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Representing turbulent statistics with partitions
of state space. Part 2. The compressible Euler
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This is the second part of a two-part paper. We apply the methodology of the first paper
(Souza, J. Fluid Mech., vol. 997, 2024, A1) to construct a data-driven finite-volume
discretization of the Liouville/Fokker–Planck equation of a high-dimensional dynamical
system, i.e. the compressible Euler equations with gravity and rotation evolved on a thin
spherical shell. We show that the method recovers a subset of the statistical properties of
the underlying system, steady-state distributions of observables and autocorrelations of
particular observables, as well as revealing the global Koopman modes of the system. We
employ two different strategies for the partitioning of a high-dimensional state space, and
explore their consequences.

Key words: low-dimensional models, big data, atmospheric flows

1. Introduction

In Part 1 (Souza 2024) we introduced a data-driven methodology for discretizing
the continuity equation associated with a dynamical system, and demonstrated the
methodology on the Lorenz equations. The methodology is similar to other data-driven
methods for constructing Koopman and Perron–Frobenius operators – see Ulam (1964),
Rowley et al. (2009), Schmid (2010), Klus & Péter (2016) and Colbrook (2023) – but
accounts for finite sampling effects and assumes that the underlying data come from a
continuous time dynamical system.

In the language of Williams, Kevrekidis & Rowley (2015), we make a particular
choice of nonlinear dictionary that allows for a scalable computation of the
Koopman/Perron–Frobenius operator. Two ideas are combined for the nonlinear
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dictionary: the use of indicator functions for particular regions of state space as in
Ulam (1964), along with a ‘classifier’ for flow states that implicitly partitions state space.
The latter allows for geometric flexibility that frees one from the use of the ‘boxes’ in
Ulam’s method and provides scalability in any number of dimensions. Using indicator
functions for the nonlinear dictionary allows for scalability in temporal data volume since
there is no need to construct a pseudo-inverse. The operator is constructed directly. This
specialization enables the method to be used in a ‘streaming’ fashion, where the operator
is built as a simulation progresses.

We apply the method to a high-dimensional dynamical system: the compressible Euler
equations with rotation and gravity. We modify the set-up described in Held & Suarez
(1994), a benchmark for atmospheric dynamical cores used in climate modelling. The
mean and variance statistics are robust across many numerical discretizations and equation
formulations, and mimic statistics of the Earth system. A flux-differencing discontinuous
Galerkin method is employed for the numerical discretization, and total energy is the
chosen prognostic thermodynamic variable. The details of the set-up and discretization
are in Souza, Lutz & Flierl (2023b). The discretization is viewed as a 1 000 000+ degrees
of freedom dynamical system. The perspective taken herein is akin to that of Cvitanović
et al. (2016).

The purpose of the Held–Suarez setup is twofold: the first goal is to have a stringent test
on the methodology of Part 1 through a high-dimensional dynamical system without any
discernible ‘meta-stable’ states. The method of Part 1 is expected to perform best when
there are few meta-stable states with semi-rare transitions between them, thus the lack of
‘meta-stable’ states of the present test case should be considered a ‘worst-case’ scenario;
however, the lack of clearly distinguishable states is typical with regard to turbulence. The
second goal is to make a connection between an operator-theoretic approach to dynamical
systems and climate science, such as the work of Froyland et al. (2021) and the idealized
system in Geogdzhayev, Souza & Ferrari (2024). In this way, questions in climate science
are placed on a rigorous theoretical foundation. We return to this point at the end of the
paper.

The paper proceeds as follows. Section 2 reviews the methodology outlined in Part 1.
In § 3, we delve into an application to the Euler equations in the Held and Suarez setup.
We discuss partitioning strategies, global Koopman modes, statistically steady-states, and
temporal autocorrelations. Finally, in § 4, we discuss future work and implications.

2. Methodology review

In Part 1, we developed a general method for using trajectory information of a dynamical
system given by

ṡ = U(s) (2.1)

to discretize the Liouville equation

∂tP + ∇ · (UP) = 0. (2.2)

Here, s : R → Rd is the mapping from a time t to state s(t), U : Rd → Rd is the evolution
rule for the dynamics, and P(s, t) : Rd × R → R is the joint probability density for each
state variable s ∈ Rd as a function of time.
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Partitions of state space: the compressible Euler equations

The primary ingredient to construct a discretization is a ‘classifier’

C : R
d → {1, . . . , N}, (2.3)

which maps an arbitrary state s to an integer. The classifier implicitly defines cells, i.e.
a partition of state space, for the underlying dynamical system; however, since chaotic
trajectories are (in this work) assumed to belong to an attracting subset M ⊂ Rd, the
‘cells’ Mn also serve as a method of partitioning M.

Applying the classifier to a time trajectory given by (2.1),

e(t) ≡ C(s(t)), (2.4)

generates sequences of integer jumps, which we interpret as a continuous Markov process.
Under this interpretation, we can define

(i) holding times, i.e. the average amount of time spent in a partition of state space,
(ii) exit probabilities, i.e. the probability of transitioning from partition i to j,

to construct the generator of the process. This is an N × N matrix, which we denote
by Q. In Part 1, we showed how to construct Q from data and quantify the uncertainty
of the matrix entries due to finite sampling effects. The uncertainty quantification is
consistent with the continuous-time Markov formulation. We represented uncertainty
using conjugate priors so that the prior/posterior distribution for the holding times is a
gamma distribution Γ (α, β), and the prior/posterior distribution for the exit probabilities
is a Dirichlet distribution D(α).

Furthermore, we showed that the matrix Q structure is the same structure that one
would get through a finite-volume discretization of the Liouville equation (2.2). The
same data-driven construction applies to stochastic dynamical systems and thus the
Fokker–Planck equation. We use the convention that the steady-state probabilities are right
eigenvectors of the operator since we view Q as arising from a numerical discretization.

