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Abstract
Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic
model identification is an active topic for collaborative robots because it can provide effective ways to achieve
precise control, fast collision detection and smooth lead-through programming. In this research, an improved itera-
tive approach with a comprehensive friction model for dynamic model identification is proposed for collaborative
robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on
the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison
with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by
over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various
application scenarios of collaborative robots.

1. Introduction
In the past years, collaborative robots have transformed the manufacturing sector in a positive way due
to its advantages of safety, accuracy, flexibility and lead-through programming [1, 2], and they also
have brought about affordable solutions to mass customization and small-scale manufacturing such as
complex assembly, carving and surgery [3–5]. Collaborative robots are becoming intelligent assistants
for human in industrial settings and daily lives.

In all these applications, collaborative robots frequently interact with human or environment, and
thus, accurate dynamic modeling is prerequisite for robot control. There are two main reasons for this.
One is that precise dynamic modeling can be used in detecting contact forces so that the controlling
precision and the safety of physical human-robot interactions can be effectively guaranteed [6]. The
other is that the dynamic modeling-based force compensation can allow non-experts to achieve correct
lead-through programming for rapidly deployed collaborative robots [3].

However, the dynamic system is affected by a variety of parameters such as the link inertia ten-
sor, mass, mass center, joint friction, etc. Although these parameters can generally be tested through
CAD (computer-aided-design) software, their real values are in fact unequal to theoretical values due to
many factors including production, assembly and aging of robots. Thus, an identification approach was
proposed to characterize the dynamic model more accurately [7].

When model identification is represented as a linear regression problem, the ordinary least-squares
(LS) is frequently used as an identification approach. It yields a numerical solution by minimizing the
square of errors. And then its derivatives are used to build the weighted least-squares (WLS) for purpose
of reducing the sensitivity of the algorithm to system noise [8, 9]. However, the results of the LS-based
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approach are highly biased and may be physically infeasible [10]. For example, it can yield negative
mass parameters occasionally. These physically infeasible estimates will lead to unrealistic simulations
or inherently unstable model-based control [6, 11].

In recent years, the convex optimization techniques with inequality constraints have been adopted to
guarantee the physical consistency of parameters. Sousa [12] defined the feasibility conditions as a con-
vex set in the form of a linear matrix inequality (LMI) that can be applied in semidefinite programming
(SDP) algorithm. Based on LMI-SDP, Jung [13] put forth a backward sequential method to optimize the
identification speed when models have large degrees of freedom (DOF). The LMI-SDP algorithm can
also be combined with non-parametric compensators to construct a semi-parametric dynamic model to
improve the model’s accuracy [6]. Owing to the manifold constraints that can be projected as convex
constraints through LMI, Wensing [14] reformulated physical-consistency constraints of inertial param-
eters as LMI and verified a necessary and sufficient condition for its density realizability on an ellipsoid.
Lee [15] proposed a geometric programming approach based on the Riemannian structure of positive
definite matrices, which enables semidefinite optimization for convex regularization of parameter esti-
mates. Then, Janot [16] developed a sequential semidefinite optimization procedure for ensuring the
physical and statistical consistency of the identified model.

Since most collaborative robots rely on geared drives where actuation performance is significantly
influenced by frictional effects, it is important to model and identify robots’ joint friction [17, 18].
Typical friction models describe the joint friction torque as a nonlinear and discontinuous function that
generally contains components of Coulomb friction, viscous friction, and Stribeck friction [3, 8, 19, 20].
The real values of friction model parameters may be different from their theoretical value due to wear,
aging and deformation of the joints. In practice, these influences can be determined from experimental
data. Walter [21] formulated friction model as a linear function of velocity and introduced friction model
parameters into a set of dynamic model parameters to be estimated together with others. For purpose
of eliminating the influence of biased data near-zero-velocity region on the identification results, an
iteratively reweighted least-squares (IRLS) approach was proposed by Han [11]. In IRLS, the WLS,
reweighted functions and nonlinear friction models are generally integrated to remove bias data in the
near-zero-velocity region with high measurement noise, and finally improve the robustness and accuracy
of the algorithm through three iterative loops. Xu [22, 23] simplified the IRLS method as two loops and
applied it in the dynamic identification on the current level and the payload identification of robots. In
IRLS, it can only model the velocity-dependent friction torque of robotic joints, which is insufficient
to characterize the variation of friction with the heat-dissipation of motor, ambient temperature change
and configural change for collaborative robots [18, 24].

