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The impact of shoaling on linear water waves is well known, but it has only been recently
found to significantly amplify both the intensity and frequency of rogue waves in nonlinear
irregular wave trains atop coastal shoals. At least qualitatively, this effect has been partially
attributed to the ‘rapid’ nature of the shoaling process, i.e. shoaling occurs over a distance
far shorter than that required for waves to modulate themselves and adapt to the reduced
water depth. Through a theoretical model and highly accurate nonlinear simulations, we
disentangle the respective effects of the length and angle of a shoal’s slope. We investigate
the effects of the shoaling process rapidness on the evolution of key statistical and spectral
sea-state parameters. We let the wave field evolve over a slope with constant angle in
all cases while we vary the slope length. Our results indicate that the non-equilibrium
dynamics is not affected by the slope length, because further extending the slope length
does not influence the magnitude of the statistical and spectral measures as long as the
non-equilibrium dynamics dominates the wave evolution. Thus, the shoaling effect on
rogue waves is deduced to be mainly driven by the slope magnitude rather than the slope
length.
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1. Introduction

Quantifying the impact of rogue waves on the stability of offshore and coastal structures
has become a recent direction of research. An increased frequency of rogue waves in a time
series may lead to an excess in wave loads (Tang et al. 2022; He et al. 2023; Li et al. 2023;
Ma & Swan 2023; Xin, Li & Li 2023). The statistics of water waves define the design
envelope for ocean vessels, and the possibility of avoiding or mitigating these extreme
waves is important for marine and coastal safety. The risk of rogue waves in deep water is
nowadays rather well known (see e.g. Pelinovsky & Kharif (2008), Chabchoub, Hoffmann
& Akhmediev (2011), Chabchoub et al. (2012), Fedele et al. (2016) and references therein),
but rogue waves are also observed in intermediate (Trulsen, Zeng & Gramstad 2012;
Zeng & Trulsen 2012; Gramstad et al. 2013; Viotti & Dias 2014) and shallow waters
(Sergeeva, Pelinovsky & Talipova 2011; Didenkulova & Pelinovsky 2016; Mendes & Scotti
2021; Karmpadakis, Swan & Christou 2022; Didenkulova, Didenkulova & Medvedev
2023) subject to bathymetry gradients. Among the mechanisms associated with rogue
wave formation and amplification (Dysthe, Krogstad & Muller 2008; Onorato et al. 2013;
Adcock & Taylor 2014), shoaling leads to the highest recorded excess in kurtosis (Li &
Chabchoub 2023).

When propagating nearshore, the hydrodynamics of wind-generated surface waves
is affected by the relative water depth until wave breaking becomes dominant (Green
1838; Burnside 1915; Holthuijsen 2007), and modifies the wave dispersion, wavelength,
group velocity, wave height, among others. Several models describe the deformation and
transformation of waves encountering bathymetric changes (Eagleson 1956; Shuto 1974;
Walker & Headlam 1982; Kweon & Goda 1996), but the rogue wave amplification by
the non-equilibrium process of shoaling cannot be calculated directly from the shoaling
coefficient and the behaviour of regular waves only. Connecting the knowledge of wave
transformation with the implications thereof to anomalous wave statistics, theoretical,
experimental and numerical studies investigated the possibility of the amplification of
rogue waves subject to shoaling in the recent years (Kashima, Hirayama & Mori 2014;
Ma, Ma & Dong 2015; Ducrozet & Gouin 2017; Majda, Moore & Qi 2019; Zhang et al.
2019; Moore et al. 2020; Trulsen et al. 2020; Zheng et al. 2020; Doeleman 2021; Fu et al.
2021; Gomel et al. 2021; Kimmoun et al. 2021; Li et al. 2021a,c; Lyu, Mori & Kashima
2021; Xu et al. 2021; Zhang & Benoit 2021; Lawrence, Trulsen & Gramstad 2022; Mendes
et al. 2022; Lyu, Mori & Kashima 2023; Zhang et al. 2023). A key component of this
amplification is the abruptness of the environmental transition, which often drives physical
systems out of equilibrium (Lockwood 2001; Sobolev 2013; Steinbach, Gemming & Erbe
2016; Passiatore et al. 2022), thereby generating transient local phenomena until the new
equilibrium state is established (Zhang, Ma & Benoit 2024). Trulsen (2018) anticipates that
variations in environmental or meteorological conditions over a rapid spatiotemporal scale
will in general lead to out-of-equilibrium states and thus to anomalous wave statistics. This
type of anomalous statistics is also observed in the generation of irregular fields in wave
flumes or basins when the sea-states are forced by random input spectra. Indeed, Tang et al.
(2020) found that the kurtosis behaves anomalously within short spatiotemporal scales for
a randomly imposed initial wave spectrum.

While the shoaling process involves several physical parameters and the anomalous
wave statistics thereof are strongly dependent on the wave steepness and relative water
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depth (Li et al. 2021b; Zhang & Benoit 2021; Mendes et al. 2022), the geometry of a
linear shoal is simply characterized by three parameters: the slope; its spatial extension;
the change in depth. These parameters, however, provide only two degrees of freedom.
Here we consider the slope magnitude and the slope length (equivalently called ‘shoaling
length’ hereafter), from which the depth change can be determined correspondingly.
Although Zheng et al. (2020) and Lawrence, Trulsen & Gramstad (2021) examined the
effect of shoaling length on wave statistics and found that both skewness and kurtosis
decreased as this length increased, such studies kept the depth difference constant, so that
the effects of the bottom slope and shoaling length remain entangled. To date, an analytical
expression of the effect of the shoaling length is missing. Mendes & Kasparian (2022)
provided an expression for the effect of the bottom slope, but they fixed the shoaling
length equal to one wavelength. It is often argued that disturbances in wave statistics
occur due to the ‘abrupt’ nature of the depth transition, which drives the system out
of equilibrium. Especially for a submerged step, when wave packets evolving slowly in
time and space meet an abrupt depth transition, a standing wave pattern between the
superharmonic components of the carrier waves (free and bound) is modulated by their
group structure (Li et al. 2021c). However, the term ‘abruptness’ is generally used in
an intuitive manner, without clearly defining whether it refers to a strong bathymetry
change, a spatial extension shorter than the wavelength or a steep slope (Viotti & Dias
2014; Zheng et al. 2020; Lawrence et al. 2021; Li et al. 2021b; Draycott et al. 2022).
In an engineering context, the term ‘abrupt depth transition’ is also used for a variety of
natural and man-made bathymetric features (Draycott et al. 2022) although their slopes are
well below the threshold of 1/3 defined for abruptness by the mild slope equation (Booij
1983). In the latter context, abruptness rather appears to refer to the depth difference. These
ambiguities result in confusing and sometimes seemingly contradictory results.

There is widespread agreement that the wave steepness growth up to the second order
(and sometimes to the third order) is the main driver of out-of-equilibrium phenomena
and anomalous wave statistics in intermediate water depths. However, experimentations
targeting the isolation of the effects of slope magnitude and shoaling length are still
lacking. Here, we define a dimensionless shoaling length parameter � as the ratio of the
length of the shoal to the characteristic wavelength. We disentangle the effect on rogue
wave probability of this measure of the wave shoaling ‘abruptness’ from the effect of slope
magnitude. Relying on a non-homogeneous second-order theory and a set of numerical
simulations using a fully nonlinear potential flow (FNPF) model, we vary the length of the
shoal while keeping a fixed slope magnitude and the same sea-state conditions atop the
shoal. We show that the effect of a shoal on the rogue wave probability amplification is
not governed by the shoaling length, as soon as this length exceeds approximately half of
the peak wavelength, thus leaving the slope magnitude as the dominant factor.

