
Canad. J. Math. 2024, pp. 1–31
http://dx.doi.org/10.4153/S0008414X24000245
© The Author(s), 2024. Published by Cambridge University Press on behalf of
Canadian Mathematical Society

Geometric structures in pseudo-random
graphs
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Abstract. In this paper, we provide a general framework for counting geometric structures in
pseudo-random graphs. As applications, our theorems recover and improve several results on
the finite field analog of questions originally raised in the continuous setting. The results present
interactions between discrete geometry, geometric measure theory, and graph theory.

1 Introduction

Let Fq be a finite field of order q where q is an odd prime power. The investigation
of finite field analogs of problems originally raised in geometric measure theory has
a long tradition, for instance, the Erdős–Falconer distance problem [6, 7, 18], sum-
product estimates [4, 10], the Kakeya problem [8, 33], frame theory [16, 17], and
restriction problems [15, 23, 24, 28, 29]. Studying these problems over finite fields
is not only interesting by itself, but it also offers new ideas to attack the original
questions. Some of these problems can be proved by using results from graph theory.
For instance, in [18], Iosevich and Rudnev proved the following theorem on the
distribution of distances in a given set.

Theorem 1.1 (Iosevich–Rudnev [18]) Let E be a set in F
d
q . Assume that ∣E∣ ≫ q d+1

2 ,
then

Δ(E) ∶= {∣∣x − y∣∣ = (x1 − y1)2 + ⋅ ⋅ ⋅ + (xd − yd)2∶ x , y ∈ E} = Fq .

It is well known that this theorem can be reproved by using the famous expander
mixing lemma, which helps describe the behavior of (n, d , λ)-graphs. We say G is
an (n, d , λ)-graph, if it is a regular graph with n vertices, each of degree d, and
all eigenvalues of its adjacency matrix are bounded in absolute value by λ (with
the exception of the largest eigenvalue, which will be d, as the graph is regular).
Specifically, the expander mixing lemma states that for such a graph, the number of
edges in a given vertex set U, denoted by e(U), is bounded from both above and below
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by the inequality

∣e(U) − d∣U ∣2
2n

∣ ≤ λ∣U ∣.

To derive Theorem 1.1 from this estimate, for α ∈ F∗q , one just needs to define the
distance graph DGα with the vertex set Fd

q and there is an edge between two vertices
x and y if and only if ∣∣x − y∣∣ = α. It is not hard to check that DGα is a regular Cayley
graph with qd vertices, of degree (1 + o(1))qd−1, and the second eigenvalue is bounded
by 2q d−1

2 by using Kloosterman sums [19, 32]. So, for any α ≠ 0, the expander mixing
lemma implies directly that any vertex set U of size at least 2q d+1

2 spans at least one
edge.

We observe that the argument above only made use of the pseudo-randomness
properties of the graph, and once the eigenvalues were calculated ignored anything
about Fq or the distance function. Because of this observation, this machinery
provides a unified proof for a series of similar questions, for example, one can replace
the distance function by bilinear forms [12], Minkowski distance function [13], or
other functions [31].

From this observation, it is very natural to ask what kinds of finite field models can
be extended to the graph setting? That is, what “geometric structures” can we guarantee
in a general graph with some pseudo-randomness condition? The main purpose of this
paper is to provide three such configurations, and the three topics we present here can
be viewed as generalizations of the Erdős–Falconer distance conjectures, which have
been studied intensively in the literature. Our theorems imply several results found
previously as special cases. Moreover, as they rely on the pseudo-randomness of an
underlying graph, they can be applied in a straightforward manner to other settings,
such as modules over finite rings.

Throughout the paper, we say that G is an (n, d , λ)-colored graph with color set D
if it is a graph edge-colored with ∣D∣ colors such that the subgraph of any fixed color
is an (n, d , λ)-graph.

1.1 Cartesian product structures

We first start with the following question about finding rectangles in F
d
q .

Question 1.2 Let E be a set in F
d
q and α, β ∈ F∗q . How large does E need to be to

guarantee that there are four points w , x , y, z ∈ E such that they form a rectangle of side
lengths α and β, i.e.,

(w − x) ⋅ (x − y) = 0, (x − y) ⋅ (y − z) = 0, (y − z) ⋅ (z −w) = 0, (z −w)(w − x) = 0,
(1)

and

∣∣w − x∣∣ = ∣∣y − z∣∣ = α, ∣∣x − y∣∣ = ∣∣z −w∣∣ = β.(2)

Lyall and Magyar [26] proved that for any δ ∈ (0, 1), there exists an integer q0 =
q0(δ) with the following property: if q ≥ q0 and E ⊂ F

2d
q with ∣E∣ ≥ δq2d , then E

contains four points a, b, c, and d satisfying (1) and (2). This is the finite field model
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of a result in the same paper which states that for any given rectangle R in R
2d , if

S ⊂ R
2d has positive Banach density, then there exists a threshold λ0 = λ0(S ,R) such

that S contains an isometric copy of λR for any λ ≥ λ0. Notice that the result in [26]
was actually proved in a more general form, for d-dimensional rectangles, though we
state it here for two-dimensional rectangles.

In the first theorem of this paper, we extend this result to a general graph setting.
For two graphs G and H, the Cartesian product of G and H, denoted by G ◻ H, is the

graph where V(G ◻ H) = V(G) × V(H) and (u1 , v1) ∼ (u2 , v2) if and only if either
u1 = u2 and {v1 , v2} ∈ E(H) or v1 = v2 and {u1 , u2} ∈ V(G). We use S(x) to denote
the indicator function of the set S .

Theorem 1.3 Let G i be (n i , d i , λ i)-graphs with 1 ≤ i ≤ 2. Set G = G1 ◻ G2. For any 0 <
δ′ < δ < 1, there exists ε > 0 such that for any S ⊂ V(G1 ◻ G2)with ∣S∣ ≥ δ∣V(G1 ◻ G2)∣,
if max{ λ1

d1
, λ2

d2
} < ε, then

N = ∑
(u1 ,u2)∈E(G1),(v1 ,v2)∈E(G2)

S(u1 , v1)S(u1 , v2)S(u2 , v1)S(u2 , v2) > δ′4n1n2d1d2 .

Theorem 1.3 recovers the theorem on rectangles in F
d
q by Lyall and Magyar

(Proposition 2.1 in [26]) which we now state.

Proposition 1.4 (Proposition 2.1 in [26]) For any 0 < δ ≤ 1, there exists an integer q0 =
q0(δ) with the following property: if q ≥ q0 and t1 , . . . , td ∈ F∗q , then any S ⊆ F

2d
q with

∣S∣ ≥ δq2d will contain points {x11 , x12} × ⋅ ⋅ ⋅ × {xd1 , xd2} ⊆ V1 × ⋅ ⋅ ⋅ × Vd with ∣x j2 −
x j1∣2 = t j for 1 ≤ j ≤ d where we have writtenF

2d
q = V1 × ⋅ ⋅ ⋅ × Vd with Vj ≅ F

2
q pairwise

orthogonal coordinate subspaces.

To see this, let G1 and G2 be the graphs each with vertex set Fd
q where a ∼ b in

G1 if ∣∣a − b∣∣ = α and x ∼ y in G2 if ∣∣a − b∣∣ = β. Then G1 and G2 are graphs with qd

vertices, degree asymptotically qd−1 . We next appeal to a result from Vinh in [31] that
puts together work from [1, 22] in a form useful for us. Specifically:

Theorem 1.5 (Theorem 10.1 in [31]) Let Q be a nondegenerate quadratic form on F
d
q .

For any α ∈ F∗q , the graph whose vertices are Fd
q and whose edges are the pairs of distinct

vertices x , yFd
q satisfying Q(x − y) = α, is a (qd , (1 + o(1))qd−1 , 2q(d−1)/2)-graph.

This gives us that λ ≤ 2q(d−1)/2 here. Note that if ∣∣u1 − u2∣∣ = α and ∣∣v1 − v2∣∣ =
β, then letting w = (u1 , v1), x = (u1 , v2), y = (u2 , v1), and z = (u2 , v2), we have that
w , x , y, and z form a rectangle in F

2d
q with side lengths α and β. Applying Theorem 1.3

to these specific graphs shows that for q large enough, any subset of F2d
q of size at least

δq2d contains Ω(q4d−2) rectangles, giving a quantitative strengthening of Lyall and
Magyar’s result. Another application of Theorem 1.3 is on the number of rectangles
in F

2
q with side lengths in a given multiplicative subgroup of Fq ; precisely, given a

multiplicative subgroup A of Fq , we define G1 = G2 being the graph with the vertex
set Fq and there is an edge between x and y if x − y ∈ A. This is clear that this is a
Cayley graph with q vertices, of degree ∣A∣, and it is also well known that λ ≤ q1/2 (see
[20, (1)] for computations). Applying Theorem 1.3, we recover Theorem 1.1 from [20].
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Theorem 1.6 (Theorem 1.1 in [20]) For any 0 < δ < 1, there exists an integer q0 with
the following property: if q ≥ q0 and A is a multiplicative subgroup of F∗q with ∣A∣ ≥
q2/3, then any set S ⊂ F

2
q with ∣S∣ ≥ δq2 contains at least Ω ( ∣S∣

4 ∣A∣2
q5 ) rectangles with side

lengths in A.

1.2 Distribution of cycles

Our motivation of this section comes from the following question.

Question 1.7 Let E be a set in F
d
q , and let m ≥ 4 be an integer. How large does E need to

be to guarantee that the number of cycles of the form (x1 , . . . , xm) with ∣∣x i − x i+1∣∣ = 1
for all 1 ≤ i ≤ m − 1, and ∣∣xm − x1∣∣ = 1, is close to the expected number ∣E∣m q−m?

Iosevich, Jardine, and McDonald [14] proved that the number of cycles of length
m, denoted by Cm(E), is close to the expected number if E is sufficiently large. Here,
we record their result, which is Theorem 1.2 in [14].