In Gao [24] and our previous works [25], it was verified that the angular velocity and temperature of
joints have a nonlinear influence on viscous friction, while the load torque significantly influences the
Coulomb friction linearly. Gao [24] proposed a comprehensive mathematical friction model based on the
physical properties of lubricant shear stress to estimate these influences with the Levenberg-Marquardt
nonlinear least-squares method. Hamon [26] identified the load-independent and velocity-dependent
friction model by moving one single joint at a time. Janot [27] identified the structure of the load-
independent friction models with non-parametric state-dependent-parameter estimations and then they
identified inertial parameters with LS, respectively. Simoni [28] extended the polynomial joint friction-
temperature model by considering lubricant viscosity and the Stribeck phenomenon. Then, Madsen [1]
proposed a modeling and identification method of nonlinear joint dynamics for collaborative robots.
This method describes the most dominant dynamic characteristics of nonlinear joint friction by consid-
ering the effects of angular velocity, temperature and load torque. In addition, it extends the Generalized
Maxwell-Slip model to represent the observed friction phenomena at near-zero velocities. Hao [29]
described the relationship between friction and temperature with a double exponential model and
adjusted its parameters by genetic algorithms. However, separated identification of the friction model
introduces extra outliers in the near-zero-velocity region, that will lead to bias in the dynamic model iden-
tification [11]. Hitherto, how to estimate dynamic model parameters when considering comprehensive
friction model factors has been an unsolved challenge for collaborative robots.
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In response to the above challenges, this research proposes an improved IRLS (I-IRLS) algorithm
for collaborative robots when considering the effects of joint velocity, temperature and load torque on
robotic dynamics. The identification framework in the present research consists of four iterative loops:
A set of dynamic parameters is obtained by LMI-SDP in the first loop; a reweighted matrix is generated
by normalizing the residuals to filter the measured data in the second loop; the joint friction model
parameters are estimated by an optimization approach under constraints of feasibility in the third loop;
and the priority matrix of the friction model is updated in the fourth loop. Compared with the previous
IRLS modeling approach, the contributions of this research can be summarized as follows:

• A mathematical friction model is developed through experiments on robot joints. It comprehen-
sively characterizes the dependence of friction torque on the joint velocity, temperature and load
torque.

• A globally optimal solution with constraints is applied in dynamic identification. The LMI-SDP
is employed to estimate the dynamic parameters set and the interior-point method with multiple
starting points is used to calculate the friction model parameters. In this way, one can ensure the
physical feasibility of parameters and reduce the influence of initial value on the identification
results.

• An improved iterative identification approach is proposed. It improves the friction model and its
solution in the third loop. A new fourth loop is introduced to update the model’s prior knowledge
so that the convergence and consistency of the model parameters can be guaranteed.

• Experiments are conducted on the AUBO collaborative robot, and the estimation error of the
proposed algorithm is reduced by at least 14% over those of other existing algorithms.

The rest of this article consists of three sections. Section 2 introduces the process of dynamic iden-
tification. Section 3 shows the results of experiments on the AUBO I5 collaborative robots. Section 4
concludes the present work.

2. Method
2.1. Inverse dynamics
The dynamics of a n-DOF serial robot can be expressed as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Ffric = τ + τext (1)

where q ∈R
n, q̇ ∈R

n, q̈ ∈R
n stand for the joint position, velocity and acceleration, respectively. M(q) ∈

R
n×n, C(q, q̇) ∈R

n×n and G(q) ∈R
n represent the inertia matrix, the Coriolis/centrifugal matrix and the

gravity vector, respectively. Ffric ∈R
n and τ ∈R

n are the friction torque vector and control torque vector
of the joint. τext ∈R

n is the external torque vector due to the physical contact with the environment.
In the case of robot dynamic identification with electric current measured by drive actuation, the joint

control torque can be calculated by:

τ = KI (2)

where I ∈R
n is the measured joint electric current and K ∈R

n×n is a diagonal matrix consisting of the
torque constant of motor.

2.2. Friction modeling
It is assumed that the friction torques are uncoupled among the joints and the frictional model form is
not changed due to assembly of joint modules for collaborative robots [1]. And frictional torque Ffric

is frequently described as a combination of three components, which characterize the effects of joint
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Figure 1. The velocity and temperature dependence of friction.

angular velocity, temperature and load torque, respectively [1]. Specifically, the friction torque of the
i-th joint can be calculated by using a composite model

Ffric,i = fv(q̇i) + fT(q̇i, Ti) + fτ (q, q̇i), |q̇i| ≥ δq̇i (3)

where Ti represents the joint temperature. fv(q̇i), fT(q̇i, Ti) and fτ (q, q̇i) stand for the dependence of friction
torque on velocity, temperature and load torque, respectively. δq̇i is the minimum resolution of velocity
data. Three groups of experiments were conducted on collaborative robots with easy-assemblable joints
to investigate these terms.

The first group of experiments were carried out in each single joint with zero load and at a constant
temperature to investigate the velocity-dependent friction model. During these experiments, each joint
was placed horizontally and driven with a sinusoidally changing speed. The velocity, temperature and
driving moment information of the joints were collected during these experiments as shown in Fig. 1(a).
Fig. 1(a) indicates that the friction torque increases exponentially with velocity but is discontinuous
at near-zero velocities. At different temperatures, the static friction torque almost keeps unchanged,
but the viscous friction torque varies significantly as in [24, 25]. Thus, the components, fv(q̇i) can be
described as:

fv(q̇i) = [fc,i + fv,i‖q̇i‖αi ]sign(q̇i) + fvo,i (4)

where fc,i > 0 represents the Coulomb friction coefficient. fv,i > 0 and αi > 0 are two coefficients that
describe the viscous friction behavior. fvo,i stands for constant offset.