To perform statistical calculations, we additionally need ‘cell centres’ (also called
‘Markov states’) σ [n] ∈ Rd associated with each embedding such that

C(σ [n]) = n. (2.5)

Using the generator Q and the Markov states σ [n], we showed how to reconstruct the
statistics induced by the dynamics of (2.1) in Part 1. In particular, we showed how
to construct statistically steady probability distributions, temporal autocorrelations and
Koopman modes. We approximated the density in partition Mn by a delta function centred
on the state, i.e. In(s) ≈ δ(s − σ [n]), and approximated the action of the transfer operator
– the operator exponential of the generator – T τ on a partition as a weighted sum of delta
functions centred on states, e.g. T τIn(s) ≈ ∑

m[exp(Qτ)]mn δ(s − σ [m]). The detailed
formulas in the continuous and discrete settings are given in Part 1.

A Koopman eigenvector is an eigenvector of the Koopman operator (the adjoint to the
Perron–Frobenius operator) and a functional that acts on a state vector. Thus the Koopman
eigenvector serves as a mapping from a state vector to a complex number, i.e. gλ : Rd →
C, where λ denotes the associated eigenvalue. The numerical approximation to a Koopman
eigenvector, gλ ∈ RN , is given by a left eigenvector of the generator Q ∈ RN×N (recall our
convention of representing the steady-state probability as the right eigenvector of Q) with
associated eigenvalue λ. Given that we classify our flow into N distinct states, the action
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of the functional on an arbitrary state is approximated by first classifying an arbitrary state
to an integer label n and then picking out the associated component, e.g. g · ên. In other
words, we use a piecewise-constant approximation to the functional where subsets of state
space are assigned the same value. Thus we take our nonlinear dictionary (see Williams
et al. 2015; Colbrook 2023) to be indicator functions for different cells in a partition of
state space.

In what follows, we make choices for the classifier, and Markov states as applied to
the compressible Euler equations. We compare statistics given by the generator Q, and
Markov states σ [n] to those given by the temporal statistics s(t). In other words, we
compare ensemble averaging of the discretized statistics, as encapsulated by Q and Markov
states σ [n], to time averaging given by dynamical trajectories. We compute Koopman
eigenvectors as well as modes, and enact two different strategies of partitioning state space
to extract different levels of information.

3. The compressible Euler equations and a reduced-order statistical model

We consider a flux-differencing discontinuous Galerkin discretization of the compressible
Euler equations on the sphere with rotation and gravity. The prognostic variables of
choice are density ρ, momentum ρu, and total energy ρe. The dynamics are given by
the following equations:

∂tρ = −∇ · (ρu), (3.1)

∂t(ρu) = −∇ · (u ⊗ ρu + pI) − ρ∇Φ + Sρu(ρ, ρu, ρe), (3.2)

∂t(ρe) = −∇ · (u( p + ρe)) + Sρe(ρ, ρu, ρe), (3.3)

where Sρu and Sρe are source terms, Φ is the geopotential, and p is pressure. Details are
given in Appendix A. The corresponding Liouville equation is

∂tP +
∫

Ω

δ

δρ
[−div(�u)P]

+
∫

Ω

δ

δ�u
[(−div(u�u + px̂) − �x̂ · grad(Φ) + Sρu)P]

+
∫

Ω

δ

δ�v
[(−div(u�v + pŷ) − �ŷ · grad(Φ) + Sρv)P]

+
∫

Ω

δ

δ�w
[(−div(u�w + pẑ) − �ẑ · grad(Φ) + Sρw)P]

+
∫

Ω

δ

δ�e
[(−div(u( p + �e)) + Sρe)P] = 0, (3.4)

where we make the correspondence s(x,1) = �, s(x,2) = �u, s(x,2) = �v , s(x,2) = �w ,
s(x,5) = �e and u = (u, v , w ) with notation established in Part 1. The source term Sρu
is broken up into three terms Sρu, Sρv and Sρw. Furthermore, we use ‘grad’ and ‘div’ for
the gradient and divergence, respectively.

Equation (3.4) is viewed as a formal expression and reviewed in Part 1. It is possible to
manipulate such equations to derive helpful relations, which may be checked a posteriori
such as in the conditional averaging procedure in Souza et al. (2023b) to derive a turbulent
diffusivity operator or Giorgini et al. (2024) to analytically determine a ‘score function’ for
particular classes of stochastic partial differential equations. Rigorous foundations for the

997 A2-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.657


Partitions of state space: the compressible Euler equations
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Figure 1. Surface fields of the Held–Suarez atmospheric test case. We show (a) surface temperature,
(b) zonal velocity, (c) pressure, and (d) meridional velocity.

statistics of partial differential equations have been established in simpler contexts (see the
theory in Hairer (2014) and the review of Corwin & Shen (2020)), but still require further
development to apply to the case considered here.

The numerical discretization of the compressible Euler equations is outlined in
Appendix A but is irrelevant for the present purposes. Instead, we consider the system
a finite but high-dimensional space, with d = 1 481 760 in our specific case.

We choose the Held–Suarez test case for our analysis because it exhibits turbulence, has
been extensively studied by the atmospheric community, and is a geophysically relevant
configuration that produces wind and temperature patterns similar to those observed
on Earth. Moreover, its statistics are robust across multiple discretization strategies,
dissipation mechanisms and equation formulations. It does not exhibit meta-stable states
and thus serves as a stringent test of the methodology.

Figure 1 shows a typical surface snapshot of the prognostic variables in the Held–Suarez
simulation. The zonal velocity is the wind speed that flows in the east–west direction,
and the meridional velocity flows in the north–south direction. Temperature and pressure
are given by an equation of state and are nonlinear algebraic combinations of the state
variables. With the Held–Suarez forcing, the temperature is hottest near the equator and
cools towards the poles.

