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Abstract

This study explores the dynamics of a simple mechanical oscillator involving a magnet
on a spring constrained to an axis; this magnet is additionally subject to the attractive
force from a second magnet, which is placed on a parallel offset axis. The moments
of both magnets remain aligned. The dynamics of the first magnet is first analysed
in isolation for an unforced situation in which the second magnet is static and its
position is taken as a parameter. We find codimension-1 saddle-node bifurcations, as
well as a codimension-2 cusp bifurcation. The system has a region of bistability which
increases in size with increasing force ratio. Next, the parametrically forced situation is
considered, in which the second magnet moves sinusoidally. A comprehensive analysis
of the forced oscillator behaviour is presented from the dynamical-systems standpoint.
The solutions are shown to include periodic, quasiperiodic and chaotic trajectories.
Resonances are shown to exist and the effect of weak damping is explored. Layered
stroboscopic maps are used to produce cross-sections of the chaotic attractor as the
parametric forcing frequency is varied. The strange attractor is found to disappear for a
narrow window of forcing frequencies near the natural frequency of the spring.

1. Introduction

Spring–mass systems in classical mechanics represent a rich source of linear and
nonlinear differential and difference equations, and the amount of literature on such
devices is vast. Nonlinear effects typically arise in these systems in one of two forms.
One possibility is related to material nonlinearity, in which the substance from which
the device is made does not follow a simple, linear Hooke’s law relation between
the material response and an applied force, but instead acts either as a hardening or
softening spring. Possibly the most famous example of such behaviour is observed in
the Duffing equation, described in texts such as that by Guckenheimer and Holmes
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[5, Section 2.2]. Alternatively, geometrical nonlinearity exists in systems where the
springs follow Hooke’s law with a linear force-displacement relationship, but they
are not aligned with the direction of motion and so are always acting at some
location-dependent angle to it. A particularly simple example of this is given by Forbes
[4] and, more recently, Pal et al. [14] studied the role of pure geometric nonlinearity in
modelling continua using a lattice of masses connected by linear springs.

Additional applications for the dynamics of nonlinear mechanical oscillators
include devices used for vibration isolation [7], vibration absorption [8] and energy
harvesting [17]. Magneto-mechanical oscillators involving magnetic and elastic forces
are popular choices for study, and were also some of the first systems to be used by
Moon and Holmes [12] to investigate chaotic motions in structural mechanics. More
recent papers performed dynamical analyses of oscillators consisting of permanent
magnets attached to elastic beams and demonstrated good agreement with experi-
ments. Some instances of such work are given by Kumar et al. [10] and Hao et al. [6].
Sarafian [15] successfully modelled the dynamics of two repelling permanent magnets,
dropped into a vertical tube, as a dipole–dipole interaction. For aligned dipoles,
the magnetic force drops off as the inverse fourth power of the dipole separation
[18], resulting in highly nonlinear dynamics. The recent review article by Yan et al.
[16] shows many different electro-mechanical devices used in vibration isolation and
discusses some of their nonlinear responses near resonance.

An intriguing modern application of these studies is to “energy harvesting” devices.
The idea is that many current monitoring devices are so reduced in size that they
only require very small amounts of energy to continue to function. They accumulate
these energy inputs by taking advantage of the (otherwise undesirable) vibrations
of the environment in which they are situated. A recent review of these types of
devices is given by Chen and Fan [1], and discusses their use in medical and health
monitoring. Mann and Owens [11] studied a nonlinear energy harvester device that
used a combination of oscillating and fixed magnets to produce a bi-stable potential
well, and their experimental results confirmed that nonlinearity can make such a device
more robust by increasing its frequency response.

In this present paper, we similarly use a dipole–dipole interaction to model magnetic
forces between magnets, but here, we also include some naturally occurring effects
of geometric nonlinearity. We provide a dynamical analysis of a simple yet novel
one-degree-of-freedom nonlinear magneto-mechanical oscillator. The system consists
of two permanent magnets (modelled as aligned point dipoles) confined to move
on parallel offset axes. We are concerned with the motion of magnet 1 under the
combined effects of a linear spring restoring force and an attracting magnetic force
from magnet 2. When the position of this second magnet is oscillated periodically
in time, our oscillator then becomes a Hamiltonian system subjected to a parametric
excitation; these systems often display interesting dynamics, such as chaotic solutions
arising from perturbed homoclinic connections or the appearance of resonant tori [5].

This paper is structured as follows. In Section 2, we outline the model and physical
assumptions, and derive the dimensionless governing equation (2.2) on which our
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[3] A forced magneto-mechanical oscillator 3

analysis and numerical solutions are based. This is a nonlinear, parametrically forced
second-order differential equation. Section 3 first focusses on the undamped and
unforced case. We present a somewhat novel parametrization method that allows
us to track the behaviour of equilibria as our two key dimensionless parameters
are varied and produce the appropriate bifurcation diagrams. In addition, it allows
us to calculate the location of the key codimension-2 bifurcation point in closed
form in the parameter plane. Periodic forcing of the location of magnet 2 is then
considered in Section 5. The governing equation (2.2) for the position of magnet 1
then gives rise to a parametrically forced nonlinear system. Possible solution behaviour
types are identified and characterized using phase plane plots, time series, power
spectra, strobe maps and Lyapunov exponents. The effect of weak damping on solution
behaviour is briefly illustrated and layered stroboscope maps are used to investigate
some consequences of varying the frequency of the periodic forcing of magnet 2.
A summary and discussion is presented in Section 6.