The second groups of experiments were carried out in each single joint with zero load in an ordinary
working environment to investigate the relationship between friction and temperature. A temperature
sensor was fixed on the harmonic reducer to measure the joint temperature and each joint was also
driven with the same trajectory as the first experiment. In this case, robot joints naturally heat up over
20◦C. Fig. 1(b) presents the experimental results, from which it can be seen that temperature-dependent
friction is a function of speed and temperature. Therefore, the components fT(q̇i, Ti) of friction torque
can be expressed as in [1]:

fT(q̇i, Ti) = sign(q̇i)
√‖q̇i‖(β1,i + β2,iTi + β3,iTi

−3) (5)

where β1,i, β2,i and β3,i are temperature coefficients.
The third groups of experiments were introduced to model the relationship between friction and

load. During these experiments, each joint was placed horizontally, subjected to a known load and mov-
ing at a constant speed in both forward and backward directions, and the joint temperature was kept
close to ambient temperature. Fig. 2 indicates the experimental results, from which it can be seen that
friction torque has a quadratic-form dependence on the payload torque, and its component fτ (q, q̇i) is
expressed as:
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Figure 2. Frictional experiments under different loads with the curves fitted by using Eq. (6).

fτ (q, q̇i) = fL,isign(q̇i)τl,i(q)2 + flo,i (6)

where τl,i(q) stands for the load torque of the i-th joint. fL,i represents a coefficient that describes the
effect of joint payload on friction. flo,i stands for constant offset and it can be combined with fvo,i in Eq.
(4) to define a unified zero-speed offset as fo,i.

Remark 1. The variable of τl,i(q) is q instead of qi. This is because the load torque of the i-th joint is
approximately equal to the i-th component of the dynamic gravity vector, which is related to the robot’s
configuration [4, 32].

2.3. Iterative methodology for dynamic identification
When τext = 0, one compensates the components, fT and fτ , which are calculated by Eqs. (5) and (6) –
with αi being regarded as a known constant. Then, Eq. (1) becomes

M(q)q̈ + C(q, q̇)q̇ + G(q) + fv(q̇) = τ ′ (7)

and Eq. (1) can be further linearized [30] as:

τ ′ = �(q, q̇, q̈)θlinear (8)

where τ ′=τ − f̂T(q̇, T) − f̂τ (q, q̇). � ∈R
p×13n is a regression matrix, p is the sample times and θlinear ∈R

13n

is a parameter vector defined as:

θlinear = [θD θF]T

θD = [m Sx Sy Sz Ixx Iyy Izz Ixy Ixz Iyz]

θF = [fc fv fo]

(9)

where θlinear consists of dynamic inertia parameter vector θD and frictional parameter vector θF. m is the
link’s mass. S and I stand for the first and second-order inertia moments, respectively.

One can perform singular value decomposition or QR decomposition operation on the regression
matrix to get the full-rank matrix �min and the minimum parameter set θmin = {θD,min, θF,min}. θD,min and
θF,min are two re-organized parameter sets of θD and θF, respectively. The symbolic expressions of the
minimum parameter set are listed in Appendix.

By using the minimum parameter set, the dynamic equation can be recast as:

τ ′ = �min(q, q̇, q̈)θmin (10)

For the purpose of reducing the interference of outliers on calculation, the covariance matrix of errors
� as defined in [11] is utilized to normalize the regression matrix and respond vector in the first loop
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(NB: The first loop is the innermost loop denoted as L1). Then, the iterative weight vector W ∈R
mn×1 is

updated with a T-class hard weight function to gradually remove outliers in the second loop (i.e., L2).
Thus, Eq. (10) becomes

τ # = �#
min(q, q̇, q̈)θmin (11)

and
τ # = W. ∗ (�− 1

2 · τ ′)

�#
min = We. ∗ (�− 1

2 · �min)
(12)

where We ∈R
mn×p is an extension matrix consisting of p-column vectors W.

When the solution of Eq. (11) is considered as the result of a linear regression process, the solution
of θ̂ can be estimated by using LS to minimize the squared residuals. When the physical feasibility of
the solution of Eq. (11) is considered, the constraints of parameters can be written in the form of LMI.
Then, a convex optimization problem is reached, and it can be solved by using the SDP technique [12].

In this case, the normalized error is calculated by

R# = τ # − �#
min(q, q̇, q̈)θ̂min (13)

Then, the covariance matrix is updated by

� = �
1
2 · E# · E#T · � 1

2

m − p
(14)

where E# ∈R
n×m is a reshaped matrix of R# .

2.4. Improved iterative methodology for friction identification
In the above section, the components of Ffric are considered as a priori knowledge used in Eq. (8). For
purpose of reducing the interference of this priori on calculation and enhancing the model’s accuracy,
the friction-model parameters need to be calculated and updated during the third loop (i.e., L3) of I-IRLS.

When the solution θ̂min is estimated, the friction torque Ffric can be calculated as:

Ffric(θFric) = τ − �min(q, q̇, q̈) · [θ̂D,min, 0]T (15)

where θFric = [fc fv α fo fL] are the friction-model parameters described in section 2.2. The calculation
of θ̂Fric is feasible if a solution exists in its physically constrained space. This can be represented as an
optimization problem as:

min
θFric

‖Ffric − F̂fric‖
s.t. fc,max ≥ fc > 0

fv,max ≥ fv > 0

αmax ≥ α > 0

fo,max ≥ fo ≥ fo,min

fL,max ≥ fL > 0

(16)

where fc,max, fv,max, αmax, fo,max, fo,min and fL,max are the boundary values for the parameters’ feasible domain.
The optimization problem in Eq. (16) can be solved by the multi-start interior-point method to get

the global optimal solution. In experiments, the duration of the excitation trajectory is too short to
reflect the effect of temperature on friction, so the result of the single-joint experiment mentioned in
section 2.2 can be adopted to determine the component fT(q̇, T).