The remainder of this article is organized as follows. In § 2 an existing
non-homogeneous second-order theory is further extended to provide a simple explicit
approximation of the maximum value of kurtosis atop the shoal, while § 3 presents the
FNPF model used for the present high-fidelity numerical simulations. The results from the
two approaches are compared and discussed in § 4. Conclusions are summarized in § 5.

2. Non-homogeneous second-order wave theory

The present section investigates the effect of the shoaling length by disentangling it from
the slope magnitude |∇h|, with h denoting the still-water depth (h > 0) and ∇ the gradient
operator in the horizontal plane. We define the shoaling length as � ≡ L/λ, with L denoting
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Figure 1. Sketch (not to scale) of the geometry of the shoaling problem, with incident waves coming from the
left.

the length of the shoal and λ the dimensional wavelength, taken as the zero-crossing
wavelength. We first recall the key outputs of Mendes et al. (2022) in § 2.1, then apply
them to a compact expression for the kurtosis enhancement in § 2.2.

2.1. Background of non-homogeneous second-order wave theory
We rely on a non-homogeneous stochastic theory describing the energy redistribution
among modes of irregular water waves travelling over a shoal of arbitrary slope magnitude
(Mendes & Kasparian 2023), see figure 1 for a graphical description of the problem.
Taking into account the disturbance due to the shoaling on the wave energetics, we may
approximate the exceedance probability R (for wave height H exceeding α times the
significant wave height Hs) in a narrow-banded irregular wave train moving past a steep
slope through the formula (Mendes et al. 2022)

R(H > αHs) = e−2α2/Γ , (2.1)

where the non-homogeneous parameter Γ is defined as

Γ ≡ E[η2]
E

, (2.2)

with η denoting the free surface elevation (FSE) and E[η2] denoting the ensemble average
of η2. The ensemble average is computed through

E

[
η2
]

=
∫ +∞

−∞
η2p(η) dη, (2.3)

with p(η) denoting the probability distribution function of η. In practice, E[η2] is
approximated by the variance 〈η2〉 of η in a discrete time series. Here E is defined as
the total mechanical energy of the waves averaged over one wavelength (see Dean &
Dalrymple (1991), for instance) and normalized by ρg, where ρ is the water density
and g the acceleration due to gravity. In the footsteps of Dean & Dalrymple (1991), and
considering a two-dimensional Cartesian coordinate system (x, z) with its z-axis origin
located at the still-water level, we calculate the energy E averaged over one zero-crossing

997 A69-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.687


Effect of shoaling length on rogue wave occurrence

wavelength (Dong et al. 2020; Mendes et al. 2022) as

E (x) = 1
2λ

∫ x+λ

x
η2 dx + 1

2gλ

∫ x+λ

x

∫ 0

−h(x)

[(
∂Φ

∂x

)2

+
(

∂Φ

∂z

)2
]

dz dx, (2.4)

where Φ is the velocity potential. For linear regular waves, we know that E[η2] = E =
a2/2 (Airy 1845), and thus Γ = 1. Traditionally, the wave energy integration in (2.4)
is implemented over space (Le Méhauté 1976; Dean & Dalrymple 1991; Fredsøe &
Deigaard 1992) for the convenience of studying spatial change of water depth, although
time integration could also be used (Holthuijsen 2007).

In the limit of a large number of wave components (Mendes et al. 2022), for the purpose
of the stochastic wave analysis one may use a simplified monochromatic velocity potential
up to second order in steepness instead of the full second-order treatment as in Sharma &
Dean (1981). Consequently, without loss of generality, we start with a second-order Stokes
wave solution. The velocity potential reads (Dingemans 1997)

Φ(x, z, t) = aω

k

[
cosh ϕ

sinh μ
sin φ +

(
3ka
8

)
cosh (2ϕ)

sinh4 μ
sin (2φ)

]
, (2.5)

where ϕ ≡ k(z + h), φ ≡ kx − ωt, and a, k, ω denote the amplitude, wavenumber and
angular frequency of the regular wave, respectively. Here μ ≡ kh denotes the relative water
depth, and ka is the wave steepness. The FSE solution of Stokes’ second-order theory reads
(Dingemans 1997)

η(x, t) = a
[

cos φ +
(

ka
4

)√
χ̃1 cos (2φ)

]
, (2.6)

where the superharmonic term takes the form

χ̃1 = (3 − σ 2)2

σ 6 and σ ≡ tanh μ. (2.7a,b)

Furthermore, the horizontal and vertical velocity components (u, w) are formulated as

u ≡ ∂Φ

∂x
= aω

[
cosh ϕ

sinh μ
cos φ +

(
3ka
4

)
cosh (2ϕ)

sinh4 μ
cos (2φ)

]
, (2.8)

w ≡ ∂Φ

∂z
= aω

[
sinh ϕ

sinh μ
sin φ +

(
3ka
4

)
sinh (2ϕ)

sinh4 μ
sin (2φ)

]
. (2.9)

For an irregular wave field described by a second-order perturbation in steepness ε = Hs/λ
in a relative water depth μ = kph, whose transition from a regular field is detailed in
Mendes et al. (2022), the computation of (2.2) leads to

Γ =
1 + π2ε2𝔖2

16
χ̃1

1 + π2ε2𝔖2

32
(χ̃1 + χ1) + Ěp2

, (2.10)

with a transformation ka → πε𝔖, where 𝔖 is the vertical asymmetry between the crests
and troughs of the waves (see its definition in Mendes, Scotti & Stansell (2021) and
Mendes & Kasparian (2023)). Here Ěp2 is the non-dimensional net change in potential
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energy due to the set-down over the shoal. The expression of χ̃1 is given in (2.7a,b), and
the term χ1 reads

χ1 = 9 cosh(2μ)

sinh6μ
= 9

σ 6 (1 − σ 2)(1 − σ 4). (2.11)

In the case of irregular waves, the relation between ε and kpHs arises from the difference
between peak and zero-crossing wave periods, and therefore depends on the spectral
peakedness (Ochi 1998). The spectral peakedness hardly changes a few wavelengths after
the the end of the shoal (Zhang, Benoit & Ma 2022), and consequently, we may use
ε ≡ (

√
2/π)kpHs. Alternatively, one could try to integrate over the entire interval [−L, 0].

This would give rise to corrections in the results of Mendes et al. (2022) containing ε2.
Such corrections are expected to be quickly damped as � > 0.5 and much smaller than the
main result of (2.10).

The effect of the slope magnitude is generally disregarded in investigations of wave
fields evolving over a planar beach. Derivations for integral properties (momentum,
energy, energy flux) often relied on the assumption that |∇h| � ε (Longuet-Higgins &
Stewart 1964; Turpin, Benmoussa & Mei 1983; Iusim & Stiassnie 1985; Porter 2003; Mei,
Stiassnie & Yue 2005). But for relatively steep slopes, as considered in the present work,
Mendes & Kasparian (2022) have shown that changes in potential energy are significant
over a relatively steep slope and may affect wave statistics. The net change of the potential
energy over a shoaling zone due to set-down Ěp2 is a function of the slope magnitude
|∇h|. We consider the slope function for deep water preshoal conditions approximated as
(Mendes & Kasparian 2022)

Ěp2 ≈ ε2

μ2 f (|∇h|), with f (|∇h|) ≡ 1
25|∇h| − 5|∇h| (1 − |∇h|) . (2.12)

This approximation is valid for the range of slopes 1/100 � |∇h| � 1/2. Fixing the pair
(μ, ε), at steep slopes (i.e. in the vicinity of |∇h| ∼ 1/2) the function Ěp2 reaches its
maximum value.