2. The magneto-mechanical oscillator system

The mechanical device of interest here is sketched in Figure 1. It consists of two
permanent magnets, each of which is attached to a bead that slides without friction
along its own smooth fixed rod. The two rods are parallel and are separated by
distance h. As indicated in Figure 1, magnet 1 is attached to a rigid wall by a classical
Hookean spring and its displacement x1(t) along its rod is measured from the end of the
unstretched spring, at which the origin O on the x-axis is located. The spring constant is
k1 N m−1 and so magnet 1 experiences a Hookean restoring force Fs = −k1x1. Magnet 2
acts on magnet 1 via a magnetic force F. To simplify analysis, we model both magnets
as perfect (point) dipoles with positions x1 and x2, which will be a good approximation
when the separation r between magnets is large compared with magnet dimensions.
We further assume the magnetic dipole moments m1 and m2 remain aligned as the
magnets move along the rod in an attracting configuration; thus, the magnets will be
free to rotate on their beads and thus change their angle continuously as they move.
Note that the dependent variables of interest in this model are the position x1(t) and
velocity v1(t) of magnet 1. By contrast, the position x2(t) of magnet 2 is known in
advance, since that magnet is either stationary or else is forced to move sinusoidally
by an external driving mechanism such as a piston, for example. Thus, x2 is considered
to be a parameter and the effects of sinusoidally varying this parameter with time is
explored in Section 5.

We now analyse the forces on magnet 1 and thus derive its equation of motion.
Because the spring is taken to be Hookean and at natural extension when x1 = 0, it
is subject to a restoring force Fs = −kx1. In addition, the magnetic force on magnet 1
from the field of magnet 2 given by Yung et al. [18] is

F =
M
r4 ,
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FIGURE 1. Schematic of the magneto-mechanical oscillator system. The magnets are attached to beads
(red squares) which slide freely along the rods (blue lines). Magnet 1 and magnet 2 have positions x1(t)
and x2(t), respectively. The parameters are as follows: m1 and m2 are the associated magnetic dipole
moments, k1 is the spring constant, r is the separation between the magnets, θ is the acute angle of
the dipole moment relative to the x-axis and h is the distance between the fixed rods. We consider the
x-component of the magnetic force Fx acting on the top magnet.

in which r is the separation between the magnets, as depicted in Figure 1. The constant
M = (3μ0|m1||m2|)/(2π) N m4 gives a measure of the overall “strength” of the magnets.
Here, μ0 is the magnetic permeability of free space. From Figure 1, the separation
between the magnets is r =

√
h2 + (x2 − x1)2 and θ is the angle of the dipole moments

relative to the x-axis. Consequently, the x-component of the magnetic force F is

Fx = F cos θ =
(M

r4

)(x2 − x1

r

)
=

M(x2 − x1)
[h2 + (x2 − x1)2]5/2 .

Finally, we also assume that magnet 1 experiences a linear damping force proportional
to its velocity. These forces are now combined into Newton’s second law, using
d1 (Ns m−1) as the damping coefficient and m1 (kg) as the mass of magnet 1. This
yields an equation of motion for magnet 1, which takes the form

m1
d2x1

dt2 = Fs + Fx − d1
dx1

dt
= −k1x1 +

M(x2 − x1)
[h2 + (x2 − x1)2]5/2 − d1

dx1

dt
. (2.1)

It is convenient now to express the governing equation (2.1) in dimensionless form.
We define a nondimensional time τ = t/tc and a dimensionless position of mass 1 to
be χ(τ) = x1(t)/xc, in which the time scale tc (s) and length scale xc (m) are free to be
chosen. These new variables are introduced into the equation of motion (2.1) and here,
we choose the time scale and length scale to be

tc =
√

m1

k1
; xc =

M
k1h4 .
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[5] A forced magneto-mechanical oscillator 5

After a little algebra, the dimensionless equation of motion corresponding to (2.1) is
found to be

d2χ

dτ2 + D
dχ
dτ
+ χ − A − Hχ

[1 + (A − Hχ)2]5/2 = 0. (2.2)

We define the three dimensionless parameters:

H =
xc

h
=

M
k1h5 ; D =

d1√
k1m1

; A =
x2

h
. (2.3)

The constant H is simply the inverse of the separation distance h between the two
rods in Figure 1 made dimensionless with respect to the length scale xc. However,
from the first definition in (2.3), constant H can also be regarded as a measure of
the ratio of the magnetic force to the spring force. The second quantity D in (2.3)
is the nondimensionalized damping coefficient and parameter A is the dimensionless
location of magnet 2 relative to the origin O in Figure 1.

If the location of magnet 2 is held fixed, then the parameter A in (2.3) is just some
constant A0 that is specified in advance. However, the location of magnet 2 will also
be considered to be forced periodically. The corresponding dimensionless form for the
position of magnet 2 is

A ≡ A(τ) = A0 + ε cos(Ωτ). (2.4)

Here, we define the three constants:

A0 =
A1 + A2

2
; ε =

A2 − A1

2
; Ω = ωtc. (2.5)

The mean location of magnet 2 in dimensionless form is A0 and its forcing amplitude
is ε. The two constants A1 and A2 are the nondimensional bounds of the periodic
variation in the position of magnet 2 along the x-axis. The final constant Ω in (2.5) is
the nondimensional forcing frequency.

We re-cast the second-order equation (2.2) as an equivalent system of two first-order
equations by defining the dimensionless velocity v = dχ/dτ in the obvious manner.
The final form of the governing equations is thus

dχ
dτ
= v,

dv
dτ
=

A − Hχ
[1 + (A − Hχ)2]5/2 − χ − Dv.

(2.6)

This system models the simple mechanical device depicted in Figure 1. It bears some
similarity to the magnetic pendulum, in which a permanent magnet is attached to
the bob at the end of a pendulum hanging down under the effects of gravity. The
pendulum is free to move in any direction across the face of a horizontal (x, y) plane.
A few magnets are fixed at various points on the plane and the pendulum is set in
motion. Depending on its initial position and velocity, the pendulum can trace out
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paths of enormous complexity, and a recent introductory description of such a device is
given by Christian and Middleton-Spencer [2]. Our system in Figure 1 is superficially
simpler than a magnetic pendulum, in the sense that it is constrained to move in one
spatial direction only; nevertheless, it is no longer an autonomous, integrable system
when it is forced by the periodic motion (2.4) of magnet 2, and so it, too, is capable of
motion of enormous complexity.

3. Undamped and unforced case

This section considers the situation in which damping is ignored (D = 0) and the
system is not forced, so that magnet 2 has the fixed location A = A0. In this case, the
equations of motion (2.6) are autonomous and become

dχ
dτ
= v,

dv
dτ
=

A0 − Hχ
[1 + (A0 − Hχ)2]5/2 − χ.