We now apply the methodology from § 2 to the Held–Suarez atmospheric test case. The
first partition is chosen to provide insight into the topological structure of the turbulent
attractor. The latter demonstrates that targeted partitioning strategies enable data-driven
statistical modelling for observables of interest. The first strategy uses 400 cells, and the
second uses 100 cells. The choice of classifiers C and Markov states σ [n] is described in
the relevant sections.
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3.1. Sampling partition and steady-state statistics
We start with an initial simulation run to reach a turbulent state, as detailed in Appendix A.
A simulated ‘day’ is the unit of time and corresponds to one rotation of the planet based on
its angular velocity. In the atmosphere, the weather’s decorrelation time is approximately
two weeks. Our first partition thus gathers Markov states every 15 simulated days until 400
states have been accumulated. This choice corresponds to random samples of the attractor.

The classifier C, as before, corresponds to the index of the ‘closest’ Markov state. Our
notion of ‘close’ is based on the distance function

d(s1, s2) =
√∫

Ω

dx
∑

i

(αi)−2
(
s1

(x,i) − s2
(x,i)

)2
, (3.5)

which is a weighted L2 norm between the different fields of the system (so that we
add fields together in a dimensionless way). As a reminder: s(x,1) = �, s(x,2) = �u,
s(x,2) = �v , s(x,2) = �w , s(x,5) = �e. The αi are

α1 = 1.3 kg m−3, α2 = α3 = α4 = 60 m s−1,

α5 = 2.3 × 106 kg m−1 s−2.

}
(3.6)

The reference values are chosen as pointwise maximum densities, speed and total energy.
In total, the classifier is

C(s) = n if d(s, σ [n]) < d(s, σ [m]) for each m /= n, (3.7)

i.e. we calculate the distance of the current state s to all the Markov states σ [m], and pick
the integer corresponding to the Markov state with the smallest distance.

We evolve the system through an additional 200 simulated years, and apply the classifier
C every �t = 0.03 simulated days to the instantaneous state. This is a total of 2 000 000+
snapshots of time, but none are saved since this would have amounted to over 20 terabytes
of data. The classifier is applied ‘on the fly’, and only an integer sequence is recorded. The
first 30 simulated days of this process are shown in figure 2. We have ordered the indices
a posteriori so that the most probable cell is assigned index 1, and the least probable cell
is assigned index 400.

Given that we use a Bayesian method in estimating the generator entries, we need to
assign a prior distribution for the entries of the generator Q. We assume that the holding
time of every cell is �t, and that each cell is equally connected to all others, but assigning
very little weight to this initial guess. Specifically for our prior distribution on the generator
entries, we take the initial parameters for the gamma distribution Γ (α, β) to be α = 1
and β = �t, where �t is the sampling time interval for the time series. For each column
of the matrix, we take the initial parameters of the Dirichlet distribution D(α) to be
α = 10−41, where 1 is the vector of all 1s. The combination of the two prior distributions
is interpreted as follows. If a cell is not observed, then it is assumed that the holding
time is below the sampling threshold given by �t days. Furthermore, an unobserved cell
is assumed to be connected to every other state uniformly in its exit probabilities. We
take this precaution because it is unclear a priori if every cell is revisited over a finite
sampling period. That being said, 200 simulated years sufficed for revisiting every cell,
and results are sampled sufficiently so that the initial prior distribution has little effect on
the end posterior distribution. The present results are relatively unchanged upon using an
uninformative prior, i.e. α = 01 and α = β = 0; however, there is one cell that was not
revisited in the second half of the 200 simulated year period. Thus the Bayesian method
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Partitions of state space: the compressible Euler equations
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Figure 2. Held–Suarez partition dynamics. The dynamics are reduced to a sequence of integers. We order the
indices by the steady-state probability of being within a cell, so that index 1 corresponds to the most probable
cell, and index 400 to the least probable cell.

serves to regularize the matrix so that the 400-cell partition can be compared across the
first 100 simulated years gathering period and the latter 100 simulated years.

Displaying the mean and variance of a 400 × 400 random matrix is not particularly
illuminating. Thus we summarize four properties of the mean generator in figure 3: the real
part of the inverse eigenvalues, the steady-state probability values associated with a cell,
the connectivity of a given cell to every other cell, and the average holding time of a cell.
The inverse eigenvalues’ real part is associated with the slowest decaying autocorrelations
of the system as captured by the partition choice. We see that there is a clustering of
eigenvalues between 1/2 and 1 simulated day. Furthermore, we see an apparent spectral
gap between the first few eigenvalues (red) and the bulk (blue). This may imply the
existence of continuous and discrete spectra in the limit of ever-refined partitions; however,
it is unclear if there is a unique limit upon refining a coarse-grained state space or if the
data-driven method of Part 1 even converges to such a limit. See § A.3 for corresponding
oscillatory time scales.

The steady-state probability vector is not uniform (figure 3a), yet the amount of time
spent in each state (figure 3d) is roughly the same for each cell. The reason for non-uniform
probabilities is explained by looking at the connectivity of a given cell (figure 3c). The
connectivity is the empirical number of exits from or entrances to a given cell. The more
probable cells are more connected to the rest of state space than the rest. The connectivity
of a cell can be thought of as the effective dynamical predictability associated with a cell.
For example, sufficiently sampled cells of a periodic solution are connected to only one
other cell since the future is precisely predictable from the past.

A priori, there is no reason to expect any cell to differ from another cell, given that
Markov states were sampled uniformly in time; however, figure 3 suggests otherwise. The
most probable regions of state space act as central hubs, connecting the various regions of
state space together. These are perhaps associated with coherent structures such as fixed
points or periodic orbits with few unstable directions.
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Figure 3. Generator properties. (a) The inverse real part of the eigenvalues of the generator, corresponding
to the decorrelation time scales associated with the partition. (b) The steady-state cell probabilities associated
with a partition. (c) Summary of the connectivity of a cell to other cells based on the empirically observed
transitions. (d) The average holding time for a given cell.

We have discussed the topological characteristics of the partition choice as reflected
by the generator. Additional details on finite sampling effects and the holding time
distributions are explored in § A.3. We now move on to the calculation of statistical
quantities.