2.2. Excess kurtosis of shoaling waves over arbitrary slopes
The skewness and kurtosis (denoted as λ3 and λ4, respectively) of the FSE are often used
to indicate the degree of nonlinearity of the exceedance probability (Longuet-Higgins &
Stewart 1962). For a random variable X with a zero-mean, they are defined as

λ3(X) = E
[
X3](

E
[
X2
])3/2 , λ4(X) = E

[
X4](

E
[
X2
])2 , (2.13a,b)

where E [ ] denotes the expected value (or ensemble average). For X following a Gaussian
distribution, λ3(X) = 0 and λ4(X) = 3. When X represents η, skewness serves as an
indicator of wave asymmetry in the vertical direction, and kurtosis is positively related
to the occurrence frequency of extreme values. For mathematical convenience, we build
our theory for the excess kurtosis λ̂4 ≡ λ4 − 3 (thus λ̂4 = 0 in a Gaussian sea).

To derive the excess kurtosis of FSE from the non-homogeneous second-order wave
theory, we take advantage of an effective theory connecting the non-homogeneous
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parameter Γ and the excess kurtosis λ̂4, namely (3.3) of Mendes & Kasparian (2023):

λ̂4 ≈ 1
9

[
exp

(
8
(

1 − 1

𝔖2Γ

))
− 1

]
. (2.14)

The preshoal value of the excess kurtosis λ̂4,0 (the subscript 0 is used henceforward to
denote preshoal conditions) is also relevant to account for bias in initial conditions when
varying L, such that

�λ̂4 ≡ λ̂4 − λ̂4,0 = 1
9

[
exp

(
8
(

1 − 1

𝔖2Γ

))
− exp

(
8

(
1 − 1

𝔖2
0Γ0

))]

≡ (λ4 − 3) − (λ4,0 − 3) = �λ4. (2.15)

Having the exact values of the variables (ε, μ) prior and atop the shoal, we can compute
the change of Γ between the preshoal and postshoal regions and translate it into the change
of kurtosis �λ4.

In order to build a more intuitive view on (2.15), we provide a manageable explicit
expression approximating the excess kurtosis, by Taylor-expanding the non-homogeneous
correction given in (2.10) in ε2. Note that the net potential energy is also of order ε2 in
(2.12):

Γ ≈ 1 +
(πε

4

)2
(

χ̃1 − χ1

2

)
− Ěp2. (2.16)

As the water depth decreases towards shallow waters, the ratio between the trigonometric
coefficients χ̃1 and χ1 can be fitted as a polynomial to leading order as

χ̃1

χ1
≈ 1 + 1.534μ4 ≈ 1 + 1.5μ4, for

1
2

< μ <
3
2
. (2.17)

With such a simplification and the expression of Ěp2 given in (2.12), we can then rewrite
the correction Γ in (2.16) as follows:

Γ ≈ 1 +
(πε

4

)2 χ1

2
× 1.5μ4 − ε2

μ2 × f (|∇h|) ≈ 1 + ε2

4μ2

[
2π2 − 4f (|∇h|)

]
. (2.18)

As described in § 3.4 of Mendes et al. (2022), the effect of the vertical asymmetry of the
wave profile can be parameterized for second-order waves at the region of the peak in
amplification for μ ∼ 1/2:

𝔖2Γ ∼ Γ 6. (2.19)

Hence, as soon as the steepness is sufficiently large (i.e. ε � 1/50), the argument of the
exponential function in the last part of (2.14) can be expanded by using (2.18) and (2.19):

1 − 1

𝔖2Γ
≈ 1 −

{
1 + ε2

4μ2

[
2π2 − 4f (|∇h|)

]}−6

≈ 1 −
{

1 − 3ε2

2μ2

[
2π2 − 4f (|∇h|)

]}

≈ 3ε2

2μ2

[
2π2 − 4f (|∇h|)

]
= 3π2ε2

μ2 − 6Ěp2. (2.20)
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Figure 2. (a) The net change of the potential energy due to set-down Ěp2 given in (2.12) for μ = 1/2; and
(b) the absolute difference of Ěp2 between the formulation of (2.12) and its approximation (2.24a,b) which
factors out the slope effect.

When the slope |∇h| is sufficiently steep, (2.20) saturates, so that the parameter Γ

becomes independent of the slope. We plug this expression into (2.14), finding

λ̂4 = 1
9

(
exp(24π2ε2/μ2) exp(−48Ěp2) − 1

)
. (2.21)

We can manipulate this algebraically by adding and subtracting exp(−48Ěp2), which leads
to

λ̂4 = 1
9

[
exp(−48Ěp2)

(
exp(24π2ε2/μ2) − 1

)
+
(

exp(−48Ěp2) − 1
)]

,

≡ exp(−48Ěp2) × λ̂4,b + 1
9

(
exp(−48Ěp2) − 1

)
. (2.22)

The second term is one order of magnitude smaller than the slope-independent kurtosis
λ̂4,b since |Ěp2| ∼ ε2 ∼ 10−3 from (2.12), thus 24π2ε2/μ2 
 −48Ěp2. As a consequence,

λ̂4 ≈ exp(−48Ěp2)

9

(
exp(24π2ε2/μ2) − 1

)
. (2.23)

Furthermore, the net potential energy form given by (2.12) can be approximated as follows
(Mendes 2024):

Ěp2 ≈ ε2

4μ2

(
7 − 20

√
|∇h|

)
,

1
100

< |∇h| <
1
2
. (2.24a,b)

Figure 2 displays the comparison of (2.12) and (2.24a,b) in the range |∇h| ∈ [1/100, 1/2]
and ε ∈ [1/100, 1/10] covering the wave conditions in the numerical part of the present
study. It shows that the approximated expression (2.24a,b) represents well the original
net potential energy formulation within the considered range of slope magnitudes. Using
exp(−48Ěp2) ≈ 1–48Ěp2, the background kurtosis can be approximated as 10π2ε2/μ2 and
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Effect of shoaling length on rogue wave occurrence

thus the excess kurtosis up to second order in steepness reads (see Appendix B of Mendes
(2024))

λ̂4 ≈ 20π2
(

ε

μ

)2√
|∇h|, for ε � 1/20. (2.25)

Hence, the difference of excess kurtosis between preshoal and postshoal condition can be
estimated, so the simplified form of (2.15) reads

�λ4 ≈ 20π2

[(
ε

μ

)2

−
(

ε0

μ0

)2
]√

|∇h|, for μ0 
 1. (2.26)

For a special but representative case of a Gaussian preshoal wave distribution, namely
λ̂4,0 = 0, we have �λ4 = λ̂4. Noteworthy, due to the Taylor expansions, (2.25) will not be
able to capture all features of the spatial evolution of the excess kurtosis, which are better
described by (2.14). As such, (2.25) is more suitable for estimating the maximum excess
kurtosis atop the shoal relative to the preshoal condition. Furthermore, this approximation
and the computation of Γ in (2.10) are restricted to both linear and second-order waves, as
we have assumed that Hs(x) � h(x). In the next section, our theory and its inference will
be validated by confronting it with fully nonlinear simulation results.