(3.1)

3.1. Equilibria and bifurcations in A We solve for equilibria (χeq, veq) by setting
the derivatives in the system (3.1) to zero. This immediately gives veq = 0 as expected
on physical grounds, but the equation for χeq must be solved numerically. For
illustrative purposes, in the following analysis, we show some results for H = 10, as
this is a reasonable value for a physical oscillator one could construct from permanent
magnets1. (The effect of varying both H and A0 is discussed later in Section 3.2.) At
A0 = 0, we obtain an equilibrium value χeq ≈ 0.0248 using Newton’s method.

We then construct a bifurcation diagram that tracks χeq as A0 is increased from
zero. The bifurcation diagram is generated exactly by employing a parametrization
approach, which we briefly outline here. For a fixed value of H, we solve

χeq =
A0 − Hχeq

[1 + (A0 − Hχeq)2]5/2 . (3.2)

We seek χeq and A0 as functions of a parameter θ. Thus, the change of variable
Hχeq = A0 − tan θeq is made in (3.2). This gives rise to the algorithm:

• give values of the parameter θeq: 0 < θeq < π/2;
• calculate χeq = sin θeq cos4 θeq from (3.2);
• create A0 = tan θeq + Hχeq from the change of variables.

The bifurcation curve is now able to be drawn in the parametric form (A0(θeq), χeq(θeq)).
Note that the bounds imposed on θeq restrict χeq (and subsequently A0) to physically
relevant positive values.

1This value corresponds to an experiment with vacuum permeability μ0 = 4π × 10−7 Hm−1, rod separation
h = 0.02 m, spring constant k1 = 20 N m−1 and magnetic dipole moments m1 = m2 = 1 Am2.
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FIGURE 2. Bifurcation diagram for parameter A0, with H = 10. The two small red squares on the curve
denote the locations of saddle-node bifurcations (SN) at A0 ≈ 2.267 and A0 ≈ 3.392. The dashed section
indicates an unstable equilibrium.

Figure 2 displays a bifurcation diagram for the equilibrium location χeq of magnet 1,
against the fixed location A0 of magnet 2, for the illustrative case H = 10, and similar
curves are obtained with many other values of the force H. The two small squares on
the plot indicate the locations of saddle-node bifurcations, at which the curve folds
over and the equilibrium location χeq for magnet 1 becomes multi-valued. For H = 10,
these events occur at approximately A0 = 2.267 and A0 = 3.392.

The dashed portion of this curve signifies that the equilibrium is unstable. The
stability of the equilibria in Figure 2 is obtained in the usual way, by linearization of
the governing equations (3.1) near χeq. Further details are not provided here (although
Section 3.3 discusses the particular case of pure centres). This then shows that, in
the interval 0 ≤ A0 < 2.267, Figure 2 indicates there is a single equilibrium and that
it is a (neutrally stable) centre, characterized by pure oscillations centred about the
equilibrium. At A0 ≈ 2.267, a second centre and a saddle are born from a saddle-node
bifurcation. Then, in the interval 2.267 < A0 < 3.392, there are two (neutrally stable)
centres separated in the phase plane by a (unstable) saddle. We shall from hereon refer
to this as the bistable region in parameter space. At A0 ≈ 3.392, the saddle collides with
the right-hand centre and both equilibria disappear in another saddle-node bifurcation,
leaving the system with a single centre for A0 > 3.392.

The bifurcation analysis presented above only describes the linear behaviour near
the equilibria. To understand any effects of the nonlinearity in the system, phase-plane
portraits are plotted for representative values of A0 in Figures 3(a), 3(b) and 3(c) for
the three values A0 = 1, A0 = 2.5 and A0 = 4, respectively. To do this, the system
(3.1) was integrated numerically from a set of initial conditions evenly spaced along

https://doi.org/10.1017/S1446181125000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000069


8 J. Stratemeier, C. Quinn and L. K. Forbes [8]

FIGURE 3. Phase portraits for H = 10 for the three stationary magnet 2 locations (a) A0 = 1, (b) A0 = 2.5
and (c) A0 = 4, showing centre and saddle equilibria. Each separate curve represents a solution trajectory
(with different colours).

the χ-axis, using a fourth-order Runge–Kutta method. These plots confirm that the
linearized analysis does indeed give a reliable qualitative description of the true
nonlinear dynamics near the equilibria. The system has two homoclinic orbits in
the bi-stable region (2.267 < A0 < 3.392) and a single homoclinic orbit at each
saddle-node bifurcation.

The system (3.1) is an undamped (D = 0), autonomous, Hamiltonian system.
Therefore, its solution trajectories are closed curves (here, either homoclinic or
periodic) given by the level sets of the Hamiltonian (that is, by contours of constant
energy). As a result, the system has a first integral, so that an algebraic expression
in terms of χ and v may be found for every solution trajectory, although this is not
developed further here. Further, we see from the phase portrait of the bi-stable case in
Figure 3(b) that the system resembles an undamped particle in a double-well potential
with two local energy minima, whereas the phase portraits shown in Figures 3(a) and
3(c) only have one local minimum at the centre.

3.2. Codimension-1 and 2 bifurcations in A and H The bifurcation diagram in
Figure 2 for the single parameter H = 10 showed two saddle-node bifurcations, at
which the curve folded to produce multiple equilibria. The parametrization technique
used to produce this graph was outlined in Section 3.1 and we generalize it to track the
locations of the saddle-node bifurcations for all values of H. Since these saddle-node
bifurcation points occur at equilibria, the algebraic conditions in Section 3.1 still hold
and a further condition must be added to them, to seek those points at which the
parametrized bifurcation curve (A0(θeq), χeq(θeq)) becomes vertical in Figure 2. This
occurs when

dA0

dθeq
=

d
dθeq

(tan θeq + Hχeq) = 0.

Differentiation of the parametric equations in the algorithm given in Section 3.1 yields

dA0

dθeq
= sec2 θeq + H cos3 θeq(5 cos2 θeq − 4) = 0.
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FIGURE 4. Stability diagram showing the saddle-node bifurcation curve (labelled SN) in the (A0, H)
parameter plane. At the indicated cusp point, there is a codimension-2 cusp bifurcation.