Theorem 1.8 (Theorem 1.2 in [14]) Given E ⊆ F
d
q , we have that

Cm(E) = (1 + o(1)) ∣E∣
m

qm ,(3)

whenever

∣E∣ ≥ { q 1
2 (d+2− k−2

k−1 +δ) ∶ m = 2k, even
q 1

2 (d+2− 2k−3
2k−1 +δ) ∶ m = 2k + 1, odd

where

0 < δ < 1
2 ⌊m

2 ⌋
2 .

In the continuous setting, this is a difficult problem, and there are only a few partial
results. For instance, as a consequence of a theorem due to Eswarathasan, Iosevich, and
Taylor [9], we know that if the Hausdorff dimension of E, denoted by s, is at least d+1

2 ,
then we know that the upper Minkowski dimension of the set of cycles in E is at most
2s − m. If we consider the case of paths, then Bennett, Iosevich, and Taylor [3] showed
that there exists an open interval I such that for any sequence {t i}m

i=1 of elements
in I, we always can find paths of length m + 1 with gaps {t i}m

i=1 between subsequent
elements in E as long as the Hausdorff dimension of E is greater than d+1

2 . We refer
the reader to [25] for the recent study on this problem. It is worth noting that in the
discrete setting, results on distribution of paths also play a crucial role in proving (3).

In the graph setting, we have the following extension. We note here that we are
counting any sequence of m vertices (v1 , . . . , vm) with v i ∼ v i+1 and v1 ∼ vm as a cycle
of length m. That is, we are counting labeled cycles and we include degenerate cycles
in the count. One could combine Theorem 1.9 for various values of m and lemmas
used to prove it to obtain results about nondegenerate cycles as well, but we do not
do this explicitly here. In what follows, when two quantities X(n) and Y(n) vary
with respect to some controlling parameter n, we write X(n) ≪ Y(n) to indicate that
X(n) = O(Y(n)).
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Theorem 1.9 Let G be an (n, d , λ)-graph, and let U be a vertex set with λ ⋅ n
d = o(∣U ∣).

Let Cm(U) denote the number of (labeled, possibly degenerate) cycles of length m with
vertices in U. Then we have

∣Cm(U) − ∣U ∣mdm

nm ∣ = O ( λ∣U ∣m−1dm−1

nm−1 + λm−2∣U ∣2d
n

) .

The error term cannot be improved for m = 4. For instance, we define a graph with
the vertex set F2

q where two vertices (a, b) and (c, d) are adjacent if and only if ac +
bd = 1. Using the geometric facts inF

2
q that any two lines intersect in at most one point

and there is only one line passing through two given points, we can see that this graph
contains no C4, even though it is a (q2 , q,√q) graph (if one includes loops).

We also remark that as a corollary of the following result due to Alon, we know that
the number of cycles in U is close to the expected number as long as ∣U ∣ ≫ λ(n/d)2.
Here, we state a version of this result given as [21, Theorem 4.10].

Theorem 1.10 Let H be a fixed graph with r edges, s vertices, and maximum degree
Δ, and let G = (V , E) be an (n, d , λ)-graph, where d ≤ 0.9n. Let m < n satisfy m ≫
λ ( n

d )
Δ . Then, for every subset V ′ ⊆ V of cardinality m, the number of (not necessarily

induced) copies of H in V ′ is

(1 + o(1)) ms

∣Aut(H)∣ (
d
n
)

r
.

The statement about cycles implied by this result is of course weaker than Theorem
1.9. We now discuss how Theorem 1.9 implies and improves previous, more specific
results. In [14], counting results for cycles are proved in both the distance graph and
the dot-product graph over Fd

q . Formally, let Gdist
t and Gprod

t be the graphs on vertex
setFd

q where u ∼ v in Gdist
t if ∣∣u − v∣∣ = t and u ∼ v in Gprod

t if u ⋅ v = t. As each of these
graphs is approximately qd−1 regular and with second eigenvalue bounded above by
2q(d−1)/2, Theorem 1.9 can be applied. In [14], the same quantitative results are proved
for both graphs but with different methods, and the authors write the following:

“We note that in this paper, we obtain the same results for the distance graph and
the dot- product graph. While the techniques are, at least superficially, somewhat
different due to the lack of translation invariance in the dot-product setting, it is
reasonable to ask whether a general formalism is possible.”

Theorem 1.9 answers this question in a strong way, as it may be applied in a much
more general setting than just distance or dot-product graphs. Furthermore, Theorem
1.9 implies the estimate (3) with an improved threshold on the size of the subset,
namely we may remove the δ in the exponent that appears in Theorem 1.8, from [14].
The proof of Theorem 1.9 requires estimates on the number of paths in our graph, for
example, Proposition 3.5. This is again done in a general way for (n, d , λ)-graphs. We
also note that colorful versions of Theorem 1.9 and the lemmas required to prove it
can be proved with only minor modifications to the proof. That is, given an (n, d , λ)-
colored graph and a fixed coloring of a path or cycle, one can obtain the same estimates
on the number of such colorful subgraphs that appear. For ease of exposition, we only
prove an uncolored version of Theorem 1.9, but Theorems 1.15 and 1.16 (see below)
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are stated and proved in a colorful way as proof of concept. It is possible through this
general setup to recover Theorem 1.1 of [2] and Theorem 6 of [5], both of which we
explicitly state below, for the sake of completeness.

Theorem 1.11 (Theorem 1.1 of [2]) Let E ⊆ F
d
q , where d ≥ 2 and ∣E∣ > 2k

ln 2 q d+1
2 . Suppose

that t i ≠ 0, for 1 ≤ i ≤ k. Then

∣∣{(x 1 , . . . , xk+1) ∈ E × ⋅ ⋅ ⋅ × E ∶ ∥x i − x i+1∥ = t i , 1 ≤ i ≤ k}∣ − ∣E∣k+1

qk ∣ ≤ 2k
ln 2

q
d+1

2
∣E∣k
qk .

Theorem 1.12 (Theorem 6 of [5]) Let E ⊆ F
d
q , where d ≥ 2, α, β ∈ F∗q , and E is large

enough so that for all ε > 0, there exists a positive constant Cε so that ∣E∣ ≫ q d+1
2 +ε . Then

∣{(x 1 , x2 , x3) ∈ E × E × E ∶ x 1 ⋅ x2 = α, x2 ⋅ x3 = β}∣ = (1 + o(1)) ∣E∣
3

q2 .

Finally, we prove Theorem 1.9 in two different ways. The second approach is quite
specific to counting cycles, but more straightforward (it is also slightly weaker: we
obtain the same quantitative results for m ≥ 5 but for m = 4 only prove the result up to
a multiplicative constant factor). The first approach passes the problem to counting
structures in the tensor product of two (n, d , λ)-graphs. We note that the tensor
product of two (n, d , λ)-graphs is itself an (n2 , d2 , dλ) graph, and so one may try to
use pseudo-randomness of this graph to count subgraphs. However, this is not good
enough for our purpose, and we must prove a version of the expander mixing lemma
that applies specifically to tensor products of graphs. This result (Proposition 3.2) is
significantly stronger than directly applying the classical expander mixing lemma to
the tensor product graph, and we believe it is of independent interest, as the second
approach along with Proposition 3.2 could be used to count other structures in tensor
products of pseudo-random graphs.

1.3 Distribution of disjoint trees

The last question we consider in this paper is the following.

Question 1.13 Let E be a set in F
d
q , and let T be a tree of m vertices. How large does

E need to be to guarantee that the number of vertex disjoint copies of T in E is close to
∣E∣/m?

That is, we are asking for a threshold such that any set of large enough size has
an almost spanning T-factor. We now to introduce the notion of the stringiness of a
graph, T, denoted σ(T), which is defined as (d1 + 1)∏n

i=2 d i where d1 ≥ d2 ≥ ⋅ ⋅ ⋅ ≥ dn
is the degree sequence of T in nonincreasing order. Using this concept of stringiness,
Soukup [30] proved a result about trees. While his result holds in more general
settings, we state the relevant version, using our notation, here.

Theorem 1.14 (Theorem 6 in [30]) For any tree T of m vertices with stringiness σ(T),
and for any E ⊂ F

d
q , if ∣E∣ ≫ σ(T)q d+1

2 , then the number of disjoint copies of T in E is at
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least
∣U ∣

σ(T) − q
d+1

2 .

In this section, we provide improvements of this result.

Theorem 1.15 Let G be an (n, d , λ)-colored graph with the color set D. Let T be a tree
with edges colored by D. For any U ⊂ V(G), with ∣U ∣ = r ⋅ λn

d , for some r > 1, the number
of disjoint copies of H in U is at least

∣U ∣
σ(T) −

λn
d

,

where σ(T) is the stringiness of T.

Theorem 1.15 directly generalizes Soukup’s result in [30] to pseudo-random graphs.
However, the stringiness of a tree may be exponential in the number of vertices. Using
a different method, we prove a theorem which for most trees does much better.

Theorem 1.16 Let G be an (n, d , λ)-colored graph with the color set D. Let T be a tree
of m vertices with edges colored by D. For any U ⊂ V(G) with ∣U ∣ ≥ m(m − 1) ⋅ λn

d , the
number of disjoint copies of T in U is at least

∣U ∣
m

− λn
d

.

2 Proof of Theorem 1.3

Set Vi = V(G i) and E i = E(G i) for 1 ≤ i ≤ 2. If i satisfies λ i
d i
= max{ λ1

d1
, λ2

d2
}, then

throughout the proof we will use λ
d to denote λ i

d i
.