3. Numerical method: FNPF model

In order to investigate the effects related to the shoaling length and to validate the
predictions of the non-homogeneous second-order theory, we performed fully nonlinear
numerical simulations within the framework of two-dimensional FNPF theory. The FNPF
theory assumes that the fluid is inviscid and incompressible, and the flow is irrotational. In
addition, in this study, the free surface tension is ignored, and the seabed elevation is fixed
in time. The water-wave problem can then be formulated in terms of the velocity potential
Φ(x, z, t) and the FSE η(x, t)

∂2Φ

∂x2 + ∂2Φ

∂z2 = 0, in − h(x) � z � η(x, t), (3.1)

∂η

∂t
+ ∂Φ

∂x
∂η

∂x
− ∂Φ

∂z
= 0, on z = η(x, t), (3.2)

∂Φ

∂t
+ 1

2

[(
∂Φ

∂x

)2

+
(

∂Φ

∂z

)2
]

+ gη = 0, on z = η(x, t), (3.3)

∂Φ

∂x
∂h
∂x

+ ∂Φ

∂z
= 0, on z = −h(x). (3.4)

Zakharov (1968) and Craig & Sulem (1993) have shown the FNPF problem can be
expressed using only the variables on the free surface, i.e. η(x, t) and Φ̃(x, t) ≡ Φ(x, z =
η, t), which is also known as the Zakharov formulation,

∂η

∂t
= −∂Φ̃

∂x
∂η

∂x
+ w̃

[
1 +

(
∂η

∂x

)2
]

, on z = η(x, t), (3.5)

∂Φ̃

∂t
= −gη − 1

2

(
∂Φ̃

∂x

)2

+ 1
2

w̃2

[
1 +

(
∂η

∂x

)2
]

, on z = η(x, t), (3.6)
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where w̃(x, t) ≡ ∂Φ/∂z(x, z = η(x, t), t) denotes the vertical velocity of the fluid particles
on the free surface. To evaluate the temporal evolution of η and Φ̃, one needs to solve w̃
from the given free surface variables (η, Φ̃). This is the core of the Zakharov formulation
and is known as the Dirichlet–to–Neumann (DtN) problem. Various approaches have been
proposed to solve the DtN problem (see e.g. Dommermuth (2000), Madsen, Fuhrman &
Wang (2006), Bingham, Madsen & Fuhrman (2009), Papoutsellis, Charalampopoulos &
Athanassoulis (2018) and references therein).

Recently, the exact FNPF problem has been resolved by using a spectral approach in the
vertical direction and a high-order finite difference method in the horizontal direction, with
a code called Whispers3D (W3D). This model has been described and applied in various
scenarios by Yates & Benoit (2015), Raoult, Benoit & Yates (2016), Simon et al. (2019),
Zhang & Benoit (2021) and Zhang et al. (2022), showing high fidelity in modelling highly
nonlinear non-overturning waves for arbitrary bottom profiles. In this model, a change of
the vertical coordinate from z to s is adopted such that the physical domain (x, z) with
varying free surface and bottom boundaries [−h(x), η(x, t)] can be transformed into a new
domain (x, s) with fixed upper and lower boundaries [−1, 1]:

s(x, z, t) = 2z + h(x) − η(x, t)
h(x) + η(x, t)

. (3.7)

Then, the model equations are reformulated in the (x, s) domain and the vertical profile of
the velocity potential is approximated using a basis of orthogonal Chebyshev polynomials
of the first kind Tn(s), truncated at a tunable maximum order NT :

Φ(x, s, t) ≈
NT∑

n=0

an(x, t)Tn(s). (3.8)

The water-wave problem is solved once the NT + 1 unknown coefficients an(x, t) are
determined at each abscissa x from the DtN problem. The detailed reformulation of the
governing equations in the (x, s) domain, the Chebyshev-tau method used to solve the DtN
problem and the numerical algorithm adopted in this model have been reported in the
above-cited references, and are not duplicated here.

The parameter NT plays a crucial role in balancing the accuracy and efficiency of W3D,
and should be adapted for different scenarios to achieve optimal model performance.
To illustrate the role played by NT , we present the comparison of the phase speed
C(μ ≡ kh, NT) of sinusoidal waves in uniform water depth h predicted by the linear wave
version of W3D model with the analytical phase speed CAiry(μ) of Airy linear wave theory.
As shown by Benoit, Raoult & Yates (2017), the linear W3D model yields an analytical
solution of C(μ, NT),

C√
gh

=
√√√√1 +∑NT−2

n=1 Anμ2n

1 +∑NT−1
n=1 Bnμ2n

, (3.9)

where the An and Bn can be computed analytically (Benoit et al. 2017). The reference phase
speed from Airy theory reads

CAiry√
gh

=
√

tanh μ

μ
. (3.10)

Figure 3 shows that the relative error between C and CAiry for linear waves reduces as
NT increases, and it is of low level for deep-water waves (for instance, it is below 10−5
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Figure 3. Relative error of the phase speed predicted by the linear wave version of the W3D model with
different values of NT in comparison with the analytical solution of Airy linear wave theory. Vertical dash lines
denote the generally adopted shallow- and deep-water limits, μ = kh = π/10 and μ = π, respectively.

with NT � 7 when μ = π). This relative error remains acceptable even for extremely
deep water when μ reaches 100: it does not exceed 2.5 % with NT � 10 and decreases
down to approximately 1 % with NT = 15. It could be further improved at the expense
of computational resources (by increasing NT ). Figure 3 also provides guidance for the
selection of NT in different cases. The present study on the shoaling length parameter
effects benefits from the W3D model with adjustable accuracy/efficiency, as the relative
water depth varies significantly among the different simulation cases. In the meantime,
it is worth mentioning that the W3D model is capable of handling very steep slopes.
Successful applications are reported in Zhang & Benoit (2021) for nonlinear irregular
waves passing over a slope with gradient |∇h| ≈ 0.26, and in Benoit et al. (2017) for
linear regular waves over a slope with mean gradient approximately 1.42. This makes
W3D a particularly relevant choice for the present study.

4. Numerical simulations and results analysis

4.1. Configurations of the simulation cases
The key to choosing the wave parameters of the incident wave train and the bathymetry
set-up lies in two aspects. On one hand, the incident wave train parameters are manipulated
to keep the steepness ε and relative water depth μ after the shoal nearly unchanged
among the various cases, such that the sea-states after the shoal differ only because
of different degrees of non-equilibrium dynamics induced by different lengths of the
shoal. On the other hand, the slope magnitude and shoaling length are disentangled by
keeping |∇h| constant and varying only the slope length L. Furthermore, we choose a
bottom profile with an upslope only but no downslope to avoid any confusion due to
the disturbances of the reflected wave energy during the deshoaling process (Zhang &
Benoit 2021).