Subsequently, the residual error of the dynamic model in Eq. (1) is calculated by

R = τ − τ̂

= τ − F̂fric − �min(q, q̇, q̈) · [θ̂D,min, 0]T
(17)

https://doi.org/10.1017/S0263574724000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000341


1506 Zeyu Li et al.

The load torque vector τl(q), which is used to calculate fτ (q, q̇) in Eq. (6), can be replaced by the
approximated gravity vector [24]. By importing the identification result, the load torque vector τl(q) can
be updated by using the gravity vector during the outermost fourth loop L4:

τ̂l(q) = �min(q, 0, 0) · [θ̂D,min, 0]T (18)

Remark 2. θ̂D,min, F̂fric and τl(q) interact with one another. When estimating any one of them, we can
regard the other two ones as priories. If they were solved together, this would affect the independence of
the variables. Therefore, the variables are computed separately in L2, L3 and L4 iteratively so that their
dependence can be avoided and their consistency is ensured.

The I-IRLS friction model can be linearized by considering some model parameters as priori knowl-
edge and estimating other parameters together with the dynamic parameters set. When the friction model
cannot be linearized, the I-IRLS can be designed as a decoupled form (abbr. as ID-IRLS), which decou-
ples the dynamic model identification from the friction-model identification simply by redefining τ ′ and
θlinear as:

τ ′ = τ − fv(q̇) − fT(q̇, T) − fτ (q, q̇)

θlinear = [m Sx Sy Sz Ixx Iyy Izz Ixy Ixz Iyz]
(19)

Remark 3. ID-IRLS is a more generic form of I-IRLS. In this case, the friction-model parameters are
estimated in L3 while their priories are updated in L4 without affecting the algorithms and models in L1

and L2. When only the dependence of friction on velocity is considered in I-IRLS, that is, Ffric = fv(q̇i),
I-IRLS degenerates as the classical IRLS.

2.5. Excitation trajectory
The excitation trajectory is necessary for identification. It needs to sufficiently excite the robotic system
to obtain a well-conditioned regression matrix so that parameters are insensitive to the noise and thus
can be fully estimated. When a fifth-order finite Fourier series [31] is applied, the position trajectory of
the i-th joint can be written as:

qi(t) = qi0 +
∑N=5

k=1
(ai

k sin (kwf t) + bi
k cos (kwf t)) (20)

where wf is a fundamental pulse, qi0 is an offset, and ai
k and bi

k are the amplitudes of harmonic sine and
cosine functions, respectively.

For the purpose of calculating the coefficients in Eq. (20), the regression matrix is divided into two
sub-matrices according to the significance of parameters, where �1 and �2 are related to the first-order
and second-order moments, respectively. Then, an optimization problem can be formulated in the form
of a weighted function as follows:

min
qi0,ai

k=1...,5,bi
k=1...,5

W1cond(�1) + W2cond(�2)

s.t. qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max

q̈min ≤ q̈ ≤ q̈max

τmin ≤ 	(q, q̇, q̈) ≤ τmax

rmin ≤ ree(qend) ≤ rmax

hmin ≤ hee(qend) ≤ hmax

(21)

where W1 and W2 are the weight coefficients of the condition numbers of matrices �1 and �2, respec-
tively. qmin, qmax, q̇min, q̇max, q̈min, q̈max, τmin and τmax stand for the ranges of angle, velocity, acceleration
and driving torque of the joints. rmin, rmax, hmin and hmax represent the ranges of radius and height of the
robotic end effector.
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Algorithm 1. I-IRLS

Data: position , velocity , acceleration of excitation trajectory, measured joint-driven electric

current , and measured joint temperature

Result: dynamic parameter set ˆ and friction parameter set ˆ
4:while dynamic parameters ˆ not converged do

Initialize ) of friction using Eq. (5)

Initialize load torque vector ˆ ( )

3:while friction model parameters ˆ not converged do
Initialize weighted vector ← ×1 and weighted matrix ← ×

Calculate response vector and observation matrix Φ using Eqs. (8) - (10)

2:while weighted vector not converged do
Initialize covariance matrix Ω ← Ω0

1:while covariance matrix Ω not converged do
Normalize and weight observation matrix Φ#

and observation response # using Eqs.

(11) and (12)

Estimate dynamic parameter set ˆ
Compute normalized residuals # using Eq. (13) and update covariance matrix

Ωusing Eq. (14)
end
Update with a T-class hard weight function

end
Calculate friction torque using Eq. (15)

Estimate the friction model parameters ˆ using Eq. (16)

Compute residuals using Eq. (17)
end
Estimate load torque vector ˆ ( ) using Eq. (18)

end

2.6. Overall framework
Algorithm 1 shows how the model parameters are estimated. In L1, dynamic parameters are estimated
by using the normalized observation matrix �#

min and the normalized observation response τ # in Eqs.
(11) and (12). In L2, the weight matrix W is updated by the normalized residuals R# calculated from Eq.
(13) so that the outliers in the measured data are eliminated.

