two balls are disjoint or one is contained in the
other. It is countable as E is of finite measure, and each ball has positive measure.
Finally it is a cover, as we only discarded redundant elements of the original cover. D

https://doi.org/10.1017/S0004972700034602 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034602


[7] Maximal averages 363

We shall now define the Hardy-Littlewood maximal function Mf for a function

/ £ j^/ioc(Qpr)- Define <&k by

where 1B(O,P*) denotes the characteristic function of B(0,pk), and Mf by

Mf(x) = s u p . / \f(y)\dy = sup $k*\f\.

As all points within a ball can be considered to be its centre, this is the analogue of both
the centred and uncentred maximal function of the classical theory.

THEOREM 1 1 . Suppose that Mf is defined as above. Then

(3) | {x 6 Qp" : Mf(x) > a} | ^ i | | / | | t . ( Q ? ) ,

for all f € L1 (Q^), and forq>l,

( a V
TZT

for all f e L<(QP).

PROOF: Let F be any subset of {x e Q^ : Mf(x) > a} with finite measure. For
each x G F there exists a ball B(x) so that

We can apply Lemma 10 to the cover {B(z)} F , to leave a countable, disjoint subcover
{5>}jeN. Thus

j=0 j=O

Now this is true for all subsets of {x € Qp : Mf(x) > a} with finite measure, so that

(4) {x e Q^ : Mf(x) > a} |< - f \f(x)\ dx,

as desired.

To prove the second part, we split / as f + fa, where

W when \f&\ > a / 2

0 otherwise,

https://doi.org/10.1017/S0004972700034602 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034602
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and

, i ,-lfW when \f(x)\^a/2
Ja\X) — \

10 otherwise.

As {x e Qp : Mfa > a/2} = 0, we see that

{Mf > a} C {A4/a > a/2} U {At/a > a/2} = {Mfa > a/2},

where {Mf > a} denotes {x € Q^ : A^/(x) > a} as usual. By (4) we have

\{Mfa > a/2}\ < I f \f(x)\ dx = - [ \f(x)\ dx,

so that

f \Mf(x)\qdx= f qaq-l\{Mf > a}\da
JQN JO

^2q ^a"'2 f \f{x)\dxda.
JO J{\f\>a/2]

Thus, by changing the order of integration, we obtain

f \Mf(x)\qdx^2q f \f(x)\ f a"'2dadx = - ^ - f \f(x)\"dx,
V % Jo 9-1%'

as desired. u

The bound in (3) is absolutely sharp, and this is easily observed by considering

/ = ls(o,i)-
An important corollary of the Hardy-Littlewood maximal theorem is the following

differentiation theorem.

COROLLARY 1 2 . Suppose that f e Ll(<Q%). Then for almost every x € Q^,

fc-»-oo|B(z,pfc)| JB(

/

B(X,P")

P R O O F : It will suffice to show that \Eg\ = 0 for all S > 0, where

: limsup f(y) dy - f(x)
\B(x,jfi)\

Let e > 0 and ge e S(Qp) such that | | / — ge\\Li ^ e. Now when p* is sufficiently small,

1
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for all i € Q " , so that

f(y) dy - f(x) = -r-^r

Thus, £j C A* U Bf, where

limsup / / (f(y) - gt(y)) dy\ > 6/2)

and

Now by Theorem 11,

2
5>

€ Q% : limsup / (f{y) - ge{y)) dy

and by Chebyshev's inequality,

\{x 6 Q? : \ge(x) - f(x)\ > 6/2)\ ^ 11|/ - fclln ,

so that 2 2 ^ 4 £

0 0 0

Finally we let e tend to zero to see that \Eg\ = 0 . D

6. T H E CALDERON-ZYGMUND DECOMPOSITION

The following proposition splits an integrable function into a large and a small
part. The small part will naturally be easy to bound, and the large part will have some
redeeming qualities.

PROPOSITION 13 . Suppose that f e L1^") and that a > 0. Tien

;=o

where g, bj €. L^Q^) and each bj is supported in a ball B3, so that

(') |ff(I)| ^ a f°r almost every x,

(ii) I j

(iii) / bj(x)dx=0,
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PROOF: Define E = {x e Q^ : Mf[x) > a}, where Mf is the Hardy-Littlewood
maximal function, defined with our new balls and norm. For x € Q^ let S(x) be the
minimal distance such that

B(x,6(x))nEc^<t>.