The anomalous wave statistics are very sensitive to the relative depth after the shoal
μf = kf hf (Trulsen et al. 2012). Inspired by run 3 of the experiments of Trulsen et al.
(2020) and the simulations of Zhang et al. (2022), we use the water depth after the shoal
hf = 0.11 m and incident peak period Tp = 1.1 s in all cases, thus the relative water depth
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Figure 4. Sketches of (a) the necessary change in the bottom profile for assessing the role played by the
shoaling length effect and (b) the numerical wave flume (NWF) (not to scale).

in the shallower region μf is also a constant. As a consequence, the preshoal water depth
h0 is fully determined by the value of the slope magnitude |∇h| and the shoaling length L.
We acknowledge that the relative water depth difference μf /μ0 also plays an effect on
the anomalous wave statistics. Here we choose to fix μf and vary μ0, because the role
played by μ0 is of secondary importance compared with that of μf , and only becomes
non-negligible when μ0 → μf . However, as μ0 → μf , wave shoaling is no longer the
dominant physics and cannot excite anomalous wave statistics.

In theory, � varies as λ evolves over the slope and could be computed locally in space.
However, we need a characteristic measure � for the entire shoal when comparing the
effect of varying L. Hereafter, we use its value at the end of the shoal, �p ≡ L/λp,f , to
better show the correspondence between the enhancement of kurtosis and the shoaling
length parameter. As a result, the change in bathymetry now boils down to a longer shoal
and a deeper water depth h0 prior to the shoal, as illustrated in figure 4(a). Suppose the
slope length L is extended by a factor of n to L′ = nL, resulting in a new deeper region
depth h′

0. Since |∇h| is kept the same in both cases, i.e. (h′
0 − hf )/L′ = (h0 − hf )/L, the

preshoal depth is scaled correspondingly,

h′
0

h0
= n

[
1 +

(
1
n

− 1
)

hf

h0

]
, n ∈ R

∗
+. (4.1)

As demonstrated by Trulsen et al. (2020), as long as h0 is in deep water (μ0 � π),
any increase in the water depth will have no significant impact on the anomalous wave
statistics before and atop the shoal. This can be further understood from the context of
modulational instability (Zakharov & Ostrovsky 2009). By increasing the relative water
depth μ0 = kp0h0, the initial value of excess kurtosis will increase by a few per cent due
to the Benjamin–Feir index, see for instance the Benjamin–Feir index dependence on μ

in Zhang et al. (2014). However, making the relative water depth μ0 � π larger will not
affect the wave statistics atop the shoal, and the difference between peak and preshoal
statistics will be only slightly (by a few per cent) decreased. As the change of slope length
will lead to a different shoaling coefficient (defined as Cshoal = Hs,f /Hs,0), the incident
Hs,0 is tuned in each case, such that εf atop the shoal is kept the same regardless of the
length of the shoal.
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Case h0 (m) L (m) �p μ(4fp, h0) Deeper region Shallower region μ0/μf

Hs,0 (m) ε0 μ0 Hs,f (m) εf μf

1 0.13625 0.1 0.09 7.25 0.0190 0.0459 0.73 0.0193 0.0512 0.64 1.13
2 0.16250 0.2 0.19 8.65 0.0191 0.0428 0.81 0.0197 0.0522 0.64 1.25
3 0.21500 0.4 0.37 11.44 0.0188 0.0380 0.96 0.0198 0.0524 0.64 1.49
4 0.26750 0.6 0.56 14.23 0.0186 0.0349 1.11 0.0197 0.0522 0.64 1.72
5 0.32000 0.8 0.75 17.03 0.0186 0.0330 1.25 0.0196 0.0520 0.64 1.95
6 0.42500 1.2 1.12 22.62 0.0191 0.0315 1.55 0.0199 0.0526 0.64 2.40
7 0.53000 1.6 1.49 28.20 0.0193 0.0306 1.85 0.0198 0.0525 0.64 2.87
8 0.74000 2.4 2.24 39.38 0.0198 0.0302 2.50 0.0199 0.0526 0.64 3.87
9 0.95000 3.2 2.98 50.55 0.0202 0.0305 3.17 0.0199 0.0529 0.64 4.92
10 1.79000 6.4 5.97 95.25 0.0202 0.0304 5.95 0.0198 0.0525 0.64 9.24
11 3.47000 12.8 11.93 184.65 0.0201 0.0303 11.54 0.0196 0.0520 0.64 17.91

Table 1. Summary of the key parameters for the simulations. The incident sea-states are described by a
JONSWAP spectrum of the same peak period Tp = 1.1 s, and peak enhancement factor γ = 3.3. The slope
length changes from case 1 to 11, yet the slope is kept constant |∇h| = 0.2625 (approximately 1 : 3.81). The
incident Hs,0 is tuned in each case to keep Hs,f more or less the same. The steepness measure can be converted
to other common definitions through ε = (

√
2/π)kpHs. Note that case 7 here shares the same wave and bottom

configurations as case 4 in Zhang et al. (2022).

We consider long-crested irregular wave trains described by a JONSWAP (joint North
Sea wave project) spectrum,

S( f ) = αJg2

(2π)4
1
f 5 exp

[
−5

4

(
fp
f

)4
]
γ

exp
[
−( f −fp)

2
/2(σJ fp)

2
]
, (4.2)

where αJ denotes the adjustment factor for Hs, σJ the spectral asymmetry parameter
(σJ = 0.07 for f � fp and σJ = 0.09 for f > fp), and γ the peak enhancement factor.
In this study, the spectral peak period Tp = 1/fp = 1.1 s and peak enhancement factor
γ = 3.3 of the incident wave field are the same for all 11 cases. In each case, the incident
wave train lasts for 5060 s, thus 4600Tp. Table 1 summarizes the configurations of the
incident wave fields and bathymetry information in 11 cases, as well as the key wave
parameters in both deeper and shallower regions (by averaging the simulation results over
the corresponding areas). These cases are considered representative for investigating the
shoaling length effect, as they cover a relatively wide range of shoaling length parameter,
�p ∈ [0.1, 11.9]. Meanwhile, the relative water depth difference before and after the shoal
also varies significantly, μ0/μf ∈ [1.1, 17.9].

The incident wave train is constructed by linearly superimposing the harmonic
components of the prescribed spectrum, and imposed at the wave-making boundary of
the NWF. The low-energy components of the incident spectrum are ignored, keeping the
non-trivial ones in the range [ fmin, fmax] = [0.5fp, 4fp], as justified in the next subsection.
The sketch of the NWF is provided in figure 4(b): the water depth h0 is constant in the flat
area prior to the shoal (6 m in length, roughly 3λp,0), then it decreases to hf = 0.11 m
due to the presence of an up-slope (with a constant slope magnitude |∇h| = 0.2625
and length L), and remains constant in the flat area (27 m in length, roughly 25λp,f )
after the shoal. Such a long after-shoal flat area allows the out-of-equilibrium sea-state,
induced by the depth change, to re-establish a new equilibrium state, based on the work

997 A69-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.687


J. Zhang, S. Mendes, M. Benoit and J. Kasparian

–5 0 5 10 15 20 25
–0.25

–0.20

–0.15

–0.10

–0.05

R
el

at
iv

e 
er

ro
r o

f η
(x

)

0

0.05

0.10

0.15

0.20

–5 0 5 10
x/λp,f

λ4

x/λp,f

15 20 25
2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
(a)

fmax = 2fp

fmax = 2fp
fmax = 3fp
fmax = 4fp

fmax = 3fp
fmax = 4fp
fmax = 5fp

(b)

Figure 5. (a) Spatial evolution of kurtosis λ4 for case 7 considering four increasing cut-off frequencies fmax
of the incident JONSWAP wave spectrum; (b) relative error of η(x) at final time t = 5060 s for the simulations
with fmax = 2fp, 3fp and 4fp, with respect to the simulation with fmax = 5fp used as reference.

in Zhang et al. (2022). In addition, the computation domain comprises a generation
relaxation zone of 6 m in length (≈3λp,0) on the left-hand end of the NWF and an
absorption relaxation zone of 21 m in length (≈20λp,f ) on the right-hand end. As detailed
in Appendix A, such a length of the damping zone is needed to keep negligible reflection
of all wave components, including the low-frequency (LF) ones, in spite of the higher cost
of computation effort.