2.1 Square-norm

For functions f1 , f2 , f3 , f4∶V1 × V2 → [−1, 1], we define

N( f1 , f2 , f3 , f4) ∶=E a ,b ,c ,d
(a ,b)∈E1 ,(c ,d)∈E2

f1(a, c) f2(a, d) f3(b, c) f4(b, d)

∶= 1
∣V1∣d1∣V2∣d2

∑
a ,b ,c ,d

(a ,b)∈E1 ,(c ,d)∈E2

f1(a, c) f2(a, d) f3(b, c) f4(b, d)

and

M( f1 , f2 , f3 , f4) ∶=Ea ,b ,c ,d f1(a, c) f2(a, d) f3(b, c) f4(b, d)

∶= 1
∣V1∣2∣V2∣2

∑
a ,b ,c ,d

f1(a, c) f2(a, d) f3(b, c) f4(b, d).

Let S be any subset of V1 × V2. Recall that when context is clear, we use S(⋅) to
denote the characteristic function χS on the set S. We now prove two simple but useful
facts about M using Cauchy–Schwarz.
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Proposition 2.1

M(S , S , S , S) ≥ ( ∣S∣
∣V1∣∣V2∣

)
4

.

Proof We write the definition of ∣S∣ as a sum and apply Cauchy–Schwarz twice to
get

∣S∣ = ∑
a∈V1

∑
b∈V2

S(a, b) ≤
⎛
⎝∑

a∈V1

12⎞
⎠

1
2 ⎛
⎜
⎝
∑

a∈V1

⎛
⎝∑

b∈V2

S(a, b)
⎞
⎠

2⎞
⎟
⎠

1
2

= ∣V1∣
1
2
⎛
⎝∑

b∈V2

∑
c∈V2

∑
a∈V1

S(a, b)S(a, c)
⎞
⎠

1
2

≤ ∣V1∣
1
2

⎛
⎜⎜
⎝

⎛
⎝∑

b∈V2

∑
c∈V2

12⎞
⎠

1
2 ⎛
⎜
⎝
∑

b∈V2

∑
c∈V2

⎛
⎝∑

a∈V1

S(a, b)S(a, c)
⎞
⎠

2⎞
⎟
⎠

1
2 ⎞
⎟⎟
⎠

1
2

= ∣V1∣
1
2
⎛
⎜
⎝
∣V2∣

⎛
⎝∑

b∈V2

∑
c∈V2

∑
a∈V1

∑
d∈V1

S(a, b)S(a, c)S(d , b)S(d , c)
⎞
⎠

1
2 ⎞
⎟
⎠

1
2

,

which, upon rearranging and renaming variables, becomes

∣V1∣
1
2 ∣V2∣

1
2 (∣V1∣2∣V2∣2M(S , S , S , S))

1
4 .

Comparing this to ∣S∣ yields the desired result. ∎

For any function f ∶V1 × V2 → [−1, 1], we define

∣∣ f ∣∣◻(V1×V2) ∶= M( f , f , f , f )1/4 .

Lemma 2.2 For functions f1 , f2 , f3 , f4∶V1 × V2 → [−1, 1], we have

M( f1 , f2 , f3 , f4) ≤ min
i

∣∣ f i ∣∣◻(V1×V2).

Proof We apply Cauchy–Schwarz to the definition of M to get

M( f1 , f2 , f3 , f4) =
1

∣V1∣2∣V2∣2
∑

a ,b∈V1 ,c ,d∈V2

f1(a, c) f2(a, d) f3(b, c) f4(b, d)

= 1
∣V1∣2∣V2∣2

∑
a ,b∈V1

⎛
⎝∑c∈V2

f1(a, c) f3(b, c)
⎞
⎠
⎛
⎝∑

d∈V2

f2(a, d) f4(b, d)
⎞
⎠

≤ 1
∣V1∣2∣V2∣2

⎛
⎜
⎝

∑
a ,b∈V1

⎛
⎝∑c∈V2

f1(a, c) f3(b, c)
⎞
⎠

2⎞
⎟
⎠

1
2
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⋅
⎛
⎜
⎝

∑
a ,b∈V1

⎛
⎝∑

d∈V2

f2(a, d) f4(b, d)
⎞
⎠

2⎞
⎟
⎠

1
2

= (M( f1 , f1 , f3 , f3))
1
2 ⋅ (M( f2 , f2 , f4 , f4))

1
2 .

A similar calculation using Cauchy–Schwarz and reversing the roles of V1 and V2 gives
that

M( f1 , f2 , f3 , f4) ≤ (M( f1 , f2 , f1 , f2))1/2 ⋅ (M( f3 , f4 , f3 , f4))1/2 .

We finish by combining these inequalities and using the fact that M( f i , f i , f i , f i) ≤ 1
for i = 1, 2, 3, 4. ∎

2.2 A weak hypergraph regularity lemma

Let B be a σ-algebra on V1, and let C be a σ-algebra on V2. We recall here that a σ-
algebra on Vi is a collection of sets in Vi that contains Vi , ∅, and is closed under finite
intersections, unions, and complements.

The complexity of a σ-algebra B is the smallest number of sets (atoms) needed
to generate B, and we denote by complexity(B). Notice that ∣B∣ ≤ 2complexity(B).
We denote the smallest σ-algebra on V1 × V2 that contains both B × V2 and V1 × C by
B ∨ C.

For a function f ∶V1 × V2 → R, we define the conditional expectation E( f ∣B ∨
C)∶V → R by the formula

E( f ∣B ∨ C)(x) ∶= 1
∣(B ∨ C)(x)∣ ∑

y∈(B∨C)(x)
f (y),

where (B ∨ C)(x) denotes the smallest element of B ∨ C that contains x. We note
that an atom of B ∨ C has the form U × V where U and V are atoms of B and C,
respectively.

The following lemma is a special case of the weak hypergraph regularity lemma due
to Lyall and Magyar (Lemma 2.2 in [26]). We refer the reader to [26] for a detailed
proof. Rather than stating their lemma in its full generality, which would require a
substantial amount of additional background, we state the following special case of
their result, which will suffice for our purposes. As before, we let S denote a subset of
V1 × V2 .

Lemma 2.3 (Lemma 2.2 in [26] (special case)) For any ε > 0, there exist σ-algebras
B on V1 and C on V2 such that each algebra is spanned by at most O(ε−8) sets, and

∣∣S −E(S∣B ∨ C)∣∣◻(V1×V2) ≤ ε.

We recall that

E(S∣B ∨ C)(x) = ∣S ∩ (B × C)∣
∣B∣∣C∣ ,

where B × C is the atom of B ∨ C containing x.
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2.3 A generalized von-Neumann-type estimate

Lemma 2.4 For functions f1 , f2 , f3 , f4∶V1 × V2 → [−1, 1], we have

∣N( f1 , f2 , f3 , f4)∣ ≤ min
j
∣∣ f j ∣∣◻(V1×V2) + O ( λ1/4

d1/4 ) .

To prove this lemma, we recall the following result, often called the expander
mixing lemma, which was proved at least as early as 1980 by Haemers in his Ph.D.
thesis [11, Theorem 3.1.1].

Lemma 2.5 Let G = (V , E) be an (n, d , λ)-graph, and let A be its adjacency matrix.
For real f , g ∈ L2(V), we have

∣⟨ f , Ag⟩ − d∣V ∣E( f )E(g)∣ ≤ λ∥ f ∥2∥g∥2 ,

where

E( f ) ∶= 1
∣V ∣ ∑v∈V

f (v), ∣∣ f ∣∣22 = ∑
v∈V

∣ f (v)∣2 .

Proof of Lemma 2.4 Set σi(x , y) = ∣Vi ∣/d i if (x , y) ∈ E i and 0 otherwise, and let
Ex , y∈Vi ∶= 1

∣Vi ∣2 ∑x , y∈Vi
. Then, for f , g∶Vi → [−1, 1], by using the expander mixing

lemma, one has

∑
x∼y

f (x)g(y) = ⟨ f , Ag⟩ ≤ d i

∣Vi ∣
∑
x , y

f (x)g(y) + λ i∥ f ∥2∥g∥2 .

Dividing both sides by d i ∣Vi ∣ and using ∥ f ∥2∥g∥2 ≤ ∣Vi ∣ gives

Ex , y∈Vi f (x)g(y)σi(x , y) =
⎛
⎝

1
∣Vi ∣2

∑
x , y

f (x)g(y)
⎞
⎠
+ λ i

d i
= Ex , y f (x) f (y) + λ i

d i
.

Thus,

∣Ex , y f (x)g(y)σi(x , y)∣2 = (Ex , y ,z ,t f (x)g(z) f (y)g(t)) + 2 λ i

d i
Ex , y f (x)g(y) + λ2

i
d2

i

≤ Ex , y f (x) f (y) + 3 λ i

d i
,

where we have used the fact that Ez ,t g(z)g(t),Ex , y f (x)g(y) ≤ 1. In other words, for
functions f , g ∶ Vi → [−1, 1], we have

∣Ex , y f (x)g(y)σi(x , y)∣2 ≤ Ex , y f (x) f (y) + 3 λ i

d i
.(4)

The same holds when we switch between f and g:

∣Ex , y f (x)g(y)σi(x , y)∣2 ≤ Ex , y g(x)g(y) + 3 λ i

d i
.(5)

In the next step, we want to show that

N( f1 , f2 , f3 , f4) ≤ ∣∣ f1∣∣◻(V1×V2) + O ( λ
d
).
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Using the definitions, we have

N( f1 , f2 , f3 , f4) = Ea ,b ,c ,d f1(a, c) f2(a, d) f3(b, c) f4(b, d)σ1(a, b)σ2(c, d).