The set E is of finite measure, by Theorem 11, and as B(x,6(x)/p) c E we see
that the balls are of uniformly bounded measure. Thus we can apply Lemma 10 to
<B(x,S(x)) > , to obtain a countable and disjoint subcover of E, which we denote

by {Bi}.

Define g by

{/(x) when x <£ E

If(y)dy when
and bj by

bj(x) = lBi (x) (j(x) - pjy j ^ f(y) dy^j,

so that / = g + £V bj.

When x $ E, we see by Corollary 12 that 5(1) < a for almost every x. When x & E,

as 5 J H Ec y£ <b, so we have proven the first part. Similarly as B7 D E1' ^ 0,

\dxf \f(x)\
JBj

J^J-J \f(x)\dx^2\B'\a,

so the second part holds. The third part is clear by the definition of bj. Finally we
consider the balls B{, where B(x,pk), = B(x,pk~l). It is clear that the B{ are disjoint,
and that UB3 C E. Thus

3 3

by Theorem 11, and we are done. D

7. I? BOUNDEDNESS

It will be useful to consider M.^ as a maximal convolution of measures. To this end

we let n be the measure defined by

f f(x)dn(x)= f f{j(t))dt,
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[11] Maximal averages 367

where j(t) = (t, t2,..., tN), and let ̂ i* be the measure defined by

Then A 1 ^ / is defined by

M^f(x) = SUp -r / / ( l - 7(t)) dt = SUP Mfc * / .
*gz P^ J|t|$p* *ez

The use of square functions will be key to the proof of the following proposition.

This idea was developed by Stein and Wainger [4, 5].

PROPOSITION 1 4 . Suppose that M^ is defined as above. Then there is a con-

stant CN so that

forallfeS(Q»).

P R O O F : Define the square function Qf by

1 / 2

where

as before, so that

where M — N(N + l) /2. We note that x and s are vector-valued, and t is scalar-valued.
Now

and A4 is bounded by Theorem 11. Thus, it remains to show that Q is bounded. If we
assume for the moment that Qf 6 L2(Qp), then

kez

so that by Plancherel's theorem,

!|2
IIS/Ik =

"V fcez
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where mfc(£) = / £ ( 0 - ^ ( f ) . Thus

- L * ( ? ' + ^ + • • • + P")* ~ n L
When l^jlp7'* ^ 1 for all j , we have

§}-t+—t2 +•••+—tN)dt~l

as x ls trivial on {x € Qp : \x\ ^ l } . Similarly

so that mjt(^) = 0. When I^JIP3* > 1 for some j , we have

by Lemma 2, so that

dt < P-

by Lemma 3. Thus

E

for some constant Cyv. Thus

11^/11^2= /
•/Qpr kez

by Plancherel's theorem, and we are done. D

In order to take advantage of the 'slack' in the above argument we introduce the
measures vs defined by

and vs
k defined by

(5) v'k{x) = us{p-k{x)) = fl(p-k(x)) max{l, |p-fc
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[13] Maximal averages 369

where s € C. By a change of variables,

so by the proof of Proposition 14, we see that A/"5 defined by

Af,f =

is also L2(Qp) bounded when Re(s) < 1/iV. We state this formally for future reference.

PROPOSITION 1 5 . Suppose Afs is defined as above. Then for each s € C such
that Re(s) < l/N, there is a constant Cs so that

for all f € S(Q£).

8. Lq BOUNDEDNESS

We aim to bound Afs when Re(s) < 0. This will enable us to use complex interpo-
lation to obtain a bound for A4j.

From (5) we can calculate, using Theorem 5, that

1 ^
^kix) = -p^ft* J'(pk{x)),

where Js is the Bessel potential defined as in (2). Thus vs
k is an L1(Q^r) function when

Re(s) < 0, by Proposition 8 and Theorem 4, and by a change in variables ||^||^,i ^ H-̂ 'IU1

for all A; G Z.

One of the reasons we have been considering the norm d is so that we can obtain
the following version of Hormander's condition. When d(x) > d(y), we have

d(pk(x)) > d{pk{yj)

for all A; € Z. It is easy to see that \x\ ^ d(x) when d(x) ^ 1. We also note that as d is
an ultrametric, d(x + y) = d(x) when d(x) > d(y).