4.2. Result convergence and statistical variability
Case 7 in the present study shares the same wave and bottom conditions as case 4 in Zhang
et al. (2022), and other cases are also very similar to it (see table 1). Therefore, it is logical
to adopt the same spatial grid interval and time step, dx = 0.01 m and dt = 0.01 s, which
result in the Courant–Friedrichs–Lewy number CFLi = Cp,i dt/dx = (λp,i/dx)/(Tp/dt),
with i = 0 or f , to be CFL0 = 1.64 prior to the shoal and CFLf = 0.97 atop the shoal.

The investigation of the shoaling length effect poses high requirements on the model
accuracy. The increase of slope length results in larger μ0, and the demands on model
accuracy increase sharply to describe the wave evolution in the deeper flat region. This
is because, for irregular waves, the model should be reasonably accurate up to the cut-off
frequency fmax of the input spectrum, which is much more challenging than considering
model accuracy up to the spectral peak frequency fp. Table 1 lists the relative water depth
μ(4fp, h0) for waves with f = 4fp in depth h0. In case 11 for instance, the relative water
depth corresponding to fmax in the NWF is actually higher than 180 prior to the shoal. We
know from figure 3 that the accuracy of W3D is sensitive to the relative water depth, and
that larger NT is needed for deeper water. We therefore performed a series of convergence
tests for determining the cut-off frequency of the input spectrum and the choice of NT
value, both would influence the performance of W3D.

We determined the extent of the spectral range [0.5fp, fmax] required to ensure accurate
convergence of the simulations by running case 7 with fmax taking 2fp, 3fp, 4fp and
5fp successively. Figure 5(a) shows the comparison of the spatial evolution of λ4 with
these four different cut-off frequencies. It is observed that the estimation of kurtosis is
convergent for fmax � 3fp. Figure 5(b) shows the relative error of η(x) at t = 5060 s with
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Figure 6. (a) Calibrated values of NT for cases 1 to 11; (b) comparison of snapshots of duration 5Tp of the
time series of FSE η at 6 m after the shoal in case 7 simulated with NT = 6, 8, 10.

respect to the result with highest fmax = 5fp, and normalized by the incident significant
wave height Hs,0. It is noticed that the convergence of FSE in the time domain is closely
achieved for fmax = 4fp with relative error within 1 %. Therefore, fmax = 4fp is chosen for
all subsequent simulations. Furthermore, the evolution of λ4 in the case with fmax = 2fp
differs only slightly from the well-converged results with fmax � 4fp. This seems to be
contradictory to the conclusion of Tang et al. (2022), which states that removing the
high-frequency spectral tail would result in substantial enhancement of λ4. In fact, this
is because the mechanisms are different in the study of Tang et al. (2022) and in the
present one: in the former work, the spectral change manifests spontaneously under the flat
bottom condition due to strong nonlinear wave–wave interaction. Whereas, in the present
one, the spectral modulation is forced by the depth transition, and thus is less sensitive to
the high-frequency tail of the incident spectrum but more to the rapid depth change.

All the cases listed in table 1 have been first tested for a short duration 50 s
(approximately 45Tp) to tune the NT values so that the balance between efficiency and
precision can be achieved in each case. In figure 6(a), the tuned values of NT are displayed
for all 11 cases. In figure 6(b), the calibration of NT in case 7 is provided as an example,
it is observed that the time evolution of η is identical for NT = 8 and 10, therefore in the
final simulation of case 7 with long duration, NT = 8 is chosen.

The skewness and kurtosis, as high-order moments, are subject to statistical variability.
The duration of the record of η plays an important role in obtaining (at least nearly)
converged results of skewness and kurtosis. We checked that a time duration of 5060 s
(equivalently, 4600Tp) in the simulations is sufficient for obtaining statistically converged
estimates of skewness and kurtosis. For such a purpose, the convergence of skewness and
kurtosis is analysed with the time series computed at the location x = 0.75 m where they
assume their maximum values and are subject to the strongest variability. The time series
of η is separated into a series of individual waves through the zero-down-crossing method.
Then, by evaluating the skewness and kurtosis of a section of the entire time series that
contains the first N waves, the skewness and kurtosis are functions of the number of waves
in the time series. In figure 7, λ3 and λ4 computed from different numbers of waves in the
time series are shown; it is noted that the estimates become nearly stable after including
4000 random waves, thus the selected simulation duration is long enough.
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Figure 7. Convergence of (a) skewness and (b) kurtosis of FSE at x = 0.75 m (equivalently x/λp,f = 0.7,
where the skewness and kurtosis assume their maximum values) as a function of the number of waves in the
simulated time series in cases 1 to 11.
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Figure 8. Spatial evolution along the NWF of non-dimensional wave parameters for cases 1 to 11: (a) relative
water depth μ and (b) wave steepness ε. The vertical dash line at x = 0 indicates the starting location of the
shallower flat region.

4.3. Shoaling length effects on the spectral evolution along the NWF
The spatial evolution trends of two key wave parameters, the relative water depth μ and
the wave steepness ε, are displayed in figure 8. They are evaluated locally, based on the
spectral peak frequency and significant wave height extracted from spectral analysis of
the time series of FSE. This figure further validates the methodology for determining the
wave parameters of the input wave field, which ensures that μf and εf after the shoal are
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Figure 9. Spatial evolution along the NWF of the wave spectrum for cases 1 to 11, displayed in (a–k),
respectively. The colour scale depicts the value of log10(S( f , x)) with spectrum S( f , x) in m2 Hz−1. The vertical
white dash lines represent the extent of the plane slope.

basically the same whatever �. Before the shoal, μ varies significantly due to the change of
depth h0 among the cases, and ε also differs in order to compensate for different shoaling
effects on Hs,f among the cases.

The FSE time series is saved every 0.2 m (0.2λp,f approximately) in the NWF, resulting
in a relatively fine resolution of the spectral evolution in space, as is displayed in figure 9.
It is noted that, in all cases, the spectral evolution after the shoal is almost the same: a
beating pattern manifests for the second harmonics shortly after the shoal then gradually
vanishes as waves propagate farther, and a broadened spectrum is eventually established. It
indicates that the shoaling length effect is insignificant for wave spectral evolution as waves
pass over a steep shoal. In cases 1 to 4, the spectral evolution is slightly different from the
other cases: the beating pattern appears not only in the range after the slope but also in
the flat area before it. The relative water depths before the shoal μ0 of these cases are low
among all cases (see table 1) whilst the steepness values ε0 are higher than other cases.
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Take case 1 as an example, since the Ursell number is proportional to Ur0 ∝ ε0/μ
3
0 and

the relative water depth of case 1 has been decreased tenfold and the steepness increased
by 50 % in comparison with case 11, case 1 has an Ursell number a thousand times larger
than that in cases 9–11, resulting in higher relative importance of wave nonlinearity than
dispersion.

