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Abstract. We describe our method for measuring mass loss rates of F—M main sequence stars
with high-resolution Lyman-« line profiles. Our diagnostic is the extra absorption on the blue
side the interstellar hydrogen absorption produced by neutral hydrogen gas in the hydrogen
walls of stars. For stars with low X-ray fluxes, the correlation of observed mass loss rate with
X-ray surface flux and age predicts the solar wind mass flux between 700 Myr and the present.
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1. Why mass loss rates are needed for the Sun and cool dwarf stars

Ultraviolet spectroscopy is an important tool for measuring mass loss rates (M) of
massive stars, late-type giants, and premain sequence stars when M> 1010 Mer_l.
By comparison, the solar mass loss rate measured by space experiments is far smaller,
about 2 x 107'* Mgyr~!. Until 10 years ago, there were no measured values of M for
main sequence stars cooler than about spectral type A because there were no spectral or
other diagnostics capable of measuring M far smaller than 1010 Meyr~t.

While mass loss rates similar to the Sun do not significantly reduce a star’s mass and
thus nuclear evolution during its lifetime (see below), accurate measurements of M are
needed for many reasons: (1) the torque exerted by even weak stellar winds reduces the
stellar rotation rate and thus the magnetic dynamo and stellar activity, (2) knowledge of
M(t) for the young Sun is important for understanding the evolution of the atmospheres
of solar system planets like Mars that have lost their magnetic fields, and (3) the discovery
of exopolanets close to their host stars highlights the need to predict the properties of
stellar winds that impact the atmospheres of these exoplanets. Since we cannot measure
M@ back in time, it is critical to find a reliable diagnostic to measure M for solar-mass
stars with a range of ages and coronal properties in order to scale to the young Sun.
Unfortunately, theoretical estimates of M are controversial, an empirical relationship
between M and X-ray flux was not previously known, and no space probe will enter an
astrosphere to directly measure M for a very long time.

2. The Lyman-a diagnostic for stellar mass loss rates

Baranov & Malama (1995) showed that charge exchange processes between solar wind
protons and neutral hydrogen atoms in the local interstellar medium (ISM) produce a
population of heated, decelerated hydrogen atoms concentrated in the interstellar upwind
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Figure 1. Theoretical models including charge exchange processes of the neutral hydrogen
distribution around six stars. Units for the x and y axes are Astronomical Units, and the stars
are moving to the right compared to the local ISM. High densities (red color, in the online
version of this paper) indicate the location of hydrogen walls. Solid lines show the line of sight
to the Earth (Wood et al. 2005).

direction, the so-called “hydrogen wall”. These calculations and those in subsequent mod-
els of Zank et al. (1996), Izmodenov et al. (1999), and Miiller et al. (2001) allowed Wood
et al. (2001) to compute M for o Cen. They showed that along the line of sight to the
star, the stellar Lyman-a line contains three absorption components due to interstellar
hydrogen, the solar hydrogen wall, and the stellar hydrogen wall. The decelerated hydro-
gen atoms in the solar hydrogen wall produce absorption on the red side of interstellar
absorption. Hydrogen atoms in stellar hydrogen walls are decelerated relative to the ISM
as seen by the star and thus blue-shifted relative to the interstellar absorption as seen
from the Earth.

Figure 1 shows maps of neutral hydrogen density computed for 6 stars studied by
Wood et al. (2005). These models show the presence of hydrogen walls around the stars.
Figure 2 shows the Lyman-a profiles for these stars observed with the Space Telescope
Imaging Spectrograph on the Hubble Space Telescope. Also included are the interstellar
hydrogen absorption profiles predicted from the observed deuterium Lyman-« interstellar
absorption and additional astrosphere absorption based on models with a range of M
values relative to the solar value. These models assume that the stellar wind speed is
400 km s~!, but M scales roughly linearly with the wind speed.

The effect of increasing stellar mass loss rate is to increase the absorption on the blue
side of the interstellar absorption. The theoretical Lyman-« profiles, which have been
convolved with the instrumental profile, show good agreement with the observed profiles
at a best fit value of M with about a factor of 2 uncertainty.

Figure 3 (left) shows the values of M obtained for 12 stars studied by Wood et al.
(2005) and the Sun compared with the X-ray surface fluxes (Fx), obtained at different
times than the M measurements. Since X-ray emission is variable, there should be some
scatter in any correlation of such non-simulataneous data. Nevertheless, there appears to
be a correlation of M per cm? of stellar surface with Fy over two orders of magnitude in
M with the Sun consistent with the trend. The power-law fit to these data is

https://doi.org/10.1017/5174392131200498X Published online by Cambridge University Press


https://doi.org/10.1017/S174392131200498X

288 J. L. Linsky, B. E. Wood & S. Redfield

EV Lac

0.4}

Normalized Flux

— =10 Hp W J— §=0.10 e
T W=20 e 2\ T =015 Mo 4
— - li=4.0 ls o\ L ]- - =0.20 Ms
. BBl Absorption '-,_ \ S Absorption
=150 -100 =50 =150 =100 -50

Velocity (km s—!)