For a fixed pair (c, d), set fc ,d(a) = f1(a, c) f2(a, d) and gc ,d(b) = f3(b, c) f4(b, d).
Then we have

∣N( f1 , f2 , f3 , f4)∣2 =
⎛
⎝

1
∣V1 ∣2 ∣V2 ∣2 ∑a ,b ,c ,d

fc ,d(a)gc ,d(b)σ1(a, b)σ2(c, d)
⎞
⎠

2

≤
⎛
⎝

1
∣V1 ∣2 ∣V2 ∣2 ∑c ,d

√
σ2(c, d)

�����������

√
σ2(c, d)∑

a ,b
fc ,d(a)gc ,d(b)σ1(a, b)

�����������

⎞
⎠

2

≤ 1
∣V1 ∣4 ∣V2 ∣4

⎛
⎝∑c ,d

σ2(c, d)
⎞
⎠
⎛
⎝∑c ,d

σ2(c, d)
�����������
∑
a ,b

fc ,d(a)gc ,d(b)σ1(a, b)
�����������

2⎞
⎠

= (Ec ,d σ2(c, d)) (Ec ,d σ2(c, d)∣Ea ,b fc ,d(a)gc ,d(b)σ1(a, b)∣2)
= Ec ,d σ(c, d)∣Ea ,b fc ,d(a)gc ,d(b)σ(a, b)∣2 ,

where the first inequality uses the triangle inequality and rearranging, the second
inequality is Cauchy–Schwarz, the next line is rearranging, and the last equality
uses the fact that Ec ,d σ2(c, d) = 1

∣V2 ∣2 ⋅
∣V2 ∣
d2

⋅ ∣V2∣ ⋅ d2 = 1. Therefore, the inequality (4)
implies

∣N( f1 , f2 , f3 , f4)∣2 ≤ Ec ,d σ2(c, d) (Ea ,b fc ,d(a) fc ,d(b) + 3 λ1

d1
)(6)

= Ea ,b ,c ,d σ2(c, d) fc ,d(a) fc ,d(b) + 3 (Ec ,d σ2(c, d)) λ1

d1

= (Ea ,b ,c ,d f1(a, c) f1(b, c) f2(a, d) f2(b, d)σ2(c, d)) + 3 λ1

d1
.

By another similar argument with f̂a ,b(c) = f1(a, c) f1(b, c) and ĝa ,b(d) =
f2(a, d) f2(b, d) for each fixed pair (a, b), we have

∣N( f1 , f2 , f3 , f4)∣4 ≤ (Ea ,b ,c ,d f̂a ,b(c)ĝa ,b(d)σ2(c, d) + 3 λ1

d1
)

2

≤ (Ea ,b ,c ,d f̂a ,b(c)ĝa ,b(d)σ2(c, d))2 + 15 λ1

d1
,

using that Ea ,b ,c ,d f̂a ,b(c)ĝa ,b(d)σ2(c, d) ≤ 1 and λ1/d1 ≤ 1. Now

(Ea ,b ,c ,d f̂a ,b(c)ĝa ,b(d)σ2(c, d))2 = 1
∣V1∣4∣V2∣4

⎛
⎝∑a ,b

1∑
c ,d

f̂a ,b(c)ĝa ,b(d)σ2(c, d)
⎞
⎠

2

≤ 1
∣V1∣2 ∑a ,b

⎛
⎝

1
∣V2∣2 ∑c ,d

f̂a ,b(c)ĝa ,b(d)σ2(c, d)
⎞
⎠

2

≤ 1
∣V1∣2

∑
a ,b
(Ec ,d f̂a ,b(c) f̂a ,b(d) + 3 λ2

d2
)

= Ea ,b (Ec ,d f1(a, c) f1(b, c) f1(a, d) f1(b, d) + 3 λ2

d2
) ,
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by Cauchy–Schwarz and (4), respectively. As a consequence, we obtain

∣N( f1 , f2 , f3 , f4)∣4 ≤ Ea ,b ,c ,d f1(a, c) f1(b, c) f1(a, d) f1(b, d) + 15 λ1

d1
+ 3 λ2

d2

= M( f1 , f1 , f1 , f1) + O ( λ1

d1
+ λ2

d2
) .

Notice that the same holds when f1 on the right-hand side is replaced by f i for
2 ≤ i ≤ 4. In short,

∣N( f1 , f2 , f3 , f4)∣ ≤ min
j
∣∣ f j ∣∣◻(V1×V2) + O ( λ1/4

d1/4 ) .

This completes the proof. ∎

With Lemmas 2.3 and 2.4 in hand, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3:

For any ε > 0, by Lemma 2.3, we can see that there exist σ-algebras B and C on V1
and V2, respectively, with complexity bounded above by O (ε−8) , so that

∣∣S −E(S∣B ∨ C)∣∣◻(V1×V2) ≤ ε.(7)

Let g denote E(S∣B ∨ C), and define

h(x) ∶= S(x) − g(x).

Therefore, (7) gives us that

∣∣h∣∣◻(V1×V2) ≤ ε.(8)

Both g and h are functions from V1 × V2 to the interval [−1, 1]. Recalling the definition
of N above, we see that

N(S , S , S , S) = N(g , g , g , g) + N(h, h, h, h) + R,

where R is a sum over all expressions of the form

N( f1 , f2 , f3 , f4),

where the f j in each term are either g or h, but not all the same. Specifically,
set Ω ∶= {g , h}4/{(g , g , g , g), (h, h, h, h)}, denote a quadruple of functions by F =
( f1 , f2 , f3 , f4) ∈ Ω, and write

R = ∑
F∈Ω

Ea ,b ,c ,d f1(a, c) f2(a, d) f3(b, c) f4(b, d)E1(a, b)E2(c, d),

where E i(x , y) is the indicator that x y ∈ E(G i). Combining Lemma 2.4 and (8) gives

∣N(h, h, h, h)∣ ≤ ∣∣h∣∣◻(V1×V2) + O ( λ1/4

d1/4 ) ≤ ε + O ( λ1/4

d1/4 ) .
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Similarly, for any other choice of F ∈ Ω, we must have h in at least one entry, so we get

∣N(F)∣ ≤ min
j
∣∣ f j ∣∣◻(V1×V2) + O ( λ1/4

d1/4 ) ≤ ∣∣h∣∣◻V1×V2 + O ( λ1/4

d1/4 ) ≤ ε + O ( λ1/4

d1/4 ) .

Putting these together, we get that

∣N(S , S , S , S) − N(g , g , g , g)∣ = O (ε + λ1/4

d1/4 ) .(9)

Similarly, by Lemma 2.2, we know that

M(F) ≤ min
i

∣∣ f i ∣∣◻(V1×V2) ,

so we get that

∣M(S , S , S , S) − M(g , g , g , g)∣ = O (ε) .(10)

By definition, g is a linear combination of indicator functions of atoms of the σ-
algebra B ∨ C. By Lemma 2.3, we know that there is some positive constant c > 0 so
that the number of terms in this linear combination is no more than 2cε−8

. So we can
write N(g , g , g , g) as a linear combination of terms of the form

N(B1 × C1 , B2 × C2 , B3 × C3 , B4 × C4)
= Ea ,b ,c ,d(B1 × C1)(a, c) ⋅ (B2 × C2)(a, d) ⋅ (B3 × C3)(b, c) ⋅ (B4 × C4)(b, d)σ1(a, b)σ2(c, d),

for some atoms B j × C j (and their indicator functions) in B × C. Here as before we
use σi(x , y) equals ∣Vi ∣/d i if {x , y} ∈ E i and 0 otherwise. However, if we split this up
by variables, we get that

N(B1 × C1 , B2 × C2 , B3 × C3 , B4 × C4)
= Ea ,b ,c ,d(B1 ∩ B2)(a) ⋅ (B3 ∩ B4)(b) ⋅ (C1 ∩ C3)(c) ⋅ (C2 ∩ C4)(d)σ1(a, b)σ2(c, d)
= (Ea ,b(B1 ∩ B2)(a) ⋅ (B3 ∩ B4)(b)σ1(a, b)) (Ec ,d(C1 ∩ C3)(c) ⋅ (C2 ∩ C4)(d)σ2(c, d)) .

By applying the expander mixing lemma as in the proof of Lemma 2.4, we see

N(B1 × C1 , B2 × C2 , B3 × C3 , B4 × C4)

= (Ea ,b(B1 ∩ B2)(a) ⋅ (B3 ∩ B4)(b) + O ( λ1

d1
))(Ec ,d(C1 ∩ C3)(c) ⋅ (C2 ∩ C4)(d) + O ( λ2

d2
))

= M(B1 × C1 , B2 × C2 , B3 × C3 , B4 × C4) + O ( λ
d
) ,

where the last line uses the definition of M and that each expectation is at most 1. Since
g is a linear combination of at most 2cε−8

terms, we see that

∣N(g , g , g , g) − M(g , g , g , g)∣ = O (2c′ε−8 λ
d
) ,

for some positive constant c′. Using (9) followed by the previous estimate and (10), we
get that for some constant k > 0, we have
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N(S , S , S , S) ≥ N(g , g , g , g) − kε − k λ1/4

d1/4

≥ M(g , g , g , g) − k2c′ε−8 λ
d
− kε − k λ1/4

d1/4

≥ M(S , S , S , S) − kε − k2cε−8 λ
d
− kε − k λ1/4

d1/4 .

Now applying Proposition 2.1 to this estimate gives us

N(S , S , S , S) ≥ ( ∣S∣
∣V1∣∣V2∣

)
4

− 2kε − k2cε−8 λ
d
− k λ1/4

d1/4 .(11)

Recall that by assumption, ∣S∣ ≥ δ∣V1∣∣V2∣, so to guarantee that N = N(S , S , S , S) is
positive, we just need to pick ε so that the right-hand side of (11) is bigger than δ′4, or
equivalently,

δ4 − δ′4 ≥ 2kε + k2cε−8 λ
d
+ k λ1/4

d1/4 .

3 Proof of Theorem 1.9

To prove Theorem 1.9, we present two approaches based on two counting lemmas.
While the second counting lemma is a direct consequence of the expander mixing
lemma for a single graph, the first counting lemma is a stronger and more practical
variant for tensor of two pseudo-random graphs, which is quite interesting on its own.