This equation is rearranged and solved for H in terms of the parameter θeq. The location
of the saddle-node bifurcation, for primary bifurcation constant A0 and unfolding
constant H, is calculated from the pair of equations

A0 = tan θeq

[
1 +

1
(4 − 5 cos2 θeq)

]
,

H =
1

cos5 θeq(4 − 5 cos2 θeq)
,

(3.3)

for 0 < θeq < π/2.
The saddle-node bifurcation curve is plotted in Figure 4 and was calculated in

parametric form from (3.3). This diagram shows the system behaviour for all positions
of magnet 2 (A0) and force ratios (H). The bistable region (for which we have two
centres and a saddle equilibrium) lies between the two saddle-node bifurcation curves,
labelled SN in the diagram. A cusp forms in the saddle-node curve at approximately
the point (A0, H) = (1.6238, 3.5449), and this is indicated on the figure. If A0 < 1.6238,
then the system is stable (with a single centre equilibrium) for all H > 0 and the same
is true when H < 3.5449 as we vary A0.

The location of the cusp point is revealed from the parametric description of
the saddle-node curve, along which the condition dA0/dθeq = 0 already applies for
this codimension-1 bifurcation. To obtain the location of the cusp, which is a
codimension-2 condition, we append to this the additional requirement dH/dθeq = 0.
This is obtained by differentiating the expression for H in the SN condition (3.3),
which yields

https://doi.org/10.1017/S1446181125000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000069


10 J. Stratemeier, C. Quinn and L. K. Forbes [10]

dH
dθeq

=
5 sin θeq(4 − 7 cos2 θeq)

cos6 θeq(4 − 5 cos2 θeq)2 = 0.

The root of interest to this equation is

cos2 θeq = 4/7,

and this is substituted into the parametric conditions (3.3) for the saddle-node curve.
This shows that the cusp occurs at the point

A0 = 15
√

3/16 ≈ 1.6238,

H = 73
√

7/44 ≈ 3.5449,

and this point is indicated on the diagram in Figure 4.

3.3. Natural frequencies Here, we compute the natural frequency of each periodic
orbit in the unforced and undamped system. This was done to derive a resonance
condition for the forced system considered later. This will enable the forcing frequency
to be related to the natural frequency of the corresponding unforced orbit.

The eigenvalues of the Jacobian matrix at a centre equilibrium give an analytic
expression for the natural frequency of nearby orbits. The Jacobian matrix for our
general system takes the form

[
0 1
−μ2

N −D

]
with μ2

N = 1 +
H[1 − 4(A − Hχ)2]
[1 + (A − Hχ)2]7/2 .

In the absence of damping (D = 0), this matrix has purely imaginary eigenvalues ±μNi
for the centres, in which case, μ2

N > 0. Close to a centre in the (χ, v) phase plane, the
natural frequency associated with that centre at χeq is μN with corresponding period
2π/μN .

To obtain natural frequencies of orbits far from a centre in the phase plane, we return
to numerical methods and take the dominant frequency from each orbit’s frequency
spectrum. Natural frequencies for H = 10 and A = 2.4 are illustrated in the phase plane
in Figure 5(a) and along the χ-axis in Figure 5(b).

The natural frequency curve has local maxima at the centre equilibria and, as
expected, approaches zero when crossing homoclinic orbits. For large displacements χ,
the magnetic force becomes negligible compared with the spring force, so our natural
frequency approaches that of the spring, which is 1 in our dimensionless variables.

In the forced case, to be considered later in Section 5, we will vary A between 2.4
and 2.8 for the case H = 10. For reference, we therefore show in Figure 6 the change in
the natural frequency curve as A is varied in increments of 0.05. The movement of the
sharp cusps, indicative of the homoclinic orbits, will affect the qualitative behaviour
of the forced system. We use this to guide the choice of initial conditions in the
subsequent section.
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FIGURE 5. (a) Phase plane coloured by natural frequency of orbits for H = 10 and A = 2.4. (b) Natural
frequencies along the χ-axis.
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FIGURE 6. Natural frequency curves for varying A at H = 10.

4. Damped and forced case

4.1. Linearized forced solution The location A(τ) of the lower magnet consists
of an average position A0 plus a periodically forced component of amplitude ε, as
described in (2.4). If ε is assumed to be a small parameter, then a linearized solution
for the location of upper magnet 1 is obtained in the form

χ(τ) = χeq + εX1(τ) + O(ε2), (4.1)

in which χeq is an equilibrium position for the magnet, calculated from (3.2). This
approximate form (4.1) is substituted into the nonlinear system (2.6) and only terms of
first order in ε are retained. This eventually leads to the linearized differential equation

d2X1

dτ2 + D
dX1

dτ
+ (1 + HΓ0)X1 = Γ0 cos(Ωτ) (4.2)
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for the linearized perturbation function X1(τ) in (4.1), where we define

Γ0 =
1 − 4(A0 − Hχeq)2

[1 + (A0 − Hχeq)2]7/2 . (4.3)

The solution to the linearized equation (4.2) consists of transients, plus a periodic
forced response which we write as

X1(τ) =
Γ0[T1 cos(Ωτ) + T2 sin(Ωτ)]

(T1)2 + (T2)2 . (4.4)

This expression involves the two constants

T1 = 1 + HΓ0 −Ω2 and T2 = DΩ.

For later use, we note that (4.4) describes a sinusoidal oscillation with amplitude

A1 =
Γ0√

(T1)2 + (T2)2
. (4.5)

In the absence of damping, D = 0, a (linearized) primary resonance occurs when the
forcing frequency has the value

Ωres =
√

1 + HΓ0. (4.6)

4.2. Weakly nonlinear solution near resonance Further understanding of the
nonlinear structure of the primary resonance in (4.4) is gained through an asymptotic
analysis of the nonlinear equation (2.6) to third order, near the resonant frequency
(4.6). To this end, we write

χ(τ) = χeq + X(τ),
A(τ) = A0 + AF(τ) with AF(τ) = ε cos(Ωτ).

To simplify the analysis, we only consider the undamped case D = 0 here. We further
define the variable

Y(τ) = AF(τ) − HX(τ),

and carry out a Taylor-series expansion of the nonlinear equation (2.6) to third order
in this variable.