The reflection is relevant in the simulations, it could be induced by the shoal and by
the end of the damping zone. As the latter is considered as contamination to the wave
field over the shoal, we have chosen a long damping zone to minimize its effect, see
Appendix A for more detail. The reflection by the shoal is physical and the reflection
rate in the simulations is around 8 % as in the simulations of Zhang & Benoit (2021).
Furthermore, the interaction between the incident and reflected waves before the shoal
affects the spectral peak frequency and results in the oscillatory behaviour of ε prior to the
shoal in figure 8(b).

4.4. Shoaling length effects on the spatial evolution of statistical parameters
Here, the spatial evolution of the asymmetry parameter, skewness and kurtosis is
investigated, and the influences of the � parameter on the evolution of these key statistical
parameters are discussed. The asymmetry parameter measures the wave profile asymmetry
in the horizontal direction. It is computed as the skewness of the Hilbert transform of
the FSE, λ3[H(η)], with H denoting the Hilbert transform operator. The asymmetry
parameter assumes negative values when the wave front is steeper than its rear face, for
instance, when a wave passes over a shoal. The results of the three statistical parameters
are displayed in figure 10(a–c).

In figure 10(a), the evolution of the asymmetry parameter is displayed for all cases. The
horizontal wave profile first leans forward due to shoaling (with λ3[H(η)] approaching
its negative extreme value) in the short area near the end of the slope, and then the
wave profile develops reversely (with λ3[H(η)] returning to 0 around x = 0.7λp,f =
0.75 m on its way to the positive maximum), and becomes backwards-leaning due to
significant non-equilibrium wave evolution. Eventually, λ3[H(η)] approaches a positive
constant in the equilibrium state that is nearly established close to the end of the NWF.
All cases 5 to 11 follow this trend, with their positive and negative global extreme
values and the equilibrium values being almost the same and achieved at the same
location. The picture is a bit different in cases 1 to 4, where the asymmetry parameter
is higher than 0 initially due to the higher relative importance of nonlinearity as illustrated
previously.

The spatial evolution of skewness λ3(η) in all cases is shown in figure 10(b). It has
a finer resolution compared with figure 10(a), because W3D allows the computation of
skewness and kurtosis at every grid point (with dx = 0.01 m) during the simulation. As
for the asymmetry parameter, the evolution trends are very similar in all cases, with their
maximum values atop the shoal converging at the same location (convergent maximum
value λ3 ≈ 0.6). Furthermore, the equilibrium values of λ3 in the far field atop the shoal
are also at the same level, as the sea-states in all cases are of nearly the same levels of
nonlinearity and dispersion. In cases 1 to 4, the skewness in the deeper flat region before
the slope is higher than that in other cases, this is again related to the higher relative
importance of wave nonlinearity.

In figure 10(c), the spatial evolution of kurtosis in all cases is shown. In all cases, λ4
remains around 3 before the end of the shoal, and after the shoal, λ4 is significantly
enhanced to its local maximum at x = 0.7λp,f = 0.75 m, indicating a local increase of
the rogue wave occurrence probability. Then, λ4 declines to a level around 2.6, which
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Figure 10. Spatial evolution of (a) asymmetry parameter λ3[H(η)], (b) skewness λ3(η) and (c) kurtosis λ4(η),
in cases 1 to 11 along the NWF. The vertical solid line at x = 0.7λp,f indicates the position where skewness
and kurtosis achieve their maxima.

indicates that the probability of rogue waves in the new equilibrium state is even lower
than that in a Gaussian sea-state. We notice that λ4 may not be converged yet at x = 25λp,f .
This is understandable because as a fourth-order moment, kurtosis would require a longer
distance to be convergent than the third-order ones. As the trend of kurtosis is already
clear in figure 10(c), we decided not to extend the length of NWF. Based on the evolution
of these three statistical parameters shown in figure 10, we consider that the short-scale
non-equilibrium wave evolution stage happens in the range [0, 5]λp,f and the long-scale in
[5, 25]λp,f in the NWF. The spatial extent of these two scales is independent of �p (or of
�, equivalently).

Now we focus on the local extremes of these statistical moments. From figure 10(a), it
is noticed that the local extreme values of λ3[H(η)] after the shoal in cases 1 and 2 are
of lower modulus than other cases. From figures 10(b) and 10(c), we see that in cases 1
to 4, λ3 and λ4 have the lower maximum values shortly after the shoal. Furthermore, we
observe that, despite an initial offset, the changes of the values before and after the shoal
of the three variables (asymmetry, skewness, kurtosis) are quite small for the cases 1–4.
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Figure 11. Comparison of the kurtosis enhancement �λ4 atop the shoal between simulated results and
theoretical estimation with three options, displayed as functions of the shoaling length parameter �p. The
simulation results are marked as hollow circles, and the kurtosis predictions are computed in two ways (as
indicated in the legend box).

Such behaviour in cases 1–4 is expected because the depth transition is not as strong as in
cases 5–11, see the last column of table 1. Consequently, the depth changes in cases 1 to
4 are in a transitional regime between homogeneous evolution of the wave field (constant
depth condition) and inhomogeneous evolution (rapidly depth varying condition). When
the depth transition is strong enough, the wave propagation after the shoal is dominated by
the non-equilibrium dynamics induced by the change of water depth. As a result, neither
the preshoal values nor the maximum of both skewness and kurtosis feature any significant
differences due to the change of �p in cases 5–11.

In figure 11, the change of excess kurtosis �λ4 between the over-shoal maximum value
and the preshoal mean value is displayed as a function of �p. The empirical kurtosis
change in the simulations is obtained from the maximum value of λ4 in the range x ∈
[0, 5]λp,f with its mean value in the range x ∈ [−L − 6 m, −L] subtracted. The theoretical
predictions of �λ4 can be obtained with two levels of approximation:

(i) with �λ4 in (2.15) and Γ in (2.10), originally put forward in Mendes & Kasparian
(2023);

(ii) with the simplified expression of �λ4 in (2.26), as an approximation to option (i).

As a remark, the � is computed from a zero-crossing wavelength from the perspective of
(2.10) that would give rise to the kurtosis of models (i) and (ii), whereas the simulations
have a peak wavelength counterpart. Following Figueras (2010) for the relation between
peak and mean periods, as well as Mendes & Scotti (2021) for the relation between
mean and zero-crossing period, we may approximate T2

p ≈ 2T2
z (with Tz denoting the

zero-crossing mean wave period) such that � ∼ 2�p.
For a strong depth transition (μ0/μf � 2 in cases 5–11), the two theoretical models

provide similar results, both matching the simulations. Indeed, considering that for a
total of 5000 waves (see figure 7), the expected 95 % confidence interval (±2σ ) has a
width of ±0.15 (Joanes & Gill 1998; Cramér 1999; Wright & Herrington 2011), the two
theoretical curves stay within this range near the simulated values. Thus, their agreement
with the simulated excess kurtosis is excellent, which makes them an effective theory for
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the shoaling length variations, especially as option (ii) is of a much simpler formulation.
In this range, �λ4 shows virtually no dependence on �p in the two theoretical models
and the simulations. A relevant pondering arises regarding what would happen if we
kept increasing the shoaling length beyond the range plotted in figure 11. Overall, the
ever-increasing of �p will not change �λ4 because the initial relative water depth μ0 would
be so large (μ0 > 12) that the waves cannot feel the ever-deeper water region, as discussed
in § 4.3.