In the present work, IRLS is improved as I-IRLS by modifying L3 and adding L4. In L3, a comprehen-
sive model that considers the effects of velocity, temperature and load torque is developed to describe
the friction torque of joints, and its parameters are identified based on a globally optimal algorithm with
constraints by using Eqs. (15) and (16). In this way, the interference of a priori knowledge on the identi-
fication results can be reduced. Since the friction components and the coefficient α are considered as a
priori knowledge for calculating the observed response τ ′ and the observation matrix �min, they should
be re-computed from Eqs. (8)-(10) after the new solutions θ̂F are obtained.

In L4, the joint load torque τ̂l(q) is updated. Since the τ̂l(q) vector can be approximated by the gravity
vector G(q) in Eq. (1), its accuracy is also influenced by the estimation of dynamics parameters set θD

and friction torque Ffric. It has to be re-computed after the new solutions of θ̂D and θ̂F are obtained from
Eq. (18). Therefore, the components fT and fτ are calculated and compensated in L3 and L4, and this
effectively avoids their influence on the linearization of dynamics in L2.
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Figure 3. Experimental platform.

3. Experiment
The proposed identification framework is implemented on a collaborative robot and three groups of
experiments are done for three purposes. The first experiment is residual analysis for purpose of investi-
gating the assumptions of linear regression. The second one is cross-validation for four combinations for
purpose of analyzing the effect of different factors on model accuracy. The third one is cross-validation
for purpose of comparing the proposed algorithms with two other identification algorithms.

3.1. Experimental setup
The proposed algorithm is applied on a 6-DOF AUBO I-series robot, as shown in Fig. 3. All robotic
joints can feedback the data of joint angle, speed, acceleration, temperature (at reducer housing) and
the driving electric current with the sampling frequency being 200 Hz. The revolute range of each joint
module is [−3.054, 3.054] (unit: rad). The speed range of the shoulder module is [−3.840, 3.840] (unit:
rad/s) and that of the wrist module is [−4.014, 4.014] (unit: rad/s). The modified Denavit-Hartenberg
parameters of the manipulator are provided in Table I.

In this study, the designed position trajectory of each joint is given by Eq. (20) and optimized by
Eq. (21) with the fundamental excitation frequency being 0.05πHz. Three different sets of excitation
trajectories were designed. One is used to calculate dynamic parameters and is shown in Fig. 4. The
other two are applied to verify the quality of the identified model.

3.2. Residual analysis
By referring to Han [11], the five assumptions of linear regression are verified by graphical analysis of
the residuals:

Assumption 1. Linearity. The response variable τ # is a linear combination of the regression matrix
�#

min and the predictor variables θmin, or approximately so.

Fig. 5 shows the relationship between the distribution of residuals and the fitted values of the driving
torque of each joint. Here, the fitted values of τ̂ are taken as the x-axis, and the residuals are set as
the y-axis. In Figs. 5(a) and 5(b), the results show that the residuals are not evenly distributed in the
forward and backward directions of estimation. In addition, there are some sudden changes at near-zero
values. These phenomena are consistent with fitting errors caused by discontinuities in the friction at
force near-zero estimation [1, 11]. Since the estimation of friction has the same sign as the joint velocity,
the relationship between velocity and friction is used to analyze these variabilities, as demonstrated in
Fig. 6. Fig. 6(a) indicates that the Stribeck effect in the friction torque of the 3rd joint is evident, and
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Table I. The MDH parameters of AUBO I-series robot.

Axis α(rad) a(m) d(m) θ(rad)
1 0 0 0.1220 π

2 − π

2
0 0.1215 − π

2

3 π 0.4080 0 0
4 π 0.3760 0 − π

2

5 − π

2
0 0.1025 0

6 π

2
0 0.0940 0

Figure 4. Trajectories used for identifying dynamic parameters.

the fitted curve is insufficient to characterize the decrease of friction torque as the velocity increases
from zero. Fig. 6(b) shows that for the friction torque of the 5-th joint, the dynamic effect depends on
the direction of motion and the static mapping is insufficient to characterize this feature [1]. Thus, the
residuals are mainly gathered in the positive direction and accompanied by larger values at near-zero
velocities.

In addition, Fig. 5 demonstrates that the scatter plots also show an approximately horizontal band of
random scatters around the horizontal midline of each joint. This is ideal for proving the linearity of the
linear regression model.

Assumption 2. Independence of residuals. The residuals ε are uncorrelated with each other.

Fig. 7 shows the autocorrelation of residual terms. It is seen that the autocorrelation coefficient of
each joint lies within ±0.15, which is the same threshold as IRLS, thus indicating the independence
assumption of the residuals in I-IRLS remains unchanged [11].

Assumption 3. Constant variance. The variance is the constant residuals and does not depend on the
predictor variables.
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Figure 5. The distribution of residuals vs the fitted values of joint torque.

Figure 6. The measured data vs the fitted values of joint friction torque.

Fig. 5 also shows that the residuals’ mean value is approximately zero and the residuals are randomly
distributed without any pattern. This feature indicates that there is no trend or curvature for the residuals
and their predicted values, and so it is verified that the variance of the error is constant.

Assumption 4. Normality. The residuals are normally distributed with the mean value being zero, or
approximately so.