After very considerable algebra, we obtain the weakly nonlinear approximate
differential equation

d2Y
dτ2 + (1 + HΓ0)Y − HΔ0Y2 − HΛ0Y3 = ε(1 −Ω2) cos(Ωτ).
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In this expression, the constant Γ0 is as defined in (4.3) and there are two additional
constants

Δ0 =
5Yeq[3 − 4(Yeq)2]

2[1 + (Yeq)2]9/2 ,

Λ0 =
5[1 − 12(Yeq)2 + 8(Yeq)4]

2[1 + (Yeq)2]11/2 ,

in which the constant Yeq = A0 − Hχeq is also defined.
Near the primary resonance (4.6), we seek an approximate solution in the form

Y(τ) = AW cos(Ωτ) + BW sin(Ωτ), (4.7)

and retain only terms involving the forcing frequency Ω. A substantial amount of
algebra gives rise to the two algebraic equations

AW[1 + HΓ0 −Ω2 − 3
4 HΛ0(A2

W + B
2
W)] = ε(1 −Ω2),

BW[1 + HΓ0 −Ω2 − 3
4 HΛ0(A2

W + B2
W)] = 0

(4.8)

for the two amplitude constants AW and BW in the assumed form (4.7) of the weakly
nonlinear solution.

In the absence of damping, D = 0, the appropriate solution in the system (4.8) is
simply BW = 0, from which it follows thatAW satisfies the cubic equation

A3
W +

4[Ω2 − 1 − HΓ0]
3HΛ0

AW +
4ε(1 −Ω2)

3HΛ0
= 0. (4.9)

Since this cubic has either one or three real roots for AW , it follows from (4.9) that,
near the primary resonance, there is either one or else three forced orbits, and this is
discussed more fully in Section 5.6. To solve this equation numerically for a given Ω,
we cast (4.9) in terms of a companion matrix and then used MATLAB’s eig routine
to calculate the rootsAW , keeping only those with zero imaginary part.

4.3. Computing forced periodic orbits As a check on the weakly nonlinear results
of Section 4.2, we also compute periodic forced oscillations of the fully nonlinear
model (2.4). We express the displacement of the upper mass in the form

χ(τ) = C0 +

N∑
n=1

[Cn cos(nΩτ) + Sn sin(nΩτ)], (4.10)

and use Newton’s method to calculate the vector of coefficients

u = [C0, C1, . . . , CN ; S1, . . . , SN].

The number N of Fourier modes in (4.10) is taken to be as large as practicable and
we use N = 151. The Newton–Galerkin method we employ involves multiplying the
nonlinear ODE (2.6) successively by the basis functions cos(�Ωτ), � = 0, 1, 2, . . . , N
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and sin(�Ωτ), � = 1, 2, . . . , N, and integrating over one period 0 < τ < 2π/Ω. This
creates the error vector

E = [E0, E1, . . . , EN ; EN+1, . . . , E2N+1].

This has components

E0 = C0 −
Ω

2π
R(C)

0 ,

E� = C�[1 − �2Ω2] + S�(D�Ω) − Ω
π
R(C)
�

, � = 1, . . . , N,

EN+� = −C�(D�Ω) + S�[1 − �2Ω2] − Ω
π
R(S)
�

, � = 1, . . . , N,

in which we define

R(C)
�
=

∫ 2π/Ω

0

[A(τ) − Hχ] cos(�Ωτ)
(1 + [A(τ) − Hχ]2)5/2 dτ, � = 0, 1, 2, . . . , N,

R(S)
�
=

∫ 2π/Ω

0

[A(τ) − Hχ] sin(�Ωτ)
(1 + [A(τ) − Hχ]2)5/2 dτ, � = 1, 2, . . . , N.

Newton’s method is used to solve the system of algebraic equations E(u) = 0. This
creates the coefficients needed in the Fourier representation (4.10) of the displacement
χ(τ). The amplitude of these nonlinear periodic solutions calculated from the numeri-
cal solution is then

AN =
1
2 (max{χ(τ)} −min{χ(τ)}). (4.11)

5. Parametrically forced case

The location A(τ) of magnet 2 will now be varied sinusoidally, according to the
function (2.4) introduced in Section 2. The dimensionless forcing frequency is Ω, and
magnet 2 is driven sinusoidally between locations A1 and A2. We again choose H = 10,
and will drive magnet 2 sinusoidally so that it oscillates between locations A1 = 2.4
and A2 = 2.8. It follows from (2.5) that the mean location of magnet 2 is therefore
A0 = 2.6 and the forcing amplitude is ε = 0.2. From Figure 4, this parameter regime
is chosen to coincide with the values of A over which the corresponding unforced
system would be in its bistable region. This is done with the aim of observing the
most interesting and exotic dynamics of which the system is capable, since, when three
equilibria are present in the unforced case, we expect that forcing may result in solution
trajectories intermittently “jumping” between potential wells. As A(τ) varies with
time, the corresponding three equilibria for magnet 1 in the unforced case effectively
oscillate along the χ-axis, from the three locations χeq = (0.0316, 0.1106, 0.215) for
A1 = 2.4 to the three positions χeq = (0.0144, 0.1819, 0.2485) for A2 = 2.8.

For each forcing frequency Ω investigated, solution trajectories were observed to
exhibit one of four general behaviour types, depending on initial conditions; these are
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FIGURE 7. Examples of quasiperiodic orbits for Ω = 0.1. The initial conditions used were v0 = 0 and
χ0 = −0.15 for the large orbit (Γb in blue), χ0 = 0.06 for the left-hand smaller orbit (Γr in red) and χ0 = 0.2
for the smaller right-hand orbit (Γy in yellow).

quasiperiodic, chaotic, periodic or resonant solutions. Characteristic examples for each
behaviour type are presented.