3.1 The first counting lemma for cycles

Let us briefly describe the ideas of counting cycles here. Assume that we want to count
the number of cycles of length 2k for some integer k ≥ 2. Given four vertices x , y, z, w,
if x and y are connected by a path of length k − 1, and the same happens for z and w,
then we will have a cycle of length 2k of the form x − yw − zx (Figure 1) when there are
edges between x and z, and between y and w. Thus, the problem is reduced to counting
the number of pairs of edges between the endpoints of pairs of paths of length k − 1.

To this end, we make use of the notation of tensor of two pseudo-random graphs.
For two graphs G1 = (V1 , E1) and G2 = (V2 , E2), the tensor product G1 ⊗ G2 is a graph
with vertex set V(G1 ⊗ G2) = V1 × V2, and there is an edge between (u, v) and (u′ , v′)
if and only if (u, u′) ∈ E1 and (v , v′) ∈ E2. Suppose that the adjacency matrices of
G1 and G2 are A and B, respectively, then the adjacency matrix of G1 ⊗ G2 is the
tensor product of A and B. It is well known that if γ1 , . . . , γn are eigenvalues of A and
γ′1 , . . . , γ′m are eigenvalues of B, then the eigenvalues of A⊗ B are γ i γ′j with 1 ≤ i ≤ n,
1 ≤ j ≤ m (see [27] for more details).

It is not hard to use the expander mixing lemma to get the following.
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Figure 1: Counting pairs of edges xz and yw.

Proposition 3.1 Let G be an (n, d , λ)-graph. For two nonnegative functions f , g∶V ×
V → R, we have

777777777777
∑

(x ,z)∈E ,(y ,w)∈E
f (x , y)g(z, w) − d2

n2 ∣∣ f ∣∣1∣∣g∣∣1
777777777777
≤ dλ∣∣ f ∣∣2∣∣g∣∣2 .

Our first counting lemma offers better bounds as follows.

Proposition 3.2 (First counting lemma) Let G be an (n, d , λ)-graph. For two non-
negative functions f , g∶V × V → R, we define F(x) = ∑y f (x , y), G(z) = ∑w g(z, w),
F′(y) = ∑x f (x , y), and G′(w) = ∑z g(z, w). Then we have
777777777777

∑
(x ,z)∈E ,(y ,w)∈E

f (x , y)g(z, w) − d2

n2 ∣∣ f ∣∣1∣∣g∣∣1
777777777777
≤ λ2∣∣ f ∣∣2∣∣g∣∣2

+ dλ
n

(∣∣F∣∣2∣∣G∣∣2 + ∣∣F′∣∣2∣∣G′∣∣2) .

Proof Suppose G is a d-regular graph on vertex set V with ∣V ∣ = n, and let A denote
its adjacency matrix. For two real-valued functions f , g∶V × V → R, we define

⟨ f , g⟩ = ∑
(v1 ,v2)∈V×V

f (v1 , v2)g(v1 , v2)

and
∣∣ f ∣∣22 = ⟨ f , f ⟩.

We denote the set of all real-valued functions on V × V by L2(V × V). For the remain-
der of the proof, we will assume that f , g ∈ L2(V × V) are nonnegative functions.

We define

A⊗ Af (v1 , v2) = ∑
(u1 ,u2)∶(u1 ,v1)∈E ,(u2 ,v2)∈E

f (u1 , u2).

That is, A⊗ A is the adjacency matrix of G⊗ G. In the remainder, we denote A⊗ A
by B.

Let λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn be the eigenvalues of A corresponding to eigenfunctions
e1 , . . . , en . Without loss of generality, assume that the e i form an orthonormal basis of
R

n . Then the eigenfunctions of B are exactly e i ⊗ e j for all 1 ≤ i , j ≤ n corresponding
to eigenvalue λ i j ∶= λ i λ j .
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We observe that

f = ∑
i , j
⟨ f , e i ⊗ e j⟩e i ⊗ e j .

So

Bg = ∑
i , j
⟨Bg , e i ⊗ e j⟩e i ⊗ e j = ∑

e i⊗e j

λ i j⟨g , e i ⊗ e j⟩e i ⊗ e j .

We note that A has a constant eigenfunction that will be denoted by e1, i.e.,

e1(v) = 1/
√

n, ∀v ∈ V .

This means that B also has constant eigenfunction defined by

e1 ⊗ e1(u, v) = 1/n ∀(u, v) ∈ V × V .

We have

∑
(x ,z)∈E ,(y ,w)∈E

f (x , y)g(z, w) = ⟨ f , Bg⟩ = ∑
i , j

λ i j⟨g , e i ⊗ e j⟩⟨ f , e i ⊗ e j⟩.

Define

S1 ∶=λ11⟨g , e1 ⊗ e1⟩⟨ f , e1 ⊗ e1⟩,

S2 ∶=
n
∑
j=2

λ1 j⟨g , e1 ⊗ e j⟩⟨ f , e1 ⊗ e j⟩,

S3 ∶=
n
∑
i=2

λ i1⟨g , e i ⊗ e1⟩⟨ f , e i ⊗ e1⟩,

S4 ∶=
n
∑

i , j=2
λ i j⟨g , e i ⊗ e j⟩⟨ f , e i ⊗ e j⟩.

And so

∑
(x ,z)∈E ,(y ,w)∈E

f (x , y)g(z, w) − S1 = S2 + S3 + S4 .

We now estimate each S i . Since λ1 = d and e1 is constant, it is easy to see that

S1 = λ11 ⟨ f , 1
n

1⟩ ⟨g , 1
n

1⟩ = d2

n2 ∣∣ f ∣∣1∣∣g∣∣1 .

For S4, if i , j > 1, we have that λ i j ≤ λ2 and hence

S4 ≤ λ2
n
∑

i , j=2
⟨g , e i ⊗ e j⟩⟨ f , e i ⊗ e j⟩ ≤ λ2 ⎛

⎝
n
∑

i , j=2
⟨g , e i ⊗ e j⟩2⎞

⎠

1/2
⎛
⎝

n
∑

i , j=2
⟨ f , e i ⊗ e j⟩2⎞

⎠

1/2

≤ λ2 ⎛
⎝

n
∑

i , j=1
⟨g , e i ⊗ e j⟩2⎞

⎠

1/2
⎛
⎝

n
∑

i , j=1
⟨ f , e i ⊗ e j⟩2⎞

⎠

1/2

= λ2∣∣ f ∣∣2∣∣g∣∣2 ,

where the second inequality follows by Cauchy–Schwarz.
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To estimate S2, note that λ1 j ≤ λd, and

e1 ⊗ e j(v1 , v2) =
1√
n

e j(v2).

Using Cauchy–Schwarz, we have that

S2 ≤ λd
n
∑
j=2
⟨g , e1 ⊗ e j⟩⟨ f , e1 ⊗ e j⟩ ≤ λd

⎛
⎝

n
∑
j=2
⟨g , e1 ⊗ e j⟩2⎞

⎠

1/2
⎛
⎝

n
∑
j=2
⟨ f , e1 ⊗ e j⟩2⎞

⎠

1/2

≤ λd
⎛
⎝

n
∑
j=1
⟨g , e1 ⊗ e j⟩2⎞

⎠

1/2
⎛
⎝

n
∑
j=1
⟨ f , e1 ⊗ e j⟩2⎞

⎠

1/2

.

To estimate this quantity, note that

⟨g , e1 ⊗ e j⟩ = ∑
u ,v

g(u, v)e1 ⊗ e j(u, v) = 1√
n ∑

u ,v
g(u, v)e j(v) = 1√

n ∑
v

G′(v)e j(v),

and similarly ⟨ f , e1 ⊗ e j⟩ = 1√
n ∑v F′(v)e j(v). Therefore, we have that

n
∑
j=1
⟨g , e1 ⊗ e j⟩2 =

n
∑
j=1

1
n∑u ,v

G′(u)G′(v)e j(u)e j(v) =
1
n∑u ,v

⎛
⎝

G′(u)G′(v)
n
∑
j=1

e j(u)e j(v)
⎞
⎠

.

Now notice that because the e i form an orthonormal basis, we have that
n
∑
j=1

e j(u)e j(v) =
⎧⎪⎪⎨⎪⎪⎩

1, u = v ,
0, u /= v .

Hence, we have
n
∑
j=1
⟨g , e1 ⊗ e j⟩2 = 1

n

n
∑
u=1

⎛
⎝
(G′(u))2

n
∑
j=1

e j(u)2⎞
⎠
= 1

n

n
∑
u=1

(G′(u))2 = 1
n
∣∣G′∣∣22 .

Similarly, ∑n
j=1⟨ f , e1 ⊗ e j⟩2 = 1

n ∣∣F
′∣∣22. Combining everything, we have that

S2 ≤
λd
n
∣∣G′∣∣2∣∣F′∣∣2 .

A symmetric proof shows that

S3 ≤
λd
n
∣∣G∣∣2∣∣F∣∣2 . ∎

3.2 The second counting lemma for cycles

Assume that we want to count the number of cycles of length 2k for some integer k ≥ 1.
Our second strategy for cycles can be explained as follows. Given three vertices x , y,
and z, if x and y are connected by a path of length k, and x and z are connected by a
path of length k − 1, then we have a cycle of length 2k of the form x − yz − x if and only
if y and z are adjacent (Figure 2). So the problem is reduced to counting the number
of edges between the endpoints of pairs of paths pinned at a vertex.
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18 T. V. Pham, S. M. Senger, M. Tait, and T. Vu

Figure 2: Counting edges yz.