Figure 2. Observed Lyman-« profiles (red histograms) are compared to models with no mass
loss (green (in the online version) dashed line marked ISM absorption) and models with different
mass loss rates compared to the solar value (Wood et al. 2005). For a color figure, see the online
version of the paper.

M o F)l(434i0A18. (21)

For Fx > 8 x 10° erg cm~2 s7!, the fit is no longer valid as all of the data points lie at
lower values than predicted by an extrapolation of the fit. Why do the more active stars
violate the fit shown by the less active stars?

Before we apply the M-Fy relation to estimating the properties of the solar wind in
time, it is important to understand the limitations of this relation. We have already
mentioned that the mass loss and X-ray data are not simulataneous and that we have
assumed that all of these stars have outflow velocities of 400 km s~! similar to the quiet
Sun. Also, the relation is based on data for stars with a range of spectral types (G2 V
to K5 V), and some are binaries. Two of the more active stars are M dwarfs, but one
is a G8 V star (¢ Boo). Clearly M values are needed for more stars to confirm the M-
Fx relation for the less active stars and to determine whether the more active stars are
inconsistent because they are more active or because they are M dwarfs. Nevertheless,
eight G and K-type stars fit the relation within a factor of two despite the uncertainties,
and we assume the relation to be valid as a working hypothesis. We have two approved
HST/STIS programs to observe eight more stars and there may be other observed targets
to fill in the diagram and test our conclusions.

Ayres (1997) found a relation between X-ray surface flux and age (¢) for solar-type
dwarf stars, Fx ¢~ 1.74£0.34 Combining this relation with the M-F 'x relation leads to
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Figure 3. Left: Observed mass loss rates per cm? of stellar surface are compared to X-ray
surface fluxes. Filed circles are for main sequence stars and unfilled circles are for subgiants and
giants. The solid and dashed lines are for Eq. 2.1 and its uncertainty. Right: solar mass loss rate
from 700 Myr to the present computed from Eq. 2.2 (Wood et al. 2005).

M x t72'33i0'55. (22)

This relation shown in the right hand side of Fig. 3 provides an estimate of Mg back to
an age of 700 Myr when Fx would have been larger than the upper limit of the M-Fy
relation. This age is slightly larger than the age of the Hyades. The total mass loss for
the Sun between 700 Myr and the present is 0.001 My with an uncertainty of a factor of
10 (Wood et al. 2002). If M remained at 1.5 x 10~'2 (+ a factor of 3) Mg yr~! over the
Sun’s early life on the main sequence (0 < t < 700 Myr), then the additional mass loss
would be 0.001 M (& a factor of 3). This amount of mass loss would not have modified
the Sun’s evolution, but the amount of mass loss before 700 Myr is uncertain.

Can theoretical models for stars with solar-type magnetic field topologies explain the
M-Fx relation? Cranmer & Saar (2011) find that Alfvén wave-driven winds predict a
factor of 30 increase in M for a solar mass star as the rotation period decreases from 25
to six days, consistent with the increase in M predicted by the M-Fy relation.

Why is the M-Fy relation not valid for the more active stars? A likely explanation is
that the magnetic topology of rapidly rotating stars which have strong X-ray emission
is different from that of slowly rotating stars. Zeeman-Dopler imaging studies show that
rapidly rotating dwarf stars with mass greater than 0.5 Mg have strong torroidal fields,
and low mass stars often have strong poloidal fields (Donati & Lanstreet 2009). The
maximum Fy for which Eq. 2.1 is valid corresponds to a rotation period of six days for a
solar-mass star. Zeeman-Doppler images of such stars show large polar spots surrounded
by torroidal magnetic fields. Theoretical models for stars with different magnetic topolo-
gies are needed to understand why the M-Fy relation is not valid for these stars. We
note that the solar wind mass flux is nearly the same in coronal holes and equatorial
regions despite the difference in magnetic field topology (Phillips 1995).
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Discussion

DiBYENDU NANDI: We know that there is a strong power law relationship between
magnetic flux and X-ray flux. Given that you find a connection between X-ray flux and
stellar wind, perhaps this relationship can be utilized to infer the magnetic history of the
Sun?

JEFFREY LINSKY: Yes, we will look for a correlation of the unsigned average magnetic
flux with the mass loss rate and then the magnetic field history of the Sun.

JANET LUHMANN: Have you thought about the possible effect of a solar maximum type
solar wind that is structured and bursty, rather than steady, laminar and uniform? Is
your thinking affected by new IBEX results?

JEFFREY LINSKY: We find that the mass loss rate declines to a plateau when the X-
ray surface flux becomes greater that 10° erg cm~2 s~!, which corresponds to a stellar
rotation rate of about 7 days for a solar mass star. At this rotation rate the stellar
magnetic field is probably more dipole-like than for the Sun. We have not considered
bursty and inhomogeneous flows.

We look forward to IBEX measurements of the speed of in-flowing helium atoms from
the interstellar medium. This will tell us whether the heliosphere is located inside the
Local Interstellar Cloud (LIC) or in a transition region between the LIC and another
cloud. The answer to this question will determine the outer boundary condition of the
solar wind.

https://doi.org/10.1017/5174392131200498X Published online by Cambridge University Press


https://doi.org/10.1017/S174392131200498X