5.1. Solution behaviour: quasiperiodic orbits We first explore quasiperiodic
orbits, which appear in areas of phase space sufficiently far from the homoclinic
connections of the unforced system. Example trajectories of this type in phase
space for Ω = 0.1 are shown in Figure 7. Because this is a forced system, solution
trajectories are now objects in a higher-dimensional phase space and so cannot be
characterized purely using the (χ, v) phase plane as for the previous Section 3.
Nevertheless, the quasiperiodic orbits in Figure 7 are presented here as projections
onto the χ, v axes, which contain some memory of the unforced system. Thus, there is a
moderate-amplitude quasiperiodic orbit centred on the left-hand unforced equilibrium
(drawn in red) and a second one centred on the right-hand equilibrium (drawn in
yellow). We denote these orbits as Γr and Γy, respectively. A quasiperiodic orbit of
much larger amplitude (in blue) surrounds all three equilibria. This is denoted as Γb.
These three solution trajectories were obtained simply by varying the initial value of
χ, so that χ0 = 0.06, 0.2 and −0.15. The initial condition of v was set as v0 = 0 for all
three.

To explore further the indicators of quasiperiodicity, we focus on Γr in Figure 7
(obtained with χ0 = 0.06). Its time series χ(τ) is drawn in Figure 8(a) and shows
the almost-periodic nature of the orbit. We also plot the frequency spectrum of its
time series in Figure 8(b). This was generated via a discrete Fourier transform of the
time-series data. For a quasiperiodic orbit, we expect the solution to consist of a finite
number of distinct frequencies which, importantly, are not all rational multiples of each
other. This is not immediately discernible from the frequency spectrum so we turn to
additional indicators of quasiperiodicity.

We construct a stroboscopic map for the example orbit by sampling our trajectory
(starting at time τ = 0) with a “strobing period” equal to our parametric forcing period;
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FIGURE 8. (a) Example time series χ(τ) for Γr in Figure 7 and (b) the corresponding frequency spectrum
showing a discrete set of frequencies.
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FIGURE 9. Stroboscope map for Γr in Figure 7, showing densely spaced points on a closed loop.

that is, we let Tstrobe = 2π/Ω. For quasiperiodic orbits, the stroboscopic map shows a
set of densely spaced points on a closed loop. This is illustrated in Figure 9.

If we display the position of magnet 2 A(τ) as a third dimension of our system, then
quasiperiodic trajectories (χ(τ), v(τ), A(τ)) lie on the surface of an “invariant” torus for
all time τ1. Figure 10 illustrates this torus for Γr from Figure 7, which was obtained
with initial condition χ0 = 0.06.

5.2. Solution behaviour: chaotic orbits A second type of behaviour occurs in
these forced orbits when a trajectory jumps between quasiperiodic orbits that enclose
one or both centres. An illustration of such behaviour for this system is given in
Figure 11. This diagram is again produced with forcing frequency Ω = 0.1. The
solution was started from rest (v0 = 0), with initial displacement χ0 = −0.08 for
magnet 1. In terms of the earlier analogy in which the unforced system was likened to

1Due to the periodic nature of the parameter A(τ), the stroboscope map is actually a Poincaré cross-section
through the torus at A = A(0) = 2.8 in the case considered here.
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FIGURE 10. Invariant torus for Γr (χ0 = 0.06) shown in Figure 7.
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FIGURE 11. Example of chaotic orbit for Ω = 0.1, χ0 = −0.08, v0 = 0.

a particle in a double well, the forced particle here can be thought of as transitioning
between small oscillations in either well and large oscillations covering both wells
when it gains enough energy. Such jumps occur intermittently – without a fixed period
– so the solution is genuinely chaotic. These intermittent jumps may be seen more
clearly from the time series for the trajectory, which is presented in Figure 12(a). The
frequency spectrum for this solution shows a continuous distribution of frequencies,
as is expected for chaos. This is illustrated in Figure 12(b).

We also computed Lyapunov exponents for this orbit, using the QR decomposition
method [3] with 250 000 samples from τ = 0 to τ = 5000. This resulted in λ1 = 0.0239
and λ2 = −0.0239. As λ1 is a nonnegligible positive value, this implies that nearby
trajectories diverge exponentially, thus providing further evidence that the solution
presented in Figure 11 is indeed chaotic.
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FIGURE 12. (a) Example time series χ(τ) of chaotic orbit with Ω = 0.1, χ0 = −0.08, v0 = 0 showing
intermittent jumps. (b) The corresponding frequency spectrum showing a continuous set of frequencies.
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FIGURE 13. Stroboscope map for the chaotic orbit filling out a 2D region of the (χ, v) plane at A = 2.8.

With the forcing function A represented as an extra dimension, the chaotic trajectory
(χ(τ), v(τ), A(τ)) illustrated above now lies within the volume of a strange attractor in
the phase space. Iterates of the corresponding stroboscopic map now fill out a 2D
region in the (χ, v)-plane, displayed in Figure 131.

5.3. Solution behaviour: periodic orbits A third type of behaviour in this forced
system consists of periodic orbits, which enclose either a single centre or jump between
them in a fixed pattern. Three such periodic orbits are shown in Figure 14. There are
two small orbits centred on the left and right equilibria of the unforced system, and a
third large orbit that encloses all three of the equilibria.

1Again, this stroboscopic map is the Poincaré cross-section of the strange attractor on the plane A = 2.8 in the
phase space.
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FIGURE 14. Three periodic orbits for the forced system with Ω = 0.1. The initial conditions used were
v0 = 0 and χ0 = −0.0603, 0.0144, 0.2486 for the large orbit (in blue), smaller left orbit (in red) and the
smaller right orbit (in yellow), respectively.
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FIGURE 15. (a) Example time series χ(τ) of periodic orbit with Ω = 0.1, χ0 = −0.0603, v0 = 0 showing
regular jumps between centres. (b) The corresponding frequency spectrum contains only integer multiples
of Ω = 0.1.

It is instructive to consider the large-amplitude forced periodic orbit (in blue)
in Figure 14 in greater detail. This solution was generated from initial condition
χ0 = −0.0603. The time series χ(τ) for this solution is shown in Figure 15(a), and
clearly illustrates the periodic jumps between orbits centred around the left and right
centre equilibria of the unforced system. The periodic nature of this solution is
underscored by its frequency spectrum presented in Figure 15(b), since this consists of
spikes only at integer multiples of the driving frequency (which is also the frequency
of the orbit). This is further supported by the stroboscopic map, which contains only a
single point and is not shown here in the interest of space.
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FIGURE 16. Stroboscope map for an s = 7 resonant orbit obtained with Ω = 0.9, χ0 = −0.01, v0 = 0,
showing a chain of 7 KAM islands.

