Bull. Aust. Math. Soc. 87 (2013), 272–277 doi:10.1017/S0004972712000718

EXISTENCE OF NONINNER AUTOMORPHISMS OF ORDER *p* IN SOME FINITE *p*-GROUPS

M. SHABANI-ATTAR

(Received 17 May 2012; accepted 27 June 2012; first published online 17 September 2012)

Abstract

Let G be a nonabelian finite p-group of order p^m . A long-standing conjecture asserts that G admits a noninner automorphism of order p. In this paper we prove the validity of the conjecture if $\exp(G) = p^{m-2}$. We also show that if G is a finite p-group of maximal class, then G has at least p(p-1) noninner automorphisms of order p which fix $\Phi(G)$ elementwise.

2010 *Mathematics subject classification*: primary 20D45; secondary 20D15. *Keywords and phrases*: noninner automorphisms of order *p*, *p*-groups.

1. Introduction

Let *G* be a nonabelian finite *p*-group. A long-standing conjecture asserts that *G* admits a noninner automorphism of order *p* (see also [9, Problem 4.13]). Liebeck [8] has shown that finite *p*-groups of class 2 with p > 2 must have a noninner automorphism of order *p* fixing $\Phi(G)$ elementwise. For p = 2, Liebeck produced an example of a 2-group *G* of class 2 and order 2^7 with the property that all automorphisms of order two fixing $\Phi(G)$ are inner. Deaconescu and Silberberg [5] reduced the verification of the conjecture to the case where $C_G(Z(\Phi(G))) = \Phi(G)$. Abdollahi [1–3] proved that if *G* is a finite *p*-group of class 2, 3 or G/Z(G) is powerful, then *G* has a noninner automorphism of order *p* leaving either $\Phi(G)$ or $\Omega_1(Z(G))$ fixed elementwise. Jamali and Viseh [7] proved that every nonabelian finite 2-group with a cyclic commutator subgroup has a noninner automorphism of order two fixing either $\Phi(G)$ or Z(G)elementwise. In [11] we showed the validity of the conjecture when *G* satisfies one of the following conditions:

- (1) $\operatorname{rank}(G' \cap Z(G)) \neq \operatorname{rank}(Z(G));$
- (2) $Z_2(G)/Z(G)$ is cyclic;
- (3) $C_G(Z(\Phi(G))) = \Phi(G)$ and $(Z_2(G) \cap Z(\Phi(G)))/Z(G)$ is not elementary abelian of rank *rs*, where r = d(G) and $s = \operatorname{rank}(Z(G))$.

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

Here we show the validity of the conjecture for some finite *p*-groups. In fact we prove the following theorem.

THEOREM A. Let G be a nonabelian finite p-group of order p^m satisfying one of the following conditions:

- (1) $\Phi(G)$ is cyclic;
- (2) $\exp(G) = p^{m-2};$
- (3) $s = \operatorname{rank}(Z(G)) \ge (m-1)/2;$
- (4) $s = \operatorname{rank}(Z(G)) \ge 2$ and $[G : Z(G)] \le p^4$.

Then G has a noninner automorphism of order p leaving either $\Phi(G)$ or $\Omega_1(Z(G))$ fixed elementwise.

A *p*-group *G* of order p^n with $n \ge 3$ and nilpotency class n - 1 is said to be of maximal class. The cornerstone in the theory of *p*-groups of maximal class is the paper by Blackburn [4] (see also Huppert [6, III.14]). If *G* is a *p*-group of maximal class, then *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise (see [11, Corollary 2.7]). In this paper, we prove a stronger version of [11, Corollary 2.7].

THEOREM B. If G is a group of order p^n ($n \ge 4$) and of maximal class, then G has at least p(p-1) noninner automorphisms of order p which fix $\Phi(G)$ elementwise.

2. Proofs

PROOF OF THEOREM A. If $C_G(Z(\Phi(G))) \neq \Phi(G)$, then by [5], *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise. Hence we need only consider the case where $C_G(Z(\Phi(G))) = \Phi(G)$. Also by [1, Theorem] and [11, Corollary 2.7] we can assume that $cl(G) \neq 2, m - 1$.

(1) Since $\Phi(G)$ is cyclic,

$$\frac{Z_2(G) \cap Z(\Phi(G))}{Z(G)} = \frac{Z_2(G) \cap \Phi(G)}{Z(G)} \le \frac{\Phi(G)}{Z(G)}$$

is cyclic. Hence by [11, Theorem], *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise.