Proposition 3.3 (Second counting lemma) Let G be an (n, d , λ)-graph. Let U be a
set of vertices in G. For any two vertices x and y, let pk(x , y) be the number of paths of
length k between x and y with vertices in between belonging to U. Then we have

7777777777777
C2k+1(U) − d

n ∑
x∈U

⎛
⎝∑y∈U

pk(x , y)
⎞
⎠

27777777777777
≤ λ ∑

x , y∈U
pk(x , y)2

and
77777777777
C2k(U) − d

n ∑
x∈U

⎛
⎝∑y∈U

pk(x , y)
⎞
⎠
⋅ (∑

z∈U
pk−1(x , z))

77777777777
≤ λ ∑

x∈U

⎛
⎝∑y∈U

pk(x , y)2⎞
⎠

1/2

⋅ (∑
z∈U

pk−1(x , z)2)
1/2

.

Proof We first observe that the number of odd cycles of length 2k + 1 in U is equal
to the sum

∑
x , y ,z∈U3 ,(y ,z)∈E(G)

pk(x , y)pk(x , z).

Given x ∈ U , set f (y) = U(y)pk(x , y), then the above sum can be rewritten as

∑
x∈U

∑
(y ,z)∈E(G)

f (y) f (z).

Applying Lemma 2.5, the first statement is proved.
For the second statement, as above, the number of even cycles of length 2k in U is

equal to the sum

∑
x , y ,z∈U3 ,(y ,z)∈E(G)

pk(x , y)pk−1(x , z).

Given x ∈ U , set f (y) = U(y)pk(x , y) and g(z) = U(z)pk−1(x , z), then the above
sum can be rewritten as

∑
x∈U

∑
(y ,z)∈E(G)

f (y)g(z).

Applying Lemma 2.5, the proposition is proved. ∎
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Using the facts that

∑
x∈U

⎛
⎝∑y∈U

pk(x , y)
⎞
⎠

2

= P2k(U),

∑
x , y∈U

pk(x , y)2 = C2k(U),

∑
x∈U

⎛
⎝∑y∈U

pk(x , y)
⎞
⎠
⋅ (∑

z∈U
pk−1(x , z)) = P2k−1(U),

and the following application of Cauchy–Schwarz,

∑
x∈U

⎛
⎝∑y∈U

pk(x , y)2⎞
⎠

1/2

⋅ (∑
z∈U

pk−1(x , z)2)
1/2

≤ (C2k(U)C2k−2(U))1/2 ,

one derives the following corollary.

Corollary 3.4 Let G be an (n, d , λ)-graph. Let U be a set of vertices in G. Then

∣C2k+1(U) − d
n

P2k(U)∣ ≤ λC2k(U)

and

∣C2k(U) − d
n

P2k−1(U)∣ ≤ λ (C2k(U)C2k−2(U))1/2 .

3.3 Distribution of paths

We have seen that to apply the two counting lemmas, we need to have estimates on
the paths of a given length in a vertex set. We now provide relevant results on paths.

Proposition 3.5 Let G be an (n, d , λ)-graph, let k ≥ 1 be an integer, and let U be a
vertex set with λ ⋅ n

d = o(∣U ∣). Let Pk(U) denote the number of paths of length k in U.
Then we have

Pk(U) = (1 + o(1)) ∣U ∣k+1dk

nk .

Proof We first prove the following two estimates:

∣P2k+1(U) − dPk(U)2

n
∣ ≤ λP2k(U)(12)

and

∣P2k(U) − dPk(U)Pk−1(U)
n

∣ ≤ λ
√

P2k(U)P2k−2(U).(13)

For u ∈ U , let f (u) be the number of paths of length k of the form (u1 , . . . , uk , u)
where u i ∈ U . Similarly, for v ∈ U , let g(v) be the number of paths of length k of the
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form (v1 , . . . , vk , v) where v i ∈ U . To use Lemma 2.5, we need to estimate the norms
and the inner product. We have that the adjacency matrix A acts on g by the formula

Ag(u) = ∑
(u ,v)∈E(G)

g(v),

which is the number of paths of length k + 1 of the form (v1 , . . . , vk , v , u). For the inner
product, we have

⟨ f , Ag⟩ = ∑
u∈V(G)

f (u)Ag(u) = ∑
u∈V(G)

f (u)Ag(u) = P2k+1(U).

It is clear that

E( f ) = E(g) = 1
∣V ∣ ⋅ Pk(U)

and

∣∣ f ∣∣22 = ∣∣g∣∣22 = P2k(U).

Applying Lemma 2.5, we have that
77777777777
P2k+1(U) − d∣V ∣ ( 1

∣V ∣ ⋅ Pk(U))
277777777777
≤ λP2k(U),

which is equivalent to (12). The estimate (13) also follows from a similar argument
with the same f and g(v) defined to be the number of paths of length k − 1 of the form
(v1 , . . . , vk−1 , v).

We now proceed by induction on k. The case k = 0 is trivial, and the case k = 1
follows from Lemma 2.5 and the estimate (13).

Suppose that the statement holds for all 2k ≥ 1. We now show that it also holds for
2k + 1 and 2k + 2. Indeed, it follows from the estimate (12) and induction hypothesis
that we have

P2k+1(U) ≤ d
n

Pk(U)2 + λP2k(U)

≤ d
n
∣U ∣2k+2d2k

n2k (1 + O ( λn
d∣U ∣ ))

2

+ λ ∣U ∣2k+1d2k

n2k (1 + O ( λn
d∣U ∣ ))

= ∣U ∣2k+2d2k+1

n2k+1 (1 + O ( λn
d∣U ∣ ))

whenever ∣U ∣ ≫ λ n
d . The lower bound follows in the same way.

For the case 2k + 2, it also follows from the estimate (13) that

P2k+2(U) ≤ dPk(U)Pk+1(U)
n

+ λ
√

P2k(U)P2k+2(U).

Solving this inequality in x =
√

P2k+2(U), we obtain

P2k+2(U) ≤
⎛
⎜
⎝

−λ
√

P2k(U) +
√

λ2P2k(U) + 4dPk(U)Pk+1(U)
n

2

⎞
⎟
⎠

2

.
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Using the induction hypothesis and that λn
d = o(∣U ∣), we have that

λ2P2k(U) = o(dPk(U)Pk+1(U)
n

⋅ λn
d∣U ∣ )

and that

λ
√

P2k(U)
√

dPk(U)Pk+1(U)
n

= O ( ∣U ∣2k+3d2k+2

n2k+2 ⋅ λn
d∣U ∣ ) .

Hence, the entire expression is bounded above by

∣U ∣2k+3d2k+2

n2k+2 [1 + O ( λn
d∣U ∣ )] .

Using lower bounds of the estimates (12) and (13) and an identical argument also gives
us

Pk(U) ≥ [1 − O ( λn
d∣U ∣ )] ∣U ∣k+1 (d

n
)

k
,

under the condition λ n
d = o(∣U ∣). This completes the proof of the proposition. ∎

3.4 Proof of Theorem 1.9 using the first counting lemma

Proof of Theorem 1.9 We proceed by induction on m.
We first start with the base case m = 4.
Let f , g ∶ U × U → R defined by

f (x , y) =
⎧⎪⎪⎨⎪⎪⎩

1, if (x , y) ∈ E(G),
0, otherwise

and

g(z, w) =
⎧⎪⎪⎨⎪⎪⎩

1, if (z, w) ∈ E(G),
0, otherwise.

It is clear that C4(U) = ∑(x ,z),(y ,w)∈E(G) f (x , y)g(z, w). To apply Proposition 3.2, we
need to check the norms of functions f, g, F, G, F′, and G′.

Using Proposition 3.5, we have

∣∣ f ∣∣1 = ∑
x , y∈U

f (x , y) = P1(U) = (1 + o(1)) ∣U ∣2 d
n

,

∣∣ f ∣∣2 =
⎛
⎝ ∑

x , y∈U
f (x , y)2⎞

⎠

1/2

=
⎛
⎝ ∑

x , y∈U
f (x , y)

⎞
⎠

1/2

= (P1(U))1/2 = (1 + o(1)) ∣U ∣
√

d
n

,

using the Taylor series for
√

1 + x and the assumption that λn
d = o(∣U ∣). Similarly,

∣∣g∣∣1 = (1 + o(1)) ∣U ∣2 d
n

, and ∣∣g∣∣2 = (1 + o(1)) ∣U ∣
√

d
n

.
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For functions F , G , F′ , G′ defined as in Proposition 3.2, we have that

∣∣F∣∣2 = (∑
x∈U

F(x)2)
1/2

= (P2(U))1/2 = ( ∣U ∣3d2

n2 (1 + o(1)))
1/2

.

Similarly,

∣∣G∣∣2 = ∣∣F′∣∣2 = ∣∣G′∣∣2 = (
∣U ∣3d2

n2 (1 + o(1)))
1/2

.

Substituting these estimates into Proposition 3.2, we have that

∣C4(U) − (1 + o(1)) ∣U ∣4 d4

n4 ∣ ≤
λ2∣U ∣2d

n
(1 + O ( λn

d∣U ∣ )) +
2λ∣U ∣3d3

n3 (1 + O ( λn
d∣U ∣ )) .

Using the assumption that λn
d = o(∣U ∣) completes this case.

Assume that the statement holds for any cycle of length smaller than m − 1, we now
show that it holds for cycles of length m.

We fall into two cases:
Case 1: m = 2k + 1.
As above, for x , y ∈ U , we define

f (x , y) = the number of paths of length k between x and y

and

g(x , y) = the number of paths of length k − 1 between x and y.