5.4. Solution behaviour: resonant orbits A fourth behaviour type is a resonant
quasiperiodic or periodic orbit. The quasiperiodic case presents itself on the strobo-
scope map as a number of disjoint closed loops and an example of these is presented
in Figure 16, obtained for frequency Ω = 0.9 and with initial conditions χ0 = −0.01,
v0 = 0. These structures are a consequence of the Kolmogorov–Arnol’d–Moser theory
in resonant Hamiltonian systems (see [5, pages 219–223]) and are referred to as “KAM
island chains” in some modern literature such as that by Kroetz et al. [9] and Nieto
et al. [13]. A chain of s islands implies the existence of a resonant periodic orbit with
frequency Ω/s that traverses the island centres (centres of closed loops in Figure 16)
in a given order. The corresponding trajectory for this s = 7 quasiperiodic resonant
orbit is illustrated in Figure 17. We find that stroboscope maps, such as in Figure 16,
are most convenient for identifying resonances, because the phase plane trajectory
(Figure 17), the frequency spectrum and the Lyapunov exponents (here, λχ = 0.00093,
λv = −0.00093); otherwise, all appear similar to those of a nonresonant orbit.

We again extend the phase space by including as an additional axis the forcing
function A(τ). This creates an invariant torus for the s = 7 resonant solution and the
resulting structure is plotted in Figure 18. This gives a long and twisted object in the
phase space, compared with a nonresonant quasiperiodic orbit, and the structure in
Figure 18 intersects the A = 2.8 plane s = 7 times.

5.5. Damped solution behaviour When a sufficiently small amount of damping is
introduced (D < 10−3), periodic and resonant periodic forced orbits of the undamped
system are preserved. Damping causes nearby trajectories to be drawn towards them.
To illustrate this, we return to the s = 7 resonance from Section 5.4. We sample
initial conditions within the leftmost KAM island in Figure 16 (for which −0.01 <
χ < −0.007) and apply damping D = 0.0005. The resulting layered stroboscope map
is shown in Figure 19. Trajectories that start from initial conditions that are sufficiently
close to the island centre (periodic resonance) are drawn towards the resonance as a
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FIGURE 17. Example of the trajectory for the s = 7 resonant orbit obtained with Ω = 0.9, χ0 = −0.01,
v0 = 0.

FIGURE 18. Invariant torus for the s = 7 resonant orbit.

result of the damping, while others move towards a different nonresonant periodic
orbit. As damping is increased to D = 0.001, the s = 7 resonance is destroyed and
initial conditions in Figure 19 lead to trajectories that are all damped towards the
nonresonant periodic orbit.

5.6. Observed behaviours for varying driving frequency Ω We now explore the
possible system behaviours for a range of parametric driving frequencies Ω. We return
briefly to a discussion of the solution near primary resonance, examined in Section 4.
For definiteness, we again consider separation distance H = 10 and average location
A0 = 2.6 of the lower forcing magnet, illustrated in Figures 2–6. Figure 4 shows that
the unforced system (3.1) possesses three different equilibria χeq at these parameter
values; when subject to forcing, each of these equilibria develops its own complicated
resonance structure, resulting in solution behaviour of extraordinary complexity at
certain forcing frequencies Ω.

For brevity, we consider only the forced periodic behaviour of the lowest of these
three equilibria at H = 10 and A0 = 2.6, for which χeq = 0.020275 (see Figure 2). This

https://doi.org/10.1017/S1446181125000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000069


22 J. Stratemeier, C. Quinn and L. K. Forbes [22]

0 0.05 0.1 0.15
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0

5000

10000

15000

FIGURE 19. Layered stroboscope maps of initial conditions close to the s = 7 resonance with damping.
Initial conditions sufficiently close to the island centre are damped towards the resonance, but others are
damped towards some nonresonant periodic orbit. Colour indicates the time along each trajectory.

FIGURE 20. The response amplitudes for three different approximations near the primary resonance of
the lowest equilibrium point, with H = 10, A0 = 2.6 and forcing amplitude ε = 0.2. The solid blue line
represents the linearized forced solution amplitude εA1, the dashed black lines are the predictions of the
weakly nonlinear amplitudeAW and the red circles are fully nonlinear amplitudesAN .

is subject to forcing with amplitude ε = 0.2 and over a variety of driving frequencies
Ω, and the results are illustrated in Figure 20. The solid blue lines correspond to
values of the linearized forcing amplitude εA1 calculated from (4.5) in Section 4.1.
There is a primary (linearized) resonance at the frequency Ωres ≈ 0.8511 given in
(4.6) at which the linearized amplitude εA1 is predicted to increase without bound.
The predictions of the weakly nonlinear solution of Section 4.2 are also shown in
Figure 20 and are drawn using dashed black lines. These are the weakly nonlinear
amplitudes AW obtained from the cubic equation (4.9), and they show that nonlinear
effects are responsible for bending the resonance peak to the left of the diagram,
to produce three simultaneous periodic forced solutions for frequencies Ω below
that of the primary resonance. This prediction is confirmed, at least qualitatively,
by the numerical periodic solution of Section 4.3, for which the nonlinear solution
amplitudesAN at different frequenciesΩwere computed using (4.11). These are shown
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FIGURE 21. (a) Two solutions computed by integrating forward in time from the two periodic solutions
at Ω = 0.1 taken from Figure 20 (0 < τ < 2000). (b) The smaller-amplitude solution (red line) remains
periodic, but the large-amplitude solution (solid blue lines) is drawn into a chaotic strange attractor.

by small red circles. Two distinct forced nonlinear solutions are computed numerically,
and while a third is suspected, it was not able to be obtained. In addition, the nonlinear
results also show the emergence of the first superharmonic resonance at approximately
Ω = 0.4 and this is evident in Figure 20.