(2) Let *a* be the element of *G* of order p^{m-2} . Assume that $C_G(a) \neq \langle a \rangle$. Choose $x \in C_G(a) \setminus \langle a \rangle$. Hence $M = \langle x, a \rangle$ is an abelian maximal subgroup of *G*. Therefore

$$M \le C_G(M) \le C_G(\Phi(G)) = C_G(Z(\Phi(G))) = \Phi(G),$$

a contradiction. Thus $C_G(a) = \langle a \rangle$. Suppose first that p is odd. Hence by [10, Proposition 5], G is isomorphic, for $m \ge 4$, to $G_7 = \langle a, b, c | a^{p^{m-2}} = 1, b^p = 1, c^p = 1, b^{-1}ab = a^{1+p^{m-3}}, c^{-1}ac = ab, bc = cb \rangle$;

and, for
$$m \ge 5$$
, to
 $G_8 = \langle a, b \mid a^{p^{m-2}} = 1, b^{p^2} = 1, b^{-1}ab = a^{1+p^{m-4}} \rangle,$
 $G_{10} = \langle a, b \mid a^{p^{m-2}} = 1, a^{p^{m-3}} = b^{p^2}, a^{-1}ba = b^{1-p} \rangle.$

If *G* is isomorphic to *G*₇, then $M = \langle a, b | a^{p^{m-2}} = 1, b^p = 1, b^{-1}ab = a^{1+p^{m-3}} \rangle$ is a maximal subgroup of *G* and $Z(G) = Z(M) = \langle a^p \rangle$. Now the map ϕ defined by $\phi(a) = a$, $\phi(b) = b$ and $\phi(c) = a^{p^{m-3}}c$ is a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise. Now let *G* be isomorphic to *G*₈. Thus $G' = \langle a^{p^{m-4}} \rangle$ and $Z(G) = \langle a^{p^2} \rangle$. If m = 5, then $\Phi(G) = \langle a^p, b^p \rangle$, whence $Z(\Phi(G)) = Z(G) = \langle a^{p^2} \rangle$. Thus

$$C_G(Z(\Phi(G))) = C_G(Z(G)) = G \neq \Phi(G),$$

a contradiction. If $m \ge 6$, then *G* is of class 2, a contradiction. Finally let *G* be isomorphic to G_{10} . Thus $Z(G) = \langle a^{p^2} \rangle$ and $G' = \langle b^p \rangle$. Set $\bar{a} = aZ(G)$ and $\bar{b} = bZ(G)$. Hence

$$\bar{G} = G/Z(G) = \langle \bar{a}, \bar{b} \mid \bar{a}^{p^2} = \bar{b}^{p^2} = \bar{1}, [\bar{a}, \bar{b}] = \bar{b}^p \rangle.$$

Therefore $\bar{G}' = \langle \bar{b}^p \rangle \leq \bar{G}^p$. Thus G/Z(G) is a powerful *p*-group and so by [2, Theorem 2.6], *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise.

Now let
$$p = 2$$
. By [10, Proposition 7], *G* is isomorphic, for $m \ge 5$, to
 $G_{15} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = 1, b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1+2^{m-3}}, bc = cb \rangle$,
 $G_{16} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = 1, b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1+2^{m-3}}, c^{-1}bc = a^{2^{m-3}}b \rangle$,
 $G_{17} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = 1, b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = ab, bc = cb \rangle$,
 $G_{18} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = b, b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1}b \rangle$;
for $m \ge 6$, to
 $G_{20} = \langle a, b \mid a^{2^{m-2}} = 1, b^4 = 1, b^{-1}ab = a^{-1+2^{m-4}} \rangle$,
 $G_{21} = \langle a, b \mid a^{2^{m-2}} = 1, a^{2^{m-3}} = b^4, a^{-1}ba = b^{-1} \rangle$,
 $G_{24} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = 1, b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1+2^{m-4}}b, bc = cb \rangle$,
 $G_{25} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = a^{2^{m-3}}, b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1+2^{m-4}}b, bc = cb \rangle$;
and for $m = 5$ to
 $G_{26} = \langle a, b, c \mid a^8 = 1, b^2 = 1, c^2 = a^4, b^{-1}ab = a^5, c^{-1}ac = ab, bc = cb \rangle$.

If *G* is one of the groups G_{15} or G_{16} , then $G' = \langle a^2b \rangle \cong C_{2^{m-3}}$ and $Z(G) = \langle a^{2^{m-3}} \rangle \cong C_2$. Hence the map ϕ defined by $\phi(a) = a^{-1}$, $\phi(b) = b$ and $\phi(c) = c$ is a noninner automorphism of order two which fixes Z(G) elementwise. If *G* is the group G_{17} , then

$$G' = \langle a^{2^{m-3}}, b \rangle \cong C_2 \times C_2$$
 and $Z(G) = \langle a^4 \rangle \cong C_{2^{m-4}}$.