In the weak depth transition regime (μ0/μf � 2, in cases 1–4), the two theoretical
formulations are able to predict �λ4 in this regime as well. Although at first glance, one
may interpret the growth of the excess kurtosis as being due to an increasing �p, this
growth is rather related to the strengthening of the depth transition because of the way
we defined the change in water depth in (4.1). This is understandable, if one considers
a case with μ0 → μf , no matter how long the shoal (with an infinitesimal gradient) is
or how steep the shoal (with an infinitesimal length) is, waves would propagate without
significant change of excess kurtosis, as in the flat bottom condition. In other words, in
such a case, the dominant factor is neither the shoaling length nor the slope, but μ0/μf .
Therefore, we conclude that the shoaling length parameter plays an insignificant role in
the change of excess kurtosis in the weak depth transition regime.

5. Conclusion

In this work, we have demonstrated both theoretically and numerically that the
enhancement of the excess kurtosis of FSE due to the shoal is not sensitive to the shoaling
length. This has been shown by setting fixed values for wave steepness and relative water
depth after the shoal and setting a constant slope magnitude. We provided an explicit
definition of the abruptness of a shoal by introducing a shoaling length parameter �p
as the ratio between the slope length and the characteristic wavelength. It allowed us to
disentangle the effect of the shoaling length parameter from that of the slope magnitude
by varying the preshoal depth while keeping the slope magnitude constant. By building on
the recent theoretical work in Mendes et al. (2022), we derived estimates of the change of
excess kurtosis from the second-order theoretical model with two levels of approximations.
Both showed good agreement with the simulation results, indicating that the enhancement
of kurtosis (i.e. rogue wave amplification) due to shoaling is independent of the shoaling
length, as long as the wave evolution is dominated by the non-equilibrium dynamics due
to the change of water depth. We therefore deduce that, for a fixed wave field condition
after the shoal, the magnitude of the bottom slope is the main driver of the enhancement
of the excess kurtosis.

Then, we showed numerically that not only the rogue wave amplification (characterized
by the peak values of the statistical moments) but also the location of these maxima,
the vertical asymmetry in surface elevation, wave steepness and spectral evolution are
insensitive to the shoaling length. We observed that shorter shoaling lengths (typically
�p � 0.5) lead to a reduced increase of kurtosis over the shoal. This is because
the depth prior to the shoal is insufficient to induce non-equilibrium dynamics. For
the non-equilibrium wave evolution induced by depth transitions, three stages are
characterized by different features: (1) the near-equilibrium evolution stage before the
end of the slope; (2) the short-scale non-equilibrium evolution stage from the end of
the up-slope up to a small distance atop the shoal, often called latency (Zheng et al.
2020); (3) the long-scale non-equilibrium evolution stage as waves propagate farther
before reaching a new equilibrium state. Our FNPF simulation results have shown that
the shoaling length parameter has no discernible effect on the spatial extent of short- and
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long-scale non-equilibrium wave evolution, nor on the locations where global extreme
values or the equilibrium values of the statistical parameters are achieved.

From a more technical point of view, when designing the set-up of the FNPF
simulations, we have shown that (i) a cut-off at higher frequencies of the wave spectrum
has a significantly smaller impact on wave statistics than expected for a flat bottom in
deep water, and (ii) insufficient attenuation of LF waves at the downstream boundary of
the domain could have a notable influence on wave statistics and spectrum atop the shoal.
Dedicated sensitivity studies and choices have been done to get rid of these two effects in
the final set of simulations.

Finally, our study covers the range 0.1 � �p � 12, but equally applies beyond. Indeed,
longer shoals correspond to even deeper preshoal conditions, where the waves do not
interact with the bottom. The shoal therefore only starts to affect the propagation when
the waves quit the deep-water region, thus limiting the effective length of the shoal.
Conversely, very short �p implies negligible depth difference, hence, a vanishing shoal
effect.

The outcomes of this work could also be useful for researchers investigating
either experimentally or numerically the depth-induced non-equilibrium dynamics when
designing the incident wave and bathymetry configurations. Also, the explicit and simple
expression for the change of excess kurtosis of (2.25) can be used for fast estimation of
freak-wave risk associated with a steep shoal in engineering practices. Further work would,
however, be needed to assess the effect of � on waves of larger steepness (beyond the
second-order regime), especially reaching close to wave breaking.
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Appendix A. Effects of LF waves in numerical simulations

Low-frequency subharmonics often occur as a result of nonlinear wave–wave interactions
during nonlinear simulations. Particular attention should be paid to LF wave damping
while running simulations with long duration, as LF wave energy may accumulate and
affect the fundamental harmonics around fp in return. Conventionally, in W3D, a damping
zone of three characteristic wavelengths at the end of the computational domain works
well in absorbing waves. However, in the present work, as the duration is long and the
nonlinear wave–wave interaction is quite active after the shoal, taking Ldamp = 4 m ≈
3λp,f is not sufficient. Rather, the length of the damping zone should be set according
to the LF wavelength, i.e. Ldamp = 21 m ≈ 20λp,f ≈ 3λLF, with the LF waves having a
characteristic frequency fLF ≈ 0.05 Hz.

Figure 12 displays the spatial evolution of the wave spectrum for case 7 with Ldamp ≈
3λp,f (in figure 12a) and Ldamp ≈ 20λp,f (in figure 12b). The vertical dash lines indicate
the range of the shoal, and the horizontal dash lines represent spectral peak frequency
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Figure 12. Spatial evolution of the wave spectrum for case 7, simulated with two different extents of the
damping zone after x/λp,f = 25: (a) Ldamp = 4 m ≈ 3λp,f and (b) Ldamp = 21 m ≈ 20λp,f . The colour scale
depicts the value of log10(S( f , x)) with spectrum S( f , x) in m2 Hz−1. The vertical white dash lines represent
the extent of the plane slope. The horizontal dash line represents the local peak frequency of the wave spectrum.
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Figure 13. Spatial evolution along the NWF of (a) skewness and (b) kurtosis for case 7, simulated with two
choices of relaxation zone lengths.

evaluated as fp ≡ (
∫ fNyq

0 fS4( f ) df )/(
∫ fNyq

0 S4( f ) df ) with fNyq = 50 Hz according to the
Nyquist sampling theorem. Clearly, with a short damping zone, the LF components receive
a considerable amount of energy during the simulation and affect markedly the peak
frequency atop and after the shoal in figure 12(a). With the longer damping zone, however,
as shown in figure 12(b), the LF components are effectively suppressed. Consequently,
the longer damping zone Ldamp ≈ 20λp,f was adopted in all simulations presented in this
study.

Moreover, with these two choices of Ldamp, the effect of LF components on the statistical
parameters λ3 and λ4 can be discussed. In figure 13, the spatial evolutions of λ3 and λ4 are
displayed. It is observed that strong LF components (i.e. with the reduced Ldamp) result
in lower levels of both parameters after the shoal. This means that, in nature, the LF
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components of coastal waves (possibly reflected from the shoreline or released during
depth-induced wave breaking) could play a role in the mitigation of rogue-wave risk.
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