PROPOSITION 1 6 . Suppose that v"k is defined as above, and that Re(s) < 0.

Then there is a constant Cs so that

/ sup\i/'k(x -y)- v'k(x)\dx ^ Cs

for all
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P R O O F : First we note that

/ = / sup\v'k(x - y) - i/'k(x)\dx
Jd(x)>d(y) k

u'k{x - y) - y'k{x)\dxE / \
k Jd(x)>d(y)

= E / i f ?'
kJd(x)>d(y)P J\t\^l

E / i f ((*( V) 7()) - J'{Pk(x) - y(t))
kJd(x)>d(y)P J\t\^l

When |/3*(y)| ^ 1, we have d[pk(y)) ^ 1, so that

\pk{x -y)\> d(Pk(x - y)) > d(Pk{y)) ^ 1,

as d(x — y) = d(x) > d(y). Hence, as Js is supported in the unit ball,

Js(Pk(x-y)-j(t))=0

for all |i| ̂  1. Similarly when |p*(y)| ^ 1,

\pk{x)\ £d(pk(x)) >d(pk{y)) £1,

so that

dx.

for all \t\ ̂  1. Thus, by Fubini's theorem,

'< E / i / \js(pk^-y)-7(t))-Js(pk(x)-j(t))Uxdt,
*:|p*(y)l<i</|t|^lP JQ?

so by the change of variables z = pk(x) - 7(t),

Ja(z-Pk(y))-Js(z) dzdt.

Finally, by Lemma 9,

'* E
k-.\Pk(y)\<i

as desired. 0

We use this and our Calderon-Zygmund decomposition to prove the following propo-
sition.

PROPOSITION 17 . Suppose that 1 < q < oo and that Af" is defined as above.
Then for each s € C such that Re(s) < 0, there is a constant CqtS so that

for allfe
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PROOF: When Re(s) < 0, we have

sup \u'k * f(x)\ < |K||L1 | | / | | to

for all k € Z. Hence there is a constant 4̂a =

(6) sup

SO that

t- ,

for all / 6 S(Qp). We shall show that J\fs is weak type (1,1) and then interpolate using
(6) to obtain the result.

We split / into two parts g and b — £3 &j as m Proposition 13, so that

{xe®? : Af3g(x) > Asa} = 0.

As
x . JVSJ {X) s A/lgCtj k_ ^x . Jvsyyji) ^ r\.8ix^ kj ^x . ,

it remains to bound \\x € Q£ : Nsb(x) > Asa}\. Let bj be supported on 5-̂  = B(XJ,SJ),

say, then

/ = f \Msb(x)\ dx ̂  f supk * 6(i)| ^
J(UBJY J(UBJ)C k

= sup V ) . / bj{y)vs
k{x - y) dy

JlUBiy k —3 Jgj
dx.

By (iii) in Proposition 13, we have fBJ bj(y)i/k(x — Xj) dy — 0, so that

dxI ^ sup V . / 6j(y)(ti(x -y)- v°k(x - x,)) dy
J(uB'Y k 3 J *

E r r
I 1 ^ / \ 4 / \ l f / l l / \ l fI sup|J/fc^x y) — vk\x Xj)\ax i \Oj\jfj\ay.

3 J ( Dj \c lc J RJ

Now if we make the change of variables z = x — Xj, then we see that

E f f

I sup|i/£(z + Xj -y) - us
k{z)\dz I \bj(y)\dy.

3 J B(O,6j)c k J Bi

Now d(z) > 6j, as x € B(XJ,6J)C, and d(y — Xj) < 6j, as y 6 B(XJ,6J). Thus

/ sup i/jE(z-(y-I,-))-"*(*) dz^C,

by Proposition 16, so that
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By (ii) and (iv) of Proposition 16,

I = f \Nsb{x)\ dx^C,^2 2a\BJ\ <

so that

\{x 6 Q^ : Kb(x) > Aaa}\ ^ -f- ||/||Ll + | U.