In figure 4, we examine the histogram of the observable

g(s) = ux · ϕ̂, (3.8)

where ϕ̂ is the unit vector along the zonal direction, and x is a point on the inner
shell (surface) at latitude θ = 35◦S and longitude ϕ = 135◦E. We show two overlapping
histograms. One histogram is calculated from the generator steady-state probabilities and
the Markov states, whereas the other comes from a time series. The time series of the
observable was accumulated over a 30-year time span disjoint from the data used to
construct the generator. The purple region is where the two histograms overlap, the red
region is where the Markov model overpredicts the probability, and the blue region is
where the Markov model underpredicts the probability. We show several bins, as before,
to capture the notion of ‘convergence in quantile’. When we have as many bins as Markov
states (400 bins in the present case), the delta function approximation begins to reveal
itself. The height of the delta functions is associated with the steady-state probability
distribution of the generator.

We now calculate the mean for a continuum of observables. We use the zonal average
of the zonal velocity field for each latitude and each height:

g(θ,r)(s) = 1
2π

∫ 2π

0
(u(θ,ϕ,r) · ϕ̂) dϕ. (3.9)

A fixed latitude θ and height r constitute one observable, and we expanded a position
x = θ θ̂ + ϕϕ̂ + rr̂ in terms of its components in a spherical basis. We calculate each
observable’s ensemble and temporal mean, and visualize the result as a heat map
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Figure 4. Steady state distribution of an observable. Here, we use the delta function approximation to the
probability densities within a cell and look at the inferred distributions based on different coarse-grainings
of the distribution. The overlap region is in purple; red bars correspond to ‘overpredicting’ probabilities, and
blue bars correspond to ‘underpredicting’ probabilities. The temporal and ensemble means are 5.3 and 5.7,
respectively. The temporal and ensemble standard deviations are 7.1 and 6.5, respectively.
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Figure 5. Mean value for a continuum of observables. The (a) ensemble average, and (b) temporal average,
zonal mean zonal winds display a mean for a continuum of observables. (c) The pointwise absolute difference
between the two means.

in figure 5. The ensemble mean uses the probability weights given in figure 3 and the
400 Markov states. The temporal mean is gathered over three simulated years. To make
a connection with how this field is usually visualized, see Held & Suarez (1994), we
rescale the height of the axis according to the zonal average of pressure at the equator. This
rescaling mimics the effect of using ‘pressure coordinates’ in the atmospheric literature.
The ensemble and temporal means differ by less than 2 m s−1 on the right-hand half of
the zonal wind ‘butterfly’ wing.

It is not necessary to use the methodology of Part 1 to compute steady-state statistics,
since 400 snapshots that are uniformly spaced in time would typically be averaged
according to a uniform weight between them to calculate a statistic of interest; however,
as we have seen from figure 3, the weighting between snapshots is far from uniform in the
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Figure 6. Held–Suarez Koopman eigenvectors. We show two numerical Koopman eigenvectors, in red and
blue. (a) The numerical Koopman eigenvector as a function of time. (b) The decorrelation time scales for the
numerical Koopman eigenvector computed by the generator (dashed) and the time series (solid). (c,d) The real
parts of the Koopman eigenvectors as a function of the state index and thus implicitly as a functional of the
state.

present case. Despite the highly non-uniform weighting, the statistics are well-captured.
We next proceed to a more stringent test: global Koopman modes and temporal
autocorrelations.

3.2. Sampling partition: global Koopman modes and temporal autocorrelations
The numerical Koopman eigenvectors are the left eigenvectors of the matrix Q, which we
denote by gλ, and their approximation as functionals acting on the state is given by

gλ(s) ≈ [gλ]C(s), (3.10)

where [gλ]n is the nth component of the eigenvector gλ, which has the property
gT
λQ = λgT

λ , where T denotes the transpose of the vector, and λ is a eigenvalue.
Hence we first apply the classifier to the state, and then use the integer label to pick out the
component of the eigenvector gλ.

At each moment in time, we plot the approximate Koopman eigenvector

gλ(s(t)) ≈ [gλ]C(s(t)), (3.11)

where the component of the vector g is given by C(s(t)). We show these dynamics for the
first 30 simulated days of the Held–Suarez set-up in figure 6. Furthermore, we compute
autocorrelations in two ways to check the fidelity of the numerical Koopman eigenvectors.
The first uses the generator, and the second uses the Koopman eigenvector time series.
This calculation is shown in figure 6.

We select two of the 400 modes to illustrate these points: modes 6 and 351 are associated
with the 7th and 352nd eigenvalues when ordering the real part part of the spectrum from
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Partitions of state space: the compressible Euler equations

least to most negative. Figure 6(b) shows that the two calculation methods agree for mode
351 (red) at all times, but only for the first 5 days for mode 6 (blue). We see that the
estimate for the eigenvalue of mode 6 is overly dissipative. This situation is typical for the
data-driven approximation of the generator. Given the near-exponential decay structure
using the time series, this suggests a perturbation to the eigenvalues of the generator that
could align the time series and ensemble calculation as was done in Giorgini, Souza &
Schmid (2023).

The peak at approximately 14 days may be synonymous with the usual decorrelation
time assumed for the atmosphere. The real component of the Koopman eigenvector as
a function of cell index are shown in figures 6(c,d). We see that mode 351 picks up on
unlikely cells of state space, whereas mode 6 is distributed amongst all states.