Then

∣∣ f ∣∣1 = Pk(U) = (1 + o(1)) dk

nk ∣U ∣k+1 ,

∣∣ f ∣∣22 = C2k(U) = (1 + o(1)) ∣U ∣2k d2k

n2k + O ( λ2k−2∣U ∣2d
n

) ,

∣∣F∣∣22 = ∣∣F′∣∣22 = P2k(U) = (1 + o(1))d2k

n2k ∣U ∣2k+1 ,

where we left an error term out of our estimate of C2k(U) because it is dominated by
the main term by our assumption that λn

d = o(∣U ∣). Similarly, we have

∣∣g∣∣1 = Pk−1(U) = (1 + o(1)) dk−1

nk−1 ∣U ∣k ,

∣∣g∣∣22 = C2(U) = (1 + o(1)) ∣U ∣2d
n

if m = 5,

∣∣g∣∣22 = C2k−2(U) = (1 + o(1)) ∣U ∣2k−2d2k−2

n2k−2 + O ( λ2k−4∣U ∣2d
n

) if m ≥ 7,

∣∣G∣∣22 = ∣∣G′∣∣22 = P2k−2(U) = (1 + o(1))d2k−2

n2k−2 ∣U ∣2k−1 .
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Applying Proposition 3.2,

∣C2k+1(U) −
d2

n2 Pk(U)Pk−1(U)∣ ≤ λ2√C2k(U)C2k−2(U) + 2 dλ
n
(
√

P2k(U)P2k−2(U)).

When m = 5, we have

∣C5(U) − (1 + o(1)) ∣U ∣5d5

n5 ∣ = O
⎛
⎝

λ2

√
∣U ∣6d5

n5 + λ2∣U ∣4d2

n2 + λd4∣U ∣4
n4

⎞
⎠

.

Note that λd4 ∣U ∣4
n4 = o ( ∣U ∣

5 d5

n5 ) due to our assumption that λn
d = o(∣U ∣). If ∣U ∣ ≤ λn3/2

d3/2 ,
then the second term in the square root is bigger than the first, and hence

λ2

√
∣U ∣6d5

n5 + λ2∣U ∣4d2

n2 = O ( λ3∣U ∣2d
n

) .

If ∣U ∣ ≥ λn3/2

d3/2 , then the first term is bigger than the second and we have

λ2

√
∣U ∣6d5

n5 + λ2n4d2

n2 = O ( λ2∣U ∣3d5/2

n5/2 ) .

Using the assumption that ∣U ∣ ≥ λn3/2

d3/2 gives that λ2 ∣U ∣3 d5/2

n5/2 ≤ λ∣U ∣4 d4

n4 = o ( ∣U ∣
5 d5

n5 ) by our
assumption that λn

d = o(∣U ∣). In either case, the inequality is satisfied. For m ≥ 7, we
have

∣C2k+1(U) − (1 + o(1)) ∣U ∣2k+1d2k+1

n2k+1 ∣ =

O
⎛
⎜
⎝

λ2

H
IIJ[∣U ∣2k d2k

n2k + λ2k−2∣U ∣2d
n

] [ ∣U ∣2k−2d2k−2

n2k−2 + λ2k−4∣U ∣2d
n

] + λ∣U ∣2k d2k

n2k

⎞
⎟
⎠

.

First, note that λ∣U ∣2k d2k

n2k = o ( ∣U ∣
2k+1 d2k+1

n2k+1 ) by the assumption that λn
d = o(∣U ∣), so we

may ignore this term. Hence, if each of the four terms

∣U ∣4k−2d4k−2

n4k−2 , λ2k−2∣U ∣2k d2k−1

n2k−1 , λ2k−4∣U ∣2k+2d2k+1

n2k+1 , λ4k−6∣U ∣4d2

n2

is either

O ( ∣U ∣4k d4k

λ2n4k ) or O ( λ4k−6∣U ∣4d2

n2 ) ,

then we are done. The fourth term trivially satisfies the inequality. The first term is
o ( ∣U ∣

4k d4k

λ2 n4k ) and

λ2k−2∣U ∣2k d2k−1

n2k−1 = o( λ2k−4∣U ∣2k+2d2k+1

n2k+1 )
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by the assumption that λn
d = o(∣U ∣). Finally, if ∣U ∣ ≥ λ ( n

d )
(2k−1)/(2k−2), then

λ2k−4∣U ∣2k+2d2k+1

n2k+1 ≤ ∣U ∣4k d4k

λ2n4k .

Otherwise,

λ2k−4∣U ∣2k+2d2k+1

n2k+1 ≤ λ4k−6∣U ∣4d2

n2 .

Case 2: m = 2k.
For this case, we want to apply Proposition 3.2 again, so we need to define suitable

functions f and g, namely, for x , y ∈ U ,

f (x , y) = g(x , y) = the number of paths of length k − 1 between x and y.

Then, by inductive hypothesis and Proposition 3.5, one has

∣∣ f ∣∣1 = ∣∣g∣∣1 = Pk−1(U) = (1 + o(1)) dk−1

nk−1 ∣U ∣k ,

∣∣ f ∣∣22 = ∣∣g∣∣22 = C2k−2(U) = (1 + o(1)) ∣U ∣2k−2d2k−2

n2k−2 + Θ(λ2k−4 d
n
∣U ∣2) ,

∣∣F∣∣22 = ∣∣G∣∣22 = ∣∣F′∣∣22 = ∣∣G′∣∣22 = P2k−2(U) = (1 + o(1))d2k−2

n2k−2 ∣U ∣2k−1 .

By applying Proposition 3.2 and the estimates above, we get that

∣C2k(U) − d2

n2 (Pk−1(U))2∣ ≤ λ2C2k−2(U) + 2 λd
n

P2k−2(U),

and hence

∣C2k(U) − (1 + o(1)) ∣U ∣
2k d2k

n2k ∣ = O ( ∣U ∣
2k−2d2k−2 λ2

n2k−2 + λ2k−2∣U ∣2d
n

+ λ∣U ∣2k−1d2k−1

n2k−1 ) .

Since λ∣U ∣2k−1 d2k−1

n2k−1 and ∣U ∣
2k−2 d2k−2 λ2

n2k−2 are both o ( ∣U ∣
2k d2k

n2k ) because of the assumption that
λn
d = o(∣U ∣), we are done. ∎

3.5 Proof of Theorem 1.9 using the second counting lemma

Proof of Theorem 1.9 Using the second counting lemma, we are able to prove
Theorem 1.9 for all m ≥ 5, i.e.,

Cm(U) = ∣U ∣mdm

nm + Θ( λ∣U ∣m−1dm−1

nm−1 + λm−2 d
n
∣U ∣2) ,

but for m = 4, the result becomes slightly weaker, namely,

C4(U) = O ( ∣U ∣4d4

n4 + λ2∣U ∣2d
n

) .

We proceed by induction.
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Case 1: m = 2k.
For m = 4, by Corollary 3.4 and Proposition 3.5, we have that

∣C4(U) − ∣U ∣4d4

n4 (1 + o(1))∣ ≤
√

(1 + o(1)) ∣U ∣2 λ2d
n

C4(U),(14)

using that C2(U) = P2(U) and P2(U) = d ∣U ∣2
n (1 + o(1)) by the assumption that λn

d =
o(∣U ∣). Hence, we may set up a quadratic in

√
C4(U) to obtain

C4(U) ≤
⎛
⎜
⎝

√
(1 + o(1)) ∣U ∣2 λ2 d

n +
√
(1 + o(1)) ∣U ∣2 λ2 d

n + 4 ∣U ∣
4 d4

n4 (1 + o(1))
2

⎞
⎟
⎠

2

= O ( ∣U ∣4d4

n4 + λ2∣U ∣2d
n

) .

This gives the desired estimate for C4. If one wishes to have the main term ∣U ∣4 d4

n4

instead of c ∣U ∣
4 d4

n4 , for some positive constant c, with this approach, then it can be
pushed further as follows.

Using the above upper bound for C4 and the estimate (14) gives us

∣C4(U) − ∣U ∣4d4

n4 (1 + o(1))∣ = O
⎛
⎝

√
∣U ∣4 λ4d2

n2 + ∣U ∣6 λ2d5

n5
⎞
⎠

.

This gives

C4(U) = ∣U ∣4d4

n4 + Θ( λ2d∣U ∣2
n

+ λ∣U ∣3d3

n3 + ∣U ∣3 λd5/2

n5/2 ) .

Note that this gives the estimate (3) under the more restrictive condition that
λ n3/2

d3/2 = o(∣U ∣).
Assume that the upper bound holds for all cycles of length at most m − 1. We now

show that it also holds for cycles of length m. Indeed, if m = 2k, then we can apply
Corollary 3.4 to have

C2k(U) ≤ d
n

P2k−1(U) + λ (C2k(U)C2k−2(U))1/2 .

Solving a quadratic in
√

C2k(U) gives

C2k(U) ≤
⎛
⎜
⎝

λ
√

C2k−2(U) +
√

λ2C2k−2(U) + 4 d
n P2k−1(U)

2

⎞
⎟
⎠

2

.

Using Proposition 3.5 gives that

C2k(U) −
∣U ∣2k d2k

n2k (1 + o(1)) = O
⎛
⎝

λ2C2k−2(U) + λ
√

λ2(C2k−2(U))2 + d
n

C2k−2(U)P2k−1(U)
⎞
⎠

.
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By the inductive hypothesis and the assumption that λn
d = o(∣U ∣), we have that

λ2C2k−2(U) = O ( λ∣U ∣2k−1d2k−1

n2k−1 + λ2k−2∣U ∣2d
n

) ,

and hence we are done as long as

λ
√

d
n

C2k−2(U)P2k−1(U) = O ( λ∣U ∣2k−1d2k−1

n2k−1 + λ2k−2∣U ∣2d
n

) .

By the inductive hypothesis and Proposition 3.5, we have

λ
√

d
n

C2k−2(U)P2k−1(U) = O
⎛
⎝

√
λ2 ∣U ∣4k−2d4k−2

n4k−2 + λ3∣U ∣4k−3d4k−3

n4k−3 + λ2k−2∣U ∣2k+2d2k+1

n2k+1

⎞
⎠

.