Thus by (iv) in Proposition 16 again, we see that

ll£l '

a - l l L l "

Finally, as {x € Q^ : M,f{x) > 2A,a) c { i e Q p " : N,b[x) > Aaa),

L 1 •

We interpolate between this bound and the bound in (6) using the argument in the
proof of Theorem 11, and we are done. D

Finally we require the following complex interpolation theorem due to Stein [6]. We
reformulate it in the generality that we require. Let

D = {z€C:a^ Re(z) ^b},

and call a family of operators {Tz}zec admissible if, for f,g G S(Q^), the mapping

z^ f {TJ{x))g{x)dx

is analytic in the interior of D, continuous on D, and uniformly bounded on D.

THEOREM 18 . Suppose that {7^}z6c is an admissible family of operators satis-

fying

and

for all f € S(Qp), where 1 ^ qa,Qb ^ oo and Ma, Mb are constants. Then

| | 7 | | < Ml~ M ll/ll

for all f e 5 (Q^) , where \/qe = (1 - 9)/qa + 0/qb and 0 ^ 6 ^ 1.
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We 'linearise' Na in order to apply this theorem. Let x i-> k(x) be an arbitrary
integer-valued function on Q^. With it we define the admissible family of operators U,

by Usf(x) = i/'(a) * f{x). As

Ho fix) = ul{x) * f(x) = Aifc(i) * f{x),

we let b = 1/27V and take 6 and a so that (1/2./V - a)9 + a = 0. It is not hard to show
that 0 and a can be chosen so that qg can take all the values in the range 1 < q$ < oo.
Hence we can interpolate between the bounds in Proposition 17 and Proposition 15 so
that

Il^b/||L,(QW) ^ Cq ||/||t,(QJV)

for all / € S{Qp). Now as x t-t kix) is arbitrary, and

Afofix) = supi/fc° * f{x) = My fix),

we obtain the following proposition.

THEOREM 19 . Suppose that 1 < q < oo and that M.^ is defined as above. Then
there is a constant Cq so that

9. T H E METHOD OF DESCENT

We shall now return to our original curve and dimension. This technique has its
origins in a paper of de Leeuw [1].

THEOREM 2 0 . Suppose that 1 < q < oo and that My is defined as above. Then

there is a constant Cq so that

Cg |

for all f €

PROOF: Let A" be a positive integer, and define M^ by

Mffix) = sup -^ f ^ f(x - 7(0) <**,

where k takes integer values, and M~ by

M?fix)= sup 1 / / ( i-7(0)d«.
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Recall that R : Q^ —>• Q£ is a linear map so that

and

M?f(x) = sup - / f(x - Rtf(t)) dt.

Let Tyf(x) = f(x + R(y)), so that

where Br(0) — {y € Q^ : |y| < p r } . At this point K is fixed, so we may choose r so that
r > NK. If y € 5r(0) and |*| < p*, then \y - j(t)\ < pr . Hence, when y e 5r(0) ,

TyM*f{x) - sup i / /(x + fl(y - 7(t)))

where l r denotes the characteristic function of

Thus,

(8) TyM«f(x) = sup ^ / ^x(y - 7(*)) ^ = ^

where Fx(z) = f(x + R(z))lr(z).
We have

(9) / \M?Ft{y)\"dyZC![ \Fx(y)\"dy,
JBr(0) J®N

by Theorem 19, and by Fubini's theorem,

Q

Hence we can integrate (9) to obtain

(10) / / \M?Fx(y)\9dydx^pNrq\\f\\l,{Qn).

Now we combine (7), (8) and (10) so that

4K t\\1 S P

and let K tend to infinity to obtain the result. D
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10. CONCLUSION

As the space of compactly supported, locally constant functions <S(Qp) is dense in
L9(Qp), when 1 ^ q < oo, it is clear that Theorem 1 can be obtained from Theorem 20
by a simple limiting argument. We note the following corollary, which is a version of the
fundamental theorem of calculus along p-adic curves. The proof is the same as that for
Corollary 12.

COROLLARY 2 1 . Suppose that f £ Lq(Qp), where 1 < q < oo. Suppose that 7
is defined as above, with 7(0) = 0. Then for almost every x € QjJ,

It is an open question, in both the Euclidean and p-adic cases, as to whether there
is a weak type (1,1) version of Theorem 1. Similarly, it is not known whether there is an
L1 version of Corollary 21.
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