We also calculate Koopman modes associated with a particular eigenvalue. As an
example, we will take the observable of interest to be the surface temperature field

g[xs](s) = Txs, (3.12)

where xs is a surface position, and Txs is the temperature observable defined by

Tx ≡ γ − 1
Rd�x

(
�ex − 1

2
�x ‖ux‖2 − �xΦx

)
, (3.13)

where Rd = 287 is the ideal gas constant, γ = 1.4 is the specific heat ratio of air, and Φ

is the geopotential.
The Koopman modes are computed utilizing the right eigenvectors of Q, which we

denote by vλ, according to the formula

Gλ(xs) =
∑

n

g[xs](σ [n]) [vλ]n, (3.14)

where vλ is the eigenvector associated with eigenvalue λ, i.e. Qvλ = λvλ. The choice λ = 0
in (3.14) reproduces the ensemble mean. Furthermore, [vλ]n denotes the nth component of
the right eigenvector. We refer to Gλm as ‘Koopman mode m’ where the eigenvalues are
ordered λm for m = 0, . . . , 399. To further explain the connection to an ‘amplitude’, first
think of g[xs](σ [n]), at a fixed xs, as a 400-dimensional vector whose entries are given
by evaluating the observable g[xs] on each Markov state σ [n] for n = 1, . . . , 400. We now
expand this 400-dimensional vector with respect to the basis of left eigenvectors generator.
The ‘amplitudes’ Gλn are the coefficients in the expansion

g[xs](σ [n]) =
∑

m

Gλm(xs) [gλm
]n, (3.15)

where we re-emphasize that xs is thought of as a fixed value, and the formula holds for
each n. That is, we expand an observable as a linear combination of Koopman eigenvectors
and then pick out the amplitude. We do this for each xs individually, and then aggregate
results afterwards.

We show the real and imaginary components of Koopman modes associated with the
surface temperature field in figure 7. All mode amplitudes are linear combinations of
the temperature Markov states. Mode 0 is the ensemble mean, and the other modes are
associated with wavelike patterns. The general shapes and structures of the Koopman
modes are robust in terms of the number of cells and amount of data collected. For
example, the same structures emerge utilizing either the first 100 simulated years or the
latter 100 simulated years during the 200-simulated-years data collection period.
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Figure 7. Held–Suarez Koopman modes. We show four representative surface temperature fields constructed
from Markov states as well as their Koopman modes by projecting the fields onto the real and imaginary parts
of the associated Koopman eigenvector. The statistically steady state is associated with mode 0.

The Koopman modes are related to the emergent time scales and autocorrelations
captured from a given partition choice. We now switch to analysing autocorrelation for
observables unrelated to the cells. Specifically, the autocorrelations of four observables,

g[1](s) = �x, g[2](s) = ux · ϕ̂, g[3](s) = ux · θ̂ , g[4](s) = Tx, (3.16a–d)

are shown in figure 8 for the same position x as before. We show the empirically obtained
autocorrelation from the time series in black, and the generator in purple. Since most of the
eigenvalues of the generator are clustered (as seen from figure 3), we expect observables
uncorrelated with a partition choice to have similar decorrelation time scales. We see that
this is a poor approximation for observable g[3], but not so for the other variables.

In the next subsection, we choose a partition that targets an observable associated with
extreme events.

3.3. Extreme statistics partition
We now partition the turbulent attractor differently to target statistics of a particular
observable: temperature extremes at a particular point in the domain. Specifically, we
choose

g(s) =
{

1 if Tx > 290 K,

0 otherwise.
(3.17)

Here, x is a point on the inner shell of the sphere at latitude θ = 35◦S, longitude
ϕ = 135◦E. The choice of 290 K came from the 95 % quantile of temperature at that point
over a short simulation run.

We gather the Markov states by first partitioning an arbitrary state into two
classifications: g(s) = 1 and g(s) = 0. The former is representative of an ‘extreme state’,
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Figure 8. Autocovariance for several observables in the Held–Suarez atmospheric test. The autocovariances
for several observables based on the time series (black) and generator (purple) are shown. The observables are
uncorrelated with the partition; thus the autocorrelation predicted from the Markov model is similar for all four
cases.

and the latter of a ‘benign state’. We then gathered 10 representative extreme states and 90
representative benign states. Specifically, a simulation is run, and the states are checked
every two weeks. We apply the observable (i.e. classifier) g to determine whether or not the
state is extreme. The process continues until at least 10 extreme and 90 benign states are
gathered. We only keep 100 total states. Thus any extra states are discarded. The extreme
states are assigned indices 1–10, while the benign states are assigned indices 11–100.

The choice of partition is arbitrary, and many choices would yield similar insight. For
example, the steady-state probability of an extreme state would be, by construction, well
captured with even one state; however, one would not be able to assess statistics within the
extreme state. Using ten extreme states serves as a compromise on gathering information
about the system when such an event is occurring. An analogy between the present method
and local grid-refinement methods from numerical methods can be made. Here, we are
choosing to refine a particular subset of state space with respect to a criterion of interest.
If we refine too much of a given region (in this case, include more states in the extreme
states category), then we will not improve the overall representation of other statistics.
Furthermore, one runs into a data problem if statistics are too rare to gather enough
extreme states.

With these Markov states in place, the classifier is defined as

C(s) =
{

n1 if g(s) = 1 and d(s, σ [n1]) ≤ d(s, σ [m1]) for each m1,

n2 if g(s) = 0 and d(s, σ [n2]) ≤ d(s, σ [m2]) for each m2,
(3.18)

where m1, n1 are indices associated with extreme cells, i.e. m1, n1 ∈ {1, . . . , 10}, and
m2, n2 are indices associated with benign cells, i.e. m2, n2 ∈ {11, . . . , 100}. To elaborate,
we first classify the state according to the observable g, and then calculate the closest
Markov state within the respective category. Finally, we run the model for 100 simulated
years, and construct the Markov chain embedding.
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Figure 9. Network structure of extreme transitions. Eleven states are shown, where 1–10 correspond to extreme
states, and 11 corresponds to the other 90 states, lumped together as a single node for visualization purposes.
The blue lines correspond to transitions to a benign state, and the red lines are transitions to extreme states.
The opacity of the lines is proportional to the probability of transitioning between states. There exist transitions
between extreme states.

We first focus on the holding time distribution of being in a cell associated with an
extreme event. This distribution is taken as a proxy for the duration of a heatwave. Given
that we have ten possible states corresponding to an extreme event, we also account
for transitions between states within an extreme event duration. Heuristically, transitions
between different global states during an extreme event are rare since the duration is short
compared to the holding time of being in a state.