Figs. 8 and 9 both reveal that for each joint, the residuals almost have the normal distribution with
its mean value being 0. The slight asymmetry of the distribution is caused by the underfitting friction
at near-zero velocities demonstrated in Fig. 6. The residuals of the classical identification algorithm
are mostly velocity-dependent, and this is caused by the difficulty of accurate modeling on the static
friction model [32]. However, the IRLS-based identification algorithm framework filters the data at
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Figure 7. Autocorrelation of normalized residuals. The horizontal axis represents the associated lags
of time series while the vertical one denotes the sample’s autocorrelation function. The red and yellow
dashed lines stand for the maximum and minimum values of the autocorrelation function excluding the
initial moment.

Figure 8. The probability density of the residual values. The horizontal axis denotes the residuals of
the dynamic model, and the vertical one represents their probability density functions (PDF). Here,
the histogram depicts the PDF, while the solid red line gives the data that is fitted from the empirical
standard deviation.
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Figure 9. The quantile-quantile plot of residual values. The plot shows the quantiles of the calculated
residual values versus the theoretical quantile values from a normal one. The data plot of each joint
appears linear, and so the distribution of residuals is normal.

near-zero velocities when it eliminates the outliers in the middle-loop iteration. Thus, the interference
between the data and the identification is reduced in the near-zero velocity region, and the residuals show
an independent normal distribution with a mean value of zero [11]. Additionally, this conclusion also
provides a theoretical support to the dynamics-based external force estimation such as the one proposed
in [32].

Assumption 5.Convergence. The identification results converge in each loop.

Figs. 10(a) and 10(b) show that I-IRLS guarantees the convergence of the covariance matrix and the
weighted vector as IRLS does. Figs. 10(c) and 10(d) indicate that the residuals of the model decrease
and gradually converge in both L3 and L4. Fig. 11 shows the convergence process of model parameters
in L3. It deserves noting that the accuracy of the model is significantly improved in the second time as
compared with the first one. This is because the priori knowledge of the friction compensation in Eq.
(8) and the load moment calculated in Eq. (18) are inaccurate at the beginning. The model parameters
gradually converge to the solution of the optimization problem, and as a result, the error of the model is
reduced.

Table II shows the estimated solutions θ̂ , the F-statistic F̂θ̂ and the relative standard deviations (RSD)
σ̂θ̂ . The values of RSD are computed by using the formula in [12], and if a parameter’s RSD is large,
its estimation would probably be bad. The F-statistic values are obtained through the iterative approach
in [33], and they characterize the contribution of parameters to the robot dynamics. If F̂ is less than the
threshold Fd=3.85, which is obtained from the Fisher-Snedecor table with α = 5%, the corresponding
parameter will be reduced without any significant effect on the dynamic model.

Table II indicates that the values of parameters such as θ27 and θ30, whose RSD is large, are in lower
order of magnitude and thus can be removed from the dynamic model. This reveals a characteristic of
the IRLS-based algorithm: It improves the accuracy of the dynamic model by reducing the magnitude of
the noise-sensitive parameters, and so they hardly affect the estimation results of the dynamic model and
can even be ignored in the calculation. This feature also leads to a feasible solution to the computational
errors caused by practical parameters of lower order of magnitude.

3.3. Comparison among different identification methods
In this section, the data from a set of excitation trajectories are used to calculate the dynamic parameters,
while other 25 sets of trajectories are applied as testing sets to verify the performance of the algorithms.
For comparison, six different cases of the proposed I-IRLS are adopted to estimate the model parame-
ters. Three basic models are involved here: Model I does not consider the effect of load on friction, model
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Figure 10. Convergence of the four loops of the identification algorithm.

Figure 11. Convergence of the results of the identification algorithm.
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Table II. The I-IRLS solution1.

item θ̂ F̂θ̂
2 σ̂ θ̂ item θ̂ F̂θ̂

2 σ̂ θ̂

θ1 4.43 0.02 θ28 −0.11 −30.47 0.44
θ2 4.20 0.06 θ29 0.06 −144.17 1.06
θ3 −0.24 1.17 θ30 3.74E-3 −10.62 2.79
θ4 −0.03 1.91 0.77 θ31 0.19 0.05
θ5 −1.77 0.05 θ32 0.38 0.26
θ6 0.19 0.29 θ33 4.23 0.04
θ7 1.21 0.06 θ34 −0.14 0.54
θ8 −0.67 0.11 θ35 0.12 −117.31 0.51
θ9 2.02 0.05 θ36 0.09 0.30
θ10 4.59 3.18E-3 θ37 0.01 −2.23 2.67
θ11 −0.03 1.05 θ38 −0.05 0.78
θ12 4.41 0.01 θ39 −0.13 0.40
θ13 16.16 0.01 θ40 0.01 −20.83 0.85
θ14 −0.22 1.34 θ41 −0.02 0.26
θ15 −0.99 0.09 θ42 0.51 0.19
θ16 −0.10 2.03 0.57 θ43 4.70 0.03
θ17 0.64 0.09 θ44 −2.34E-3 −0.02 12.36
θ18 0.47 0.12 θ45 −0.03 1.93
θ19 1.78 0.04 θ46 −0.02 1.52
θ20 1.96 4.37E-3 θ47 0.04 −6.18 0.61
θ21 −0.04 0.32 θ48 −0.04 −46.08 0.71
θ22 4.62 0.05 θ49 0.09 −141.07 0.41
θ23 1.56 0.18 θ50 4.85E-4 −1.45 12.36
θ24 −0.33 0.28 θ51 −3.21E-3 2.08
θ25 −0.11 0.77 θ52 0.36 0.25
θ26 −0.07 0.59 θ53 4.82 0.03
θ27 0.01 −4.66 6.12 θ54 −0.06 3.67 0.87
1 All the units are in SI unit.
2 Only results F̂

θ̂
< Fd are shown.