Since λn
d = o(∣U ∣), we have that λ3 ∣U ∣4k−3 d4k−3

n4k−3 = o ( λ2 ∣U ∣4k−2 d4k−2

n4k−2 ). Therefore, because

√
λ2∣U ∣4k−2d4k−2

n4k−2 = λ∣U ∣2k−1d2k−1

n2k−1 ,

we are done as long as λk−1 ∣U ∣k+1 d(2k+1)/2

n(2k+1)/2 is small enough. If ∣U ∣ ≥ λn(2k−3)/(2k−4)

d(2k−3)/(2k−4) , then

λk−1∣U ∣k+1d(2k+1)/2

n(2k+1)/2 ≤ λ∣U ∣2k−1d2k−1

n2k−1 .

Otherwise, we have

λk−1∣U ∣k+1d(2k+1)/2

n(2k+1)/2 ≤ λ2k−2∣U ∣2d
n

,

and the upper bound is complete. An analogous calculation gives the corresponding
lower bound, and we omit the details.

Case 2: m = 2k + 1.
This case follows directly from Corollary 3.4 and the case m = 2k above. ∎

4 Proofs of Theorems 1.15 and 1.16

4.1 Technical lemmas

To prove Theorems 1.15 and 1.16, we use the following results, which are direct
consequences of the expander mixing lemma. The first result guarantees that vertex
sets bigger than λn/d will have an edge of each color.

Lemma 4.1 Let G be an (n, d , λ)-colored graph with color set D, and A, B ⊂ V(G)
with ∣A∣ = ∣B∣ > λn

d . Then, for each color c ∈ D, there exists an edge uv of color c with
u ∈ A and v ∈ B. In other words, every vertex set of size greater than λn

d determines every
color.
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Proof For each color c in D, let Gc be the induced graph on c, then Gc is an (n, d , λ)-
graph. Applying Lemma 2.5 with

f (u) =
⎧⎪⎪⎨⎪⎪⎩

1, if u ∈ A,
0, otherwise

and

g(v) =
⎧⎪⎪⎨⎪⎪⎩

1, if v ∈ B,
0, otherwise,

we have

⟨ f , Ag⟩ = e(A, B) ∶= ∣{(a, b) ∈ A× B ∶ ab ∈ E(Gc)}∣ .
It is clear that

E( f ) = ∣A∣
n

, E(g) = ∣B∣
n

and

∥ f ∥2 =
√
∣A∣, ∥g∥2 =

√
∣B∣.

Then we have

∣e(A, B) − d
n
∣A∣∣B∣∣ ≤ λ

√
∣A∣∣B∣.

So

e(A, B) ≥ d
n
∣A∣∣B∣ − λ

√
∣A∣∣B∣.

Since ∣A∣ = ∣B∣ > λn
d ,

e(A, B) ≥ d
n
∣A∣2 − λ∣A∣ ≥ ∣A∣ (d

n
⋅ ∣A∣ − λ) > ∣A∣ (d

n
⋅ λn

d
− λ) > 0.

Which means that there exists at least one edge of color c between A and B. ∎
The next technical lemma uses the previous result to give an upper bound on the

number of vertices with small degree of a given edge color.

Lemma 4.2 Let G be an (n, d , λ)-colored graph with color set D, and let U ⊂ V(G),
with ∣U ∣ = r ⋅ λn

d , for some r > 1. Then, for any fixed color c ∈ D, s ∈ N, there are at most
s ⋅ λn

d vertices of U for which each of them is incident with fewer than s edges colored by
c.
Proof Let H be the induced graph on color c. Consider the subgraph H∗ of H
generated by only those vertices of degree less than s, so H∗ can be s-colorable. That is,
we have a vertex partition into s independent sets. Using Lemma 4.1, an independent
set in H (and thus in H∗) has size at most λn

d . Otherwise, by Lemma 4.1, every
vertex set of size greater than λn

d determines every color, which means there exists
two vertices connected by a c-color edge, contradicting the independence. As a result,
∣V(H∗)∣ ≤ s ⋅ λn

d , proving the lemma. ∎
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The next lemma develops this further by giving lower bounds on the number of
disjoint copies of star graphs.

Lemma 4.3 Let G be an (n, d , λ)-colored graph with color set D, and let U ⊂ V(G)
with ∣U ∣ = r ⋅ λn

d , for some r > 1. Then the number of vertex disjoint copies of the
nonempty star graph K1,m with any fixed edge-coloring from D is at least r−m

m+1 ⋅
λn
d .

Proof Let T be the maximal set of copies of K1,m in U, and let H be the union of all
copies in T. Then U − H will have no copies of K1,m .

Suppose the set of color of K1,m is {c1 , c2 , . . . , ct} with multiplicities
{m1 , m2 , . . . , mt}. Using Lemma 4.2, for each i, there are at most m i ⋅ λn

d vertices
that are incident with fewer than m i edges colored by c i . Summing over i, we get that
there are at most

t
∑
i=1

m i ⋅
λn
d

= m ⋅ λn
d

vertices of U − H which are not colored c i from at least m i other vertices of U − H
for every i. If vertex v ∈ U − H is incident with at least m i edges color c i for every i ,
then v is the singleton bipartition set of an instance of K1,m . Thus, ∣U − H∣ ≤ m ⋅ λn

d .
By disjointness,

∣T ∣ = ∣H∣
m + 1

≥
r ⋅ λn

d − m ⋅ λn
d

m + 1
= r − m

m + 1
⋅ λn

d
,

as required. ∎
Our final technical lemma is a simple application of Lemma 4.2 that gives a lower

bound on the number of disjoint edges of a given color in a vertex set.

Lemma 4.4 Let G be an (n, d , λ)-colored graph with color set D, and let U ⊂ V(G)
with ∣U ∣ ≥ 2λn

d . Then, for each color c ∈ D, the number of disjoint c colored edges in U is
at least ∣U ∣2 − λn

d .

Proof We partition the vertex set of U into two sets, A and B, such that ∣A∣ = ∣B∣ = ∣U ∣2 .
Choose as large a matching of color c as possible between, say, A′ ⊆ A and B′ ⊆ B. We
have that the two sets A/A′ and B/B′ both have size at most λn

d . Otherwise, by Lemma
4.1, we could increase the size of our matching. As a result, the number of disjoint c
colored edges in U is at least

∣A
′

∣ = ∣B
′

∣ ≥ ∣U ∣
2

− λn
d

,

as required. ∎

4.2 Proof of Theorem 1.15

The proof proceeds by strong induction on the number of edges in T. If T contains no
edges the theorem is clearly true; if T is a star graph K1,m , then σ(G) = m + 1 and the
theorem is Lemma 4.3.

Now assume T is not a star graph. Let T
′

be the graph produced by deleting all
leaves of T. Since T is not a star graph, T ′ is a tree which has at least two leaves,
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we can choose v be a leaf of T
′

such that there exists another leaf of T
′

, say w, such
that degT v ≤ degT w. Suppose the set of leaves of T connected to v is {v1 , v2 , . . . , vy}.
Define the graph T∗ to be T/{v1 , v2 , . . . , vy}. By construction, T∗ is a tree with fewer
edges than T and σ(T) = σ(T∗) ⋅ (y + 1). Define r by the relation ∣U ∣ = r ⋅ λn

d . By the
inductive hypothesis we have the number of disjoint copies of T∗ in U denoted by CT∗

is at least ( r
σ(T∗) − 1) ⋅ λn

d .
We are building our tree T out of stars instead of edges. Let W be the set of

copies of v in U. By disjointness ∣W ∣ = ∣CT∗ ∣. Let K1, y be the star graph generated by
{v , v1 , v2 , . . . , vy} where the root is v. Using Lemma 4.3, there exist at least ∣W ∣/

λn
d −y

y+1 ⋅
λn
d disjoint copies of K1, y in W. For each copy of K1, y , we can build our tree T by

adding the copies of T∗ that correspond to v. These are disjoint copies of T because of
the disjointness of T∗ and the disjointness of K1, y . So there are at least

∣W ∣/ λn
d − y

y + 1
⋅ λn

d
=
∣CT∗ ∣/ λn

d − y
y + 1

⋅ λn
d

≥
( r

σ(T∗) − 1) − y
y + 1

⋅ λn
d

= ( r
(y + 1)σ(T∗) − 1) ⋅ λn

d

= ( r
σ(T) − 1) ⋅ λn

d

disjoint copies of T as required.

4.3 Proof of Theorem 1.16

The proof proceeds by induction on the number of edges on T. If T contains no edges,
the theorem is clearly true. If T is an edge, then ∣V(T)∣ = 2, the theorem is Lemma 4.4.

So assume T is a tree with m vertices. Consider the subgraph T∗ of T produced by
deleting one leaf on vertex x. Let us say the edge we are just removing has color c. By
construction, T∗ is a tree with fewer edges than T. By inductive hypothesis we have
the collection of disjoint copies of T∗ in U is at least ∣U ∣m−1 −

λn
d .

Choose ∣U ∣m copies of them arbitrarily, and let this set of vertices be called S. This is
possible since ∣U ∣ ≥ m(m − 1) λn

d .
So S has size (m − 1) ⋅ ∣U ∣m . Now, in these copies of T∗, denote by A the set copies

of x to which we will be trying to add an edge of color c, so ∣A∣ = ∣U ∣m . Let B = U/S, so
∣B∣ = ∣U ∣ − (m − 1) ⋅ ∣U ∣m = ∣U ∣m .

Choose as large of a matching color c as possible between, say, A′ ⊆ A and B′ ⊆ B,
each matching creates a copy of T. Let C and D be the sets of vertices in A/A′ and
B/B′, respectively. Then we have that ∣C∣ = ∣D∣ ≤ λn

d . Otherwise, using Lemma 4.1, we
can find at least one c colored edge between C and D, which would increase the size

https://doi.org/10.4153/S0008414X24000245 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000245


30 T. V. Pham, S. M. Senger, M. Tait, and T. Vu

of our matching. So the number of disjoint copies of T is

∣A′∣ = ∣A∣ − ∣C∣ ≥ ∣U ∣
m

− λn
d

,

as required.
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