Nevertheless, they do occur in this simulation. Figure 9 summarizes the transition
pathways between cells associated with extreme states. In this figure, states 11–100 have
been lumped together as a single state, and the graph structure of the transition pathways
is shown. The transparency of the red lines corresponds to the probability of transitioning
between the different extreme state cells, and the blue lines correspond to the transition
probability of leaving an extreme state.

We see that an extreme state has many ‘microstates’ corresponding to the macrostate
(defined by the cell induced from g(s) = 1 in (3.17)), and there are non-zero transitions
between the microstates during a given macrostate configuration. This nuance partially
explains the complexity of an extreme event prediction: the atmospheric state changes
considerably during an extreme event, and more information may be required to make
predictive statements about the duration and intensity of a local extreme event.

The holding time distribution of an extreme state (as calculated by the Markov
embedding) accounts for transitions between the different states. Furthermore, we gather
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Figure 10. Held–Suarez holding time extreme. Several quantiles for the duration of extreme states, as
calculated from the time series, are shown in red. For simplicity, we show the exponential distribution holding
time as black dots, where the decorrelation time is approximately half a day as calculated by looking at the
holding time for a single extreme state cell.

statistics from the temperature observable at a disjoint set in time, and show its holding
time distribution in figure 10. The Markov state representation shows that the holding time
distribution is well-captured.

The presence of an extreme state can be viewed as an exit time problem from the point
of view of stochastic processes. An extreme event corresponds to a particular subset of
state space, characterized by ten cells. The average amount of time spent in an extreme
state must incorporate the transitions within the duration of an extreme event.

We also compare the temperature distribution at x as calculated by the 400-state
system, the 100-state system, and the time series in figure 11. In particular, the 100-state
system better captures the 95 % tail distribution. Thus selecting a partition that targets
an observable of interest is feasible and is of increased fidelity compared to the naive
generic partitioning. This procedure is equivalent to local grid refinement from numerical
methods.

As a final comment for this subsection, we note that the choice of partition does not need
to be binary. As one runs a simulation, the same Markov states can be used to compute
several different partitioning strategies simultaneously. If partitioning strategies make use
of independent observables, then it is natural to construct tensor product generators. We
did not pursue any of these strategies here.

3.4. Discussion: subtleties of high-dimensional discretizations
Due to the high dimensionality of the system, we reflect on subtleties encountered thus far
in our computations. It is intuitive to assume that if a particular observable is uncorrelated
with a partitioning strategy, then it is unlikely that the autocorrelations are well captured
by the generator. Furthermore, one would assume that only observables constant within a
partition will have faithful representations of their ensemble mean statistics.

However, we have seen that both intuitions are accurate only sometimes. In the
high-dimensional setting, we must distinguish between two classes of observables: those
highly correlated with a given partitioning strategy, and those not. We rely on Monte Carlo
sampling to compute ensemble statistics for uncorrelated observables with a partitioning
strategy. Effectively, an observable is a random vector with respect to the partitions.
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Figure 11. Held–Suarez observable comparison. We show the effect of grid refinement on an observable of
interest. (a–c) The refinement strategy better captures the tail probability quantile than the generic 400-cell
partition. (d–f ) The temperature distribution is shown as a point of comparison.

For example, suppose that the approximate generator yields a uniform distribution for
the steady-state distribution. In that case, it is expected that as long as the Markov states
are ‘independent’ of one another, one can do at least as well as Monte Carlo sampling. If
a partitioning strategy is well correlated with an observable of interest, then we expect to
do better than ‘random’ sampling of the Markov states.

For autocorrelations, a similar phenomenon occurs. An observable that is uncorrelated
with the partitions is a random vector concerning the partitions. Insofar as there are
many observables with similar autocorrelations, this strategy will do well to capture those
observables.

There are other issues when attempting to coarse-grain a high-dimensional space. The
first issue comes from the representation of high-dimensional operators. For example,
consider d copies of an Ornstein–Uhlenbeck process to yield a d-dimensional state
space. In this case, the eigenvalues and eigenvectors of the joint process can be
written analytically. Without exploiting the structure of the resulting generator (in this
case, the generator can be written as a Kronecker sum of d generators), the high
dimensionality of the system yields a similar ‘central hub’ structure that was observed
in the Held–Suarez system (in § 3.1), especially when using a distance metric and
taking one of the cells to be centred at the origin. The solution, in this case, is
to exploit the structure of the problem and consider each process separately. For a
concrete example, see Appendix A of Souza et al. (2023b), where a tensor product
decomposition of a Gaussian process was enacted. One hopes that for turbulence, there
exists a way to decompose the full generator as combinations of smaller generators. In
this way, one can express high-dimensional behaviour compactly. Similar considerations
apply to the Koopman operator/Perron–Frobenius operator (for these, one wants a
Kronecker-product-like structure).
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A second issue is related to the necessity of time history as in Lin et al. (2023), which is
based on the Mori–Zwanzig formalism or, similarly, the absence of a ‘semigroup’ property
of the data-driven generator/Perron–Frobenius operators. Normally, one gets around such
issues by augmenting state space to include past-time information, e.g. Takens embedding.
Another option is to instead construct a different operator for each time scale of interest.
The failure of the semigroup property implies that the data-driven construction of a
Perron–Frobenius operator at time scale τ , denoted by F [τ ], and a data-driven construction
of F [2τ ] does not satisfy the identity F [2τ ] = F [τ ]F [τ ]. Thus to reconstruct statistics, one
could instead compute several operators F [nτ ] for n ∈ {1, . . . , Nt}, and some final time
scale Ntτ . In this way, one can represent autocorrelations/autocovariances several times
for an observable interest. Thus at least two strategies exist: (1) augment state space with
past-time information, or (2) change the operator depending on the time scale of interest.
See Giorgini et al. (2023) for a compromise on the latter strategy where one uses an
alternative data-driven construction to the generator to retain the semigroup property. This
latter work yields a third option.