II adopts the linear load-friction relationship, and model III employs a squared load-friction function
as shown in section 2.2 Each model is investigated in two different cases with and without consider-
ing the linear temperature-friction function (abbr. as “with” and “without,” for simplicity). When no
temperature-friction relationship is taken into account, model I reduces to the classical IRLS.

The predicted results of these models on the testing sets of trajectories are shown in Fig. 12(a), from
where the following conclusions can be obtained:

(a) In each group, the Root Mean Square Error (RMSE) of the model in the “with” case is smaller
than that in the “without” case.

(b) When the same temperature-friction function is applied, the model’s RMSE is smaller if a more
accurate load-friction relationship is considered.

(c) The performances of models II and III are quite close to each other, and their results are not
obviously different in a statistical sense. The reason for this phenomenon is that the linear and
quadratic load-friction functions are approximately equivalent when the joint load torque is
small, as shown in Fig. 2.
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Figure 12. RMSE of residuals in cross-validations. The top horizontal bars reflect the statistical
significance between the results of the two algorithms and those of I-IRLS.

The above results indicate that the model that considers the temperature-friction and load-friction
effects can significantly improve the identification accuracy. Specifically, the RMSE can be reduced by
more than 13%.

3.4. Comparison with other supervised identification algorithms
For comparison, three validation trajectories were calculated using the Eqs. (20) and (13), and a test
dataset of 20 sets of data were collected to compare and validate the performance of four algorithms:
(a) LS, (b) IRLS [11], and (c) I-IRLS, proposed in this research. The RMSE of the prediction results for
each algorithm were recorded separately in Fig. 12 (b). For each algorithm, two different histograms are
depicted to show the prediction errors in the LS and LMI-SDP cases, respectively. The predicted RMSE
of these algorithms on the testing sets of trajectories is shown in Fig. 12(b). The joint running states were
categorized into a low-speed state and a high-speed state, according to the relationship between the joint
velocity and the boundary of the mixed lubrication interval (i.e., 0.1 [rad/s]) in the Stribeck Curve of
joint friction. Tables III and IV present the mean and standard deviation of the maximum estimation
error (abbr. as “M” and “STD,” for simplicity) for the three elbow joints (i.e., from the 1st to the 3rd
joint) and the three wrist joints (i.e., from the 4th to the 6th joint) on the validation dataset.

From the test results, the following conclusions can be drawn:

(a) Comparing LS with other IRLS-based algorithms, one can find that the LS always has the
largest RMSE and the largest residual. This is mainly caused by the outliers due to separated
compensation of joint friction.

(b) When IRLS is compared with the proposed I-IRLS, it is indicated that the RMSE and stan-
dard deviation of the maximum error of the I-IRLS algorithm are significantly lower than those
of IRLS. The maximum errors of the two algorithms within the low-speed zone of the elbow
joints differ by less than 1%. Furthermore, the mean value of the maximum error for the I-IRLS
algorithm is significantly lower than that of IRLS. This suggests that incorporating temperature-
friction and load-friction factors into the identification algorithms can enhance the accuracy and
robustness of the models.
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Table III. Maximum estimation error in identification results of elbow joints[1].

Low-speed[2] High-speed[2] Low-speed[3] High-speed[3]

Algorithm M STD M STD M STD M STD
LS 18.88 0.81 9.78 3.51 19.04 0.75 9.41 3.70
IRLS 18.04 1.11 7.72 1.41 18.01 1.12 7.70 1.43
I-IRLS 17.87 0.74 5.18 0.94 18.06 0.71 5.00 0.86
[1] Joints’ internal temperature increased from 25.5◦C to 40.6◦C.
[2] Based on LS.
[3] Based on LMI-SDP.

Table IV. Maximum estimation error in identification results of wrist joints1.

Low-speed[2] High-speed[2] Low-speed[3] High-speed[3]

Algorithm M STD M STD M STD M STD
LS 4.62 0.42 2.19 0.49 4.38 0.20 1.54 0.19
IRLS 3.83 0.29 0.97 0.16 3.83 0.25 0.94 0.21
I-IRLS 3.51 0.30 0.96 0.18 3.49 0.26 0.88 0.17
[1] Joints’ internal temperature increased from 26.4◦C to 29.5◦C.
[2] Based on LS.
[3] Based on LMI-SDP.

(c) The proposed I-IRLS reduces the RMSE by over 14% compared to IRLS and over 16% compared
to LS. Additionally, the estimation results of the proposed I-IRLS have the lowest error standard
deviation in terms of maximum error. This is particularly evident in the high-speed region of
the elbow joint, where the driving torque is high and the temperature variation is significant. In
this region, the proposed I-IRLS reduces the error by more than 33% compared to IRLS and
by more than 47% compared to LS. In the low-speed region, where temperature changes are not
obvious and friction dynamics are more dynamic, I-IRLS shows improvement compared to other
algorithms.

(d) All identification algorithms show significantly higher fitting errors in the low-speed region than
in other regions, which is due to the fact that the IRLS-based identification algorithms identify
and filter the data within the low-speed region in the iterations, which reduces the fitting accuracy
in this region. Furthermore, the static model used in the recognition algorithm is incapable of
ensuring the dynamics of friction within the low-speed region, leading to a decrease in model
accuracy within this region, as shown in Fig 6.