Hence the map ϕ defined by $\phi(a) = ac$, $\phi(b) = b$ and $\phi(c) = c$ is a noninner automorphism of order two which fixes Z(G) elementwise. If *G* is the group G_{18} , then the map ϕ defined by $\phi(a) = ab$, $\phi(b) = b$ and $\phi(c) = c^{-1}$ is a noninner automorphism of order two which fixes $\Omega_1(Z(G))$ elementwise. If *G* is the group G_{20} , then $G' = \langle a^2 \rangle \cong C_{2^{m-3}}$ and $Z(G) = \langle a^{2^{m-3}} \rangle \cong C_2$. Hence the map ϕ defined by $\phi(a) = a^{-1}$ and $\phi(b) = b$ is a

noninner automorphism of order two which fixes Z(G) elementwise. If G is the group G_{21} , then $G' = \langle b^2 \rangle \cong C_4$ and $Z(G) = \langle a^2 \rangle \cong C_{2^{m-3}}$. Since |G/Z(G)| = 8 and G/Z(G) is not abelian, we have $Z_2(G)/Z(G) \cong C_2$ and hence by [11, Theorem], G has a noninner automorphism of order two which fixes $\Phi(G)$ elementwise. Let G be one of the groups G_{24} or G_{25} . Then

$$G' = \langle a^2 b \rangle \cong C_{2^{m-3}}$$
 and $Z(G) = \langle a^{2^{m-3}} \rangle \cong C_2$.

Hence the map ϕ defined by $\phi(a) = ab$, $\phi(b) = b$ and $\phi(c) = bc$ is a noninner automorphism of order two which fixes Z(G) elementwise. Finally, let *G* be the group G_{26} . Then $G' = \langle a^4, b \rangle \cong C_2 \times C_2$ and $Z(G) = \langle a^4 \rangle \cong C_2$. Hence the map ϕ defined by $\phi(a) = ac$, $\phi(b) = b$ and $\phi(c) = c^{-1}$ is a noninner automorphism of order two which fixes Z(G) elementwise.

(3) If s = 1, then m = 3 and so $\Phi(G) = Z(G) \cong C_p$. Hence $C_G(Z(\Phi(G))) = G \neq \Phi(G)$, which is a contradiction. Therefore $s \ge 2$. We claim that

$$\frac{Z_2(G) \cap C_G(\Phi(G))}{Z(G)} \not\cong \operatorname{Hom}\left(\frac{G}{\Phi(G)}, Z(G)\right).$$

Assume to the contrary that

$$\frac{Z_2(G) \cap C_G(\Phi(G))}{Z(G)} \cong \operatorname{Hom}\left(\frac{G}{\Phi(G)}, Z(G)\right).$$

Since *G* is nonabelian and $s = \operatorname{rank}(Z(G)) \ge (m-1)/2$,

$$\left|\frac{G}{Z(G)}\right| \ge \left|\frac{Z_2(G) \cap C_G(\Phi(G))}{Z(G)}\right| = \left|\operatorname{Hom}\left(\frac{G}{\Phi(G)}, Z(G)\right)\right| \ge p^{2s} \ge p^{m-1}.$$

This is a contradiction, since $s \ge 2$. Hence by [11, Proposition 2.5], *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise.

(4) Since G/Z(G) is nonabelian, $|G/Z(G)| = p^3$ or p^4 . If $|G/Z(G)| = p^3$, then $|Z_2(G)/Z(G)| = p$. Hence by [11, Theorem], *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise. Now let $|G/Z(G)| = p^4$. By [11, Theorem], we can assume that $Z_2(G)/Z(G)$ is not cyclic. Therefore $Z_2(G)/Z(G) \cong C_p \times C_p$. It follows from $s \ge 2$ and $d(G) \ge 2$ that

$$\frac{Z_2(G) \cap C_G(\Phi(G))}{Z(G)} \ncong \operatorname{Hom}\left(\frac{G}{\Phi(G)}, Z(G)\right).$$

Hence by [11, Proposition 2.5], *G* has a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise.

PROOF OF THEOREM B. Since G is of maximal class, $|Z_2(G)| = p^2$. Hence by [12, Step 1], $C_G(Z_2(G))$ is a maximal subgroup of G, M_0 say. Since G is of maximal class, by [4, p. 53] G has just p + 1 maximal subgroups. Let M_1, \ldots, M_p denote the maximal subgroups different from M_0 .

We now divide the proof into the following three steps.

Step 1. *G* is not the union of M_1, \ldots, M_p . For $i = 2, \ldots, p$, $|M_i \cap M_1| = p^{n-2}$, and

For
$$i = 2, ..., p$$
, $|M_i \cap M_1| = p^{n-2}$, and so $|M_i \setminus M_1| = p^{n-2}(p-1)$. Hence

$$\left| \left(\bigcup_{i=1}^{p} M_{i} \right) \setminus M_{1} \right| \leq \sum_{i=2}^{p} |M_{i} \setminus M_{1}| = p^{n-2}(p-1)^{2} < p^{n} - p^{n-1} = |G \setminus M_{1}|.$$

Step 2. $Z(M_i) = Z(G) \cong C_p$ for $i = 1, \ldots, p$.