4. Conclusion

In summary, we have applied two partitions of state space and used them to compute
various statistical quantities of interest: steady-state statistics, global Koopman modes,
and temporal autocorrelations. The methodology was implemented in an ‘online’ manner
allowing for significant savings in memory. The first partitioning strategy defined a
distance function centred on random decorrelated snapshots from a turbulent simulation.
The second partitioning strategy targeted an observable of interest, temperature ‘extremes’
on the inner radius of the spherical shell (meant to represent heat waves at a fixed location).

The latter is more akin to what is done in statistical mechanics, where one defines a
‘macrostate’, but we also picked out a few ‘microstates’ corresponding to the macrostate.
In general, one can create partitions of the entire state space by partitioning according
to one (or several) observables, as is commonly done when performing dimensionality
reduction; however, we contend that we always want a representative state associated with
a partition to calculate ensemble mean statistics and correlations associated with the total
state space.

Taken together, we see that the most critical component in the statistical representation
of a system is the choice of partitioning strategy. Future directions necessitate the
development of novel partitioning strategies, e.g. partitioning according to modal
amplitudes given by dynamic mode decomposition, or using machine-learning methods
such as auto-encoders to reduce the dimensionality of state space. Consistency between
short-time computations and long-term statistics are likely to yield benefits. Typical
Koopman mode expansions are local (in state space) expansions, thus creating a patchwork
of local linearizations that could yield further improvement. Incorporating partial temporal
coherence in the Markov state partitioning also seems promising, e.g. in the Held–Suarez
case, choosing Markov states that are one day apart for a month, then skipping a few
months, and repeatedly gathering Markov states.

Since the method has been formulated as a numerical discretization, there are
straightforward generalizations to consider. For example, in addition to discretizing space
using a finite-volume method, one can discretize time using a discontinuous Galerkin
method. In this way, time trajectories are represented as piecewise-polynomial instead of
piecewise-constant. Furthermore, the probability flux to a different region of state space
would now (in discrete time) depend on the history.
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A more radical departure from the methods proposed here is to use generative models,
similar to Ho, Jain & Abbeel (2020), to represent distributions within a partition.
Partitions of state space may be more amenable to representation than the entirety of the
manifold. Furthermore, using nonlinear models for the generator to account for all the
different physical features to which one must assign ‘attention’ could yield a better overall
representation (e.g. Vaswani et al. 2017).

Computing Koopman modes and eigenvalues allows one to determine an effective
diffusivity operator; see the summary in Thiffeault (2023) and the derivation in
Souza et al. (2023b). In that work, it was shown that the spectrum of the
Koopman/Perron–Frobenius/Liouville/Fokker–Planck operators could be linked to a
rigorous definition of turbulent transport. This theoretical link allows for another
assessment of the fidelity of a partition.

The primary reason for undertaking the perspective in this paper was to gain a foothold
in understanding climate change from an operator-theoretic approach, similar to Froyland
et al. (2021). Climate change is often characterized as ‘statistics changing over time’
and thus requires a precise definition. We focused on a high-dimensional measure that
is invariant with respect to time. This trait is not valid for the climate system, whose
statistics are non-stationary. The predominant signal for a ‘stationary’ climate is not
stationary but rather time-periodic due to the diurnal and seasonal cycles. Thus the first
simplification is to consider a generator whose entries are periodic functions of time and
whose Markov states are also periodic functions of time; see Wang & Schütte (2015) for
similar considerations in molecular dynamics. Climate change is then characterized as
deviations from this time-periodic (high-dimensional) flow.
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Appendix A. Held–Suarez model

Isaac Held and Max Suarez introduced a simplified atmospheric model test in Held &
Suarez (1994). The test case purposely did not specify dissipation mechanisms, and was
meant to be flexible as to which prognostic variables or coordinate systems were employed
in its calculation. Its primary purpose was as a robust ‘physics test’ to be compared across
different numerical schemes and equations of motion. In § A.1, we specify the equations,
and in § A.2, the numerical discretization that was used. Finally, we conclude in § A.3
with a follow-up to some of the points made in § 3 about holding times, the convergence
of matrix entries, and eigenvalue sensitivities.

A.1. Partial differential equation set-up
The model is described in Souza et al. (2023a), but here we give a summary. We choose
to use an equation set that retains fully compressible dynamics and is formulated in terms
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Parameter Value Unit Description

X 80 — Scaling parameter
ztop 3 × 104 m Atmosphere height
rplanet 6.371 × 106/X m Planetary radius
Rd 287 m2 s−2 K−1 Gas constant for dry air
W 2π/86 400 × X s−1 Coriolis magnitude
p0 1 × 105 kg m−1 s−2 Reference sea-level pressure
Tmin 200 K Minimum equilibrium temperature
Tequator 315 K Equatorial equilibrium temperature
hb 0.7 — Dimensionless damping height
cv 717.5 J kg−1 K−1 Specific heat capacity of dry air at constant volume
cp 1004.5 J kg−1 K−1 Specific heat capacity of dry air at constant pressure
kf X /86 400 s−1 Damping scale for momentum
ka X /(40 × 86 400) s−1 Polar relaxation scale
ks X /(4 × 86 400) s−1 Equatorial relaxation scale
�Ty 60 K Latitudinal temperature difference
�θz 10 K Vertical temperature difference
G 6.67408 × 10−11 kg−1 m3 s−2 Gravitational constant
MP 5.9722/X 2 × 1024 kg Planetary mass

Table 1. Parameter values for the Held–Suarez test case. The value X = 1 corresponds to the standard test
case, and X = 80 is the version that we use here.

of density, total energy, and Cartesian momentum as the prognostic variables, yielding the
equations

∂tρ + ∇ · (ρu) = 0, (A1)

∂t(ρu) + ∇ · (u ⊗ ρu + pI) = −ρ ∇Φ − 2(W · r̂)r̂ × ρu − kv(I − r̂ ⊗ r̂)ρu, (A2)