The resonance structure shown in Figure 20 pertains only to the lowest of three
equilibria possible at the parameter values H = 10, A0 = 2.6. Additional resonances
are possible from the other two equilibria, so that many more periodic forced orbits
than shown in Figure 20 are expected. In addition, quasi-periodic and chaotic solutions
are also possible, so that the nonlinear solutions in Figure 20 are likely to be embedded
in an extremely complex solution environment. Their stability is therefore of interest.

We first illustrate two different nonlinear periodic solutions at the forcing frequency
Ω = 0.1 in Figure 21(a). These two solutions correspond to the two red circles at the
left-most value of Ω in Figure 20 and were obtained using the algorithm described
in Section 4.3. These show the displacement χ as a function of time τ over a single
period 0 < τ < 2π/Ω. The smaller-amplitude solution sketched with red dashed lines
is the lower of the two points in Figure 20 and is approximated very closely by the
linearized solution (4.4). The larger solution in Figure 21(a), sketched using a solid
blue line, comes from the upper branch of the primary resonance in Figure 20 and its
behaviour with time is clearly highly nonsinusoidal.

The stability of the two solutions shown in Figure 21(a) has been examined here
simply by integrating the nonlinear equations (2.6) forward in time for 0 < τ <
2000, starting with initial values taken from these two periodic forced solutions at
Ω = 0.1. The results are shown as trajectories in the (χ, v)-plane in Figure 21(b).
The smaller-amplitude solution remains periodic in time and so it appears simply
as a small-amplitude ellipse in Figure 21(b) (in red). This small-amplitude periodic
solution is therefore stable. By contrast, the large-amplitude solution is rapidly drawn
away from the periodic configuration in Figure 21(a) and onto the strange attractor of
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FIGURE 22. Layered stroboscope maps for Ω = 0.1.

a genuinely chaotic orbit. This is also shown in Figure 21(b) (in blue), where the initial
point χ(0) is sketched with an asterisk, after which the trajectory produces the chaotic
orbit indicated.

The forced periodic orbits in Figures 20–21(b) exist within a highly complex
solution environment and so we conclude this presentation of results by examining how
this changes with increasing forcing frequencyΩ. This is done by layering stroboscope
maps computed for a large sample of initial conditions (taken along the χ-axis and
with A(0) = 2.8). The resulting maps give an overview of which initial conditions
lead to which behaviour type. Areas densely filled with points are regions of chaos,
corresponding to a slice through the strange attractor in the (χ, v, A) phase space. Single
closed loops correspond to quasiperiodic orbits (QPOs), while multiple disjoint closed
loops correspond to resonant orbits. Notice that, since QPOs and resonances only fill
out curves and not areas in the (χ, v)-plane, we will often fail to observe such orbits
with our sample of initial conditions. Hence, it is likely that any empty “holes” in the
chaotic region may contain such orbits. We also note that some loops corresponding
to a QPO may not appear closed (that is, they may have a “dashed” appearance), but
this is simply an artefact of insufficient integration time. The evolution of the strange
attractor slice as Ω increases is explored in Figures 22–25.

The layered stroboscope map for Ω = 0.1, shown in Figure 22, indicates a chaotic
region containing two large holes. These are regions corresponding to QPOs and
resonant orbits. The outer region surrounding the attractor also contains QPOs and
resonant orbits, but these are not easily seen in Figure 22 due to the small sample of
initial conditions. In Figure 23, the forcing frequency is increased to the value Ω = 0.9
and, as a result, the chaotic attractor region changes shape. In particular, the holes in
its structure are reduced in size.

In Figure 24, the forcing frequency is increased to the valueΩ = 1. Surprisingly, for
this case, chaotic trajectories are not observed in the small region of the (χ, v) solution
space illustrated (although they do occur at much larger amplitudes). Consequently,
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FIGURE 23. Layered stroboscope maps for Ω = 0.9.

FIGURE 24. Layered stroboscope maps for Ω = 1, showing only quasiperiodic orbits.

FIGURE 25. Layered stroboscope maps for Ω = 20.
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the trajectories shown consist of QPOs only and there even do not appear to be any
resonant orbits.

For Ω = 20 (the highest frequency tested), the attractor appears to break apart into
multiple “bands” of chaos, separated by regions of QPOs and resonant orbits. This
results in the beautiful and elaborate layered stroboscopic map shown in Figure 25.

6. Discussion

This paper presents a comprehensive dynamical analysis of a magneto-mechanical
oscillator that displays a rich set of nonlinear behaviour types, despite its deceptive
apparent simplicity. The study first looked at the unforced and undamped (Hamil-
tonian) case, which resembled an oscillator with a double-well potential. Solutions
consist of families of periodic orbits and in some cases, homoclinic connections. A
two-parameter bifurcation diagram in the force ratio H and magnet 2 position A0
revealed a cusp bifurcation and corresponding bistable region in parameter space.
Natural frequencies of periodic orbits were plotted for a cross-section of initial
conditions and over the interval of values of A that would later be encountered in the
parametrically forced case. These frequency curves were used to inform the choice of
initial conditions when parametrically forcing the system. This was done additionally
with the aim of deriving a resonance condition, although this was not successful in any
case other than the primary resonance condition (Ω = 1) and so remains as an area of
further research.

Parametrically forcing the system, by sinusoidally varying the location A(τ) of
magnet 2 with frequency Ω in the bistable parameter region, generated a mix-
ture of quasiperiodic, periodic and chaotic solutions, in addition to higher-order
(quasiperiodic/periodic) resonances. Solution types are discussed and characterized
using phase-plane plots, time series, power spectra, stroboscopic maps and Lyapunov
exponents. Stroboscope maps are found to be particularly useful in identifying
resonances, which present as chains of KAM islands. To investigate which solution
types are present for different driving frequenciesΩ, stroboscope maps were computed
for a large number of initial conditions and layered (that is, plotted on the same
axes) to reveal regions of integrable and chaotic dynamics in the phase plane. It
was found that the chaotic attractor grows and breaks apart as Ω increases, and is
briefly destroyed when the system is driven at precisely the natural frequency of
the spring–mass system. Adding sufficiently weak damping to the system resulted in
trajectories being damped towards nearby periodic orbits or resonances. Resonances
were destroyed when damping was strong enough, leaving trajectories to be damped
towards nonresonant periodic orbits.
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