Suppose that |Z(M)| > p for some $M = M_i$. Since by [4, Lemma 2.2], $Z_2(G)$ is the only normal subgroup of G of order p^2 , and Z(M) is normal in G, we have $Z_2(G) \le Z(M)$, and therefore

$$M \le C_G(Z(M)) \le C_G(Z_2(G)) = M_0,$$

a contradiction.

Step 3. G has at least p(p-1) noninner automorphisms of order p which fix $\Phi(G)$ elementwise.

By Step 1, we can pick $x \in G \setminus (M_1 \cup \cdots \cup M_p)$. Thus

$$G = \langle x \rangle M_1 = \langle x \rangle M_2 = \cdots = \langle x \rangle M_p.$$

By Step 2, $Z(M_j) = Z(G) \cong C_p$ for all $1 \le j \le p$. Let $Z(G) = \langle z \rangle$ and $1 \le j \le p$. It follows from

$$Z(G) \le \Phi(G)$$
 and $Z(G) = Z(M_j) = C_G(M_j)$

that the map α_j defined on *G* by $\alpha_j(x^i m_j) = x^i m_j z^i$ for every $m_j \in M_j$ and every $i \in \{0, 1, \dots, p-1\}$ is a noninner automorphism of order *p* which fixes $\Phi(G)$ elementwise. Let $\alpha_j = \alpha_k$ for some $1 \le j \ne k \le p$. Pick any $x_0 \in M_j \setminus M_k$. Since $G = \langle x \rangle M_k$, we have $x_0 = x^u m_k$ for some 0 < u < p and some $m_k \in M_k$. Then

$$x_0 = \alpha_i(x_0) = \alpha_k(x_0) = x^u m_k z^u = x_0 z^u.$$

Therefore $z^u = 1$ and so p must divide u, a contradiction. It can be verified that if α_j is one of the above automorphisms, then $\alpha_j^2, \ldots, \alpha_j^{p-1}$ are noninner automorphisms of order p which fix $\Phi(G)$ elementwise. By imitating the proof of the above we get $\alpha_j^s \neq \alpha_j^t$ for all $1 \le j \ne k \le p$ and $1 \le s, t \le p - 1$. Therefore G has at least p(p-1) noninner automorphisms of order p which fix $\Phi(G)$ elementwise.

Acknowledgements

I thank the editor of the *Bulletin of the Australian Mathematical Society* and the referee who have patiently read and verified this note.

277

References

- [1] A. Abdollahi, 'Finite *p*-groups of class 2 have noninner automorphisms of order *p*', *J. Algebra* **312** (2007), 876–879.
- [2] A. Abdollahi, 'Powerful *p*-groups have noninner automorphisms of order *p* and some cohomology', *J. Algebra* 323 (2010), 779–789.
- [3] A. Abdollahi, M. Ghoraishi and B. Wilkens, 'Finite *p*-groups of class 3 have noninner automorphisms of order *p*', *Contrib. Algebra Geometry*, to appear.
- [4] N. Blackburn, 'On a special class of *p*-groups', Acta. Math. 100 (1958), 45–92.
- [5] M. Deaconescu and G. Silberberg, 'Noninner automorphisms of order p of finite p-groups', J. Algebra 250 (2002), 283–287.
- [6] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
- [7] A. R. Jamali and M. Viseh, 'On the existence of noninner automorphisms of order two in finite 2-groups', *Bull. Aust. Math. Soc.* 87 (2013), 278–287.
- [8] H. Liebeck, 'Outer automorphisms in nilpotent *p*-groups of class 2', J. Lond. Math. Soc. 40 (1965), 268–275.
- [9] V. D. Mazurov and E. I. Khukhro (Eds.), 'Unsolved problems in group theory', in: *The Kourovka Notebook*, Vol. 16 (Russian Academy of Sciences, Siberian Division, Institue of Mathematics, Novosibirisk, 2006).
- [10] Y. Ninomiya, 'Finite p-groups with cyclic subgoups of index p^2 ', Math. J. Okayama Univ. **36** (1994), 1–21.
- [11] M. Shabani-Attar, 'On a conjecture about automorphisms of finite *p*-groups', Arch. Math. **93** (2009), 399–403.
- [12] M. Shabani-Attar, 'A necessary condition for nonabelian finite *p*-groups with second centre of order *p*²', *Indian J. Pure Appl. Math.* **42**(3) (2011), 183–186.

M. SHABANI-ATTAR, Department of Mathematics,

Payame Noor University, P.O. Box 19395-3697 Tehran, Iran e-mail: mehdishabani9@yahoo.com, m shabaniattar@pnu.ac.ir