∂t(ρe) + ∇ · (u( p + ρe)) = −kTρcv(T − Tequilibrium), (A3)

where Φ = 2GMP r−1
planet − GMP r−1 is the geopotential, W = W ẑ is the planetary

angular velocity, ẑ is the direction of the planetary axis of rotation, and r is the radial
direction in spherical coordinates. The Coriolis force is projected to the radial component
so that small-planet analogues (which we use for the simulation in § 3) have a climatology
similar to that of Earth. Furthermore, the variable Tequilibrium is the radiative equilibrium
temperature depending on latitude, ϕ, and pressure, h = p/p0,

Tequilibrium(ϕ, h) = max(Tmin, [Tequator − �Ty sin2(ϕ) − �θz ln(h) cos2(ϕ)]hRd/cp),

(A4)

and the parameters kv, kT are the inverse time scales for momentum damping and
temperature relaxation, respectively, with

kv = kf �h and kT = ka + (ks − ka)�h cos4(ϕ), (A5a,b)

and �h = max{0, (h − hb)/(1 − hb)}. The temperature and pressure are

T = 1
cvρ

(
ρe − 1

2
ρ ‖u‖2 − ρΦ

)
and p = ρRdT. (A6a,b)

The parameter values for the simulation set-up are in table 1.
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We use no-flux boundary conditions for density and total energy, free-slip boundary
conditions for the horizontal momenta, and no-penetration boundary conditions for the
vertical momentum. The initial condition is a fluid that starts from rest, ρu = 0, in an
isothermal atmosphere,

p(r) = p0 exp
(

−Φ(r) − Φ(rplanet)

RdTI

)
and ρ(r) = 1

RdTI
p(r), (A7a,b)

where we use TI = 285 K.

A.2. Numerical method
To approximate the equation of the previous section, we use the flux-differencing
discontinuous Galerkin method outlined in Souza et al. (2023a) and formulated precisely
in Waruszewski et al. (2022). We choose numerical fluxes that are kinetic and potential
energy preserving to help to ensure the flow’s nonlinear stability and Roe fluxes
for dissipation. In addition, the low-storage fourth-order 14-stage Runge–Kutta method
of Niegemann, Diehl & Busch (2012) is used for time stepping and induces a form of
numerical dissipation. All simulations were run on an Nvidia Titan V graphics processing
unit.

The domain is a piecewise-polynomial approximation to a thin spherical shell of radius
rplanet and height ztop. The thin spherical domain is partitioned into curved elements and
uses an isoparametric representation of the domain, and the cubed sphere mapping by
Ronchi, Iacono & Paolucci (1996). In essence, this choice represents the domain as a
piecewise-polynomial function where the order of the polynomial corresponds to the order
of the discretization (Winters et al. 2021). The metric terms are treated as in Kopriva
(2006) and satisfy the discrete property that the divergence of a constant vector field is
zero, i.e. the metric terms are free-stream preserving.

We use 4 elements in the vertical direction, 6 × 62 elements for the sphere’s surface (62

elements per cubed sphere panel), and order 6 polynomials within each element. Given
that we have 5 prognostic states (density, the three components of the Cartesian momenta,
and total energy), this leads to a total of 5 × 4 × (6 × 62) × 73 = 1 481 760 degrees of
freedom – the horizontal acoustic CFL limits time steps.

A.3. Partition properties and uncertainty quantification
In this subsection, we examine additional properties of the generator from § 3.1. We
examine the oscillatory time scales associated with the eigenvectors of the generator,
quantify the uncertainty with the Bayesian approach from Part 1, and examine the holding
times of three partitions.

We define the oscillatory time scale of an eigenvalue λ as 2π/|imag(λ)|, where ‘imag’
signifies the imaginary part. In figure 12, we show the oscillatory time scales associated
with the eigenvalues of the generator. These correspond directly with figure 3(a). In
general, the imaginary component of the eigenvalue λ is much smaller than the real
component, leading to longer oscillatory time scales. For example, the decorrelation time
scales are roughly of the order of 1 day, whereas the oscillatory time scales are of the order
of 100 days. The time scales come in pairs since the generator is a real matrix, thus any
complex eigenvalue must have an accompanying complex conjugate.

We show two figures for investigating convergence with data volume. In figure 13,
we show the generator’s inverse holding times (diagonal entries) for the first 16 most
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Figure 12. Held–Suarez generator oscillatory time scales. Here, we visualize the time scales associated with
oscillatory motion of generator eigenvalues. The ranges of oscillatory time scales range from approximately 38
days to 11 years.
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Figure 13. Held–Suarez generator rate entries. The uncertainty with respect to the inverse rates is shown for
various time intervals. In grey, red, gold and blue, we show the uncertainty corresponding to 1 year, 10 years,
100 years and another (separate) 100-year simulation. We see that there is a significant overlap in the two
100-year estimates.

probable states. We see that there appears to be convergence to the matrix entries over
disparate time intervals.

In figure 14, we show the real part of the inverse eigenvalue as distributions from random
samples of the generator matrix. This variable corresponds to the decorrelation time scale
as given by the partition. The Bayesian approach suggests that we cannot trust the slowest
decorrelation scale obtained from the numerical solution since it varies between 1.5 days
and 20 days. On the other hand, the other eigenvalues cannot be dismissed as meaningless
since the probability distributions overlap one another for data collected over disjoint
subsets of time. As a technical note, potentially, uncertainty propagation of the eigenvalues
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Figure 14. Held–Suarez generator decorrelation time scales. We propagate the uncertainty with respect to the
random generator to look at the inferred distribution of eigenvalues. We propagate uncertainty for three cases:
the entire 200 years, the first 100 years, and the second 100 years. Furthermore, we display the point estimate
of the 200-year generator as calculated from the mean of the random matrix. The slowest decorrelation time
scale is the most sensitive to perturbations, and the other eigenvalues are less so.
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Figure 15. Held–Suarez holding times: continuous-time Markov model versus time series empirical
distribution. The amount of time spent in a partition is approximately exponentially distributed.

can be accelerated by using the eigenvalue decomposition of the mean generator as a guess
for an iterative procedure.

We show the holding times for the first three most probable partitions in figure 15.
Quantiles are approximately exponentially distributed but become imperfect upon closer
inspection.
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