(e) The histograms for each algorithm show that the RMSE of LMI-SDP is higher than that of LS,
indicating that the identification results deviate from the numerical solution of linear regression
when physical feasibility constraints are present. However, LMI-SDP has a lower standard devi-
ation in terms of maximum estimation error, demonstrating its high robustness with respect to
physical feasibility parameters.

The predicted errors of these algorithms on one cross-validation trajectory are shown in Fig. 13. It
is seen that the residual of I-IRLS is generally smaller than that of other algorithms. It deserves noting
that the residuals of each algorithm are significantly larger in the near-zero-velocity region than that of
other cases. This phenomenon can be improved in I-IRLS by considering a more comprehensive friction
model. It also reveals that a more accurate and comprehensive friction modeling and identification are
essential for improving dynamic model accuracy.
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Figure 13. Predicted errors of cross-validations.

4. Conclusion
This research aims at developing an accurate, generalized and robust dynamic model identification
algorithm for collaborative robots. For this purpose, an improved iterative approach is proposed with
a comprehensive friction model for considering the velocity, temperature and load torque effects.
Specifically, the iterative approach is put forth to estimate the dynamic model parameters based on the
reweighted least-squares algorithm. Besides, the comprehensive friction model is proposed to enhance
the accuracy and robustness of the dynamic parameters’ identification model. Experiments verify that:
(a) The RMSE of the proposed algorithm is reduced by over 14% than those of other identification algo-
rithms, and (b) the proposed algorithm has better robustness for collaborative robots especially when
temperature varies significantly at their joints.
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When collaborative robots serve in practical environments, the velocity, temperature and load torque
of the joints vary markedly due to the heat-dissipation of motor, ambient temperature change and con-
figural change [24]. Therefore, the proposed I-IRLS algorithm has wide practical application prospects
in compliance control [6], collision detection [34] and hand-guiding programming [3].
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Appendix: Symbolic Expressions of the Minimum Parameter Set for AUBO I5

θ1 = a2
3

6∑

i=3

mi + d2
2

6∑

i=2

mi + a2
4

6∑

i=4

mi + 2d2

4∑

i=2

Sz,i +
4∑

i=2

Iyy,i + Izz,1 (22)

θ2 = fc,1 (23)

θ3 = fv,1 (24)

θ4 = fo,1 (25)

θ5 = −a2
3

6∑

i=3

mi + Ixx,2 − Iyy,2 (26)

θ6 = Ixy,2 (27)

θ7 = a3Sz,3 − a3Sz,4 + Ixz,2 (28)

θ8 = Iyz,2 (29)

θ9 = a2
3

6∑

i=3

mi + Izz,2 (30)
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θ10 = a3

6∑

i=3

mi + Sx,2 (31)

θ11 = Sy,2 (32)

θ12 = fc,2 (33)

θ13 = fv,2 (34)

θ14 = fo,2 (35)

θ15 = −a2
4

6∑

i=4

mi + Ixx,3 − Iyy,3 (36)

θ16 = Ixy,3 (37)

θ17 = a4Sz,4 + Ixz,3 (38)

θ18 = Iyz,3 (39)

θ19 = a2
4

6∑

i=4

mi + Izz,3 (40)

θ20 = a4

6∑

i=4

mi + Sx,3 (41)

θ21 = Sy,3 (42)

θ22 = fc,3 (43)

θ23 = fv,3 (44)

θ24 = fo,3 (45)

θ25 = d5

6∑

i=5

mi + 2d5Sz,5 + Ixx,4 − Iyy,4 + Iyy,5 (46)

θ26 = Ixy,4 (47)

θ27 = Ixz,4 (48)

θ28 = Iyz,4 (49)

θ29 = d2
5

6∑

i=5

mi + 2d5Sz,5 + Izz,4 + Iyy,5 (50)

θ30 = Sx,4 (51)

θ31 = d5

6∑

i=5

mi + Sy,4 + Sz,5 (52)
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θ32 = fc,4 (53)

θ33 = fv,4 (54)

θ34 = fo,4 (55)

θ35 = d6m6 + 2d6Sz,6 + Ixx,5 − Iyy,5 + Iyy,6 (56)

θ36 = Ixy,5 (57)

θ37 = Ixz,5 (58)

θ38 = Iyz,5 (59)

θ39 = d2
6m6 + 2d6Sz,6 + Izz,5 + Iyy,6 (60)

θ40 = Sx,5 (61)

θ41 = −d6m6 − Sz,6 + Sy,5 (62)

θ42 = fc,5 (63)

θ43 = fv,5 (64)

θ44 = fo,5 (65)

θ45 = Ixx,6 − Iyy,6 (66)

θ46 = Ixy,6 (67)

θ47 = Ixz,6 (68)

θ48 = Iyz,6 (69)

θ49 = Izz,6 (70)

θ50 = Sx,6 (71)

https://doi.org/10.1017/S0263574724000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000341


1522 Zeyu Li et al.

θ51 = Sy,6 (72)

θ52 = fc,6 (73)

θ53 = fv,6 (74)

θ54 = fo,6 (75)

where a and d are D-H parameters provided in Table I.
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