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Abstract

We observe that the technique of Markov contraction can be used to establish measure
concentration for a broad class of noncontracting chains. In particular, geometric
ergodicity provides a simple and versatile framework. This leads to a short, elementary
proof of a general concentration inequality for Markov and hidden Markov chains, which
supersedes some of the known results and easily extends to other processes such as Markov
trees. As applications, we provide a Dvoretzky–Kiefer–Wolfowitz-type inequality and a
uniform Chernoff bound. All of our bounds are dimension-free and hold for countably
infinite state spaces.
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1. Introduction

1.1. Background

The last two decades have seen a flurry of activity in concentration of measure for non-
independent processes. A recent survey may be found in [19], with pointers to more specialized
surveys therein. Rather than recapitulating these surveys here, we shall proceed directly to the
relevant recent developments. Let X1, X2, . . . be a sequence of N-valued random variables
obeying some joint law (distribution). Using the shorthand L(Xnj | Xi1 = x) to denote the law of
(Xj , . . . , Xn) conditioned on (X1, . . . , Xi) = x ∈ N

i , let us define, for n ∈ N, 1 ≤ i < j ≤ n,

y ∈ N
i−1 and w, w′ ∈ N,

ηij (y,w,w
′) = ‖L(Xnj | Xi1 = yw)− L(Xnj | Xi1 = yw′)‖TV,

(where ‖·‖TV = 1
2‖·‖1 is the total variation norm) and

η̄ij = sup
y∈Ni−1,w,w′∈N

ηij (y,w,w
′). (1.1)

The coefficients η̄ij , termed η-mixing coefficients in [21], play a central role in several recent
concentration results. Define � to be the upper-triangular n × n matrix, with �ii = 1 and
�ij = η̄ij for 1 ≤ i < j ≤ n.
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In 2007, [8] and [21] independently proved that for any f : N
n → R with ‖f ‖Lip ≤ 1

with respect to the Hamming metric meaning: if x, y ∈ N
n differ in only one coordinate then

|f (x)− f (y)| ≤ 1, see Section 2.7), we have

P(|f − Ef | > nε) ≤ 2 exp

(
− 2nε2

min{‖�‖2, ‖�‖∞}2

)
, (1.2)

where ‖�‖p is the �p operator norm ([8] achieved the better constant in the exponent, given
here). Earlier, Samson [33] had given a concentration result for convex �2-Lipschitz functions
f : [0, 1]n → R, which likewise involved the coefficients η̄ij , and these are also implicit in
Marton’s earlier work [27], [28], and [29].

In order to apply (1.2) in a Markov setting, we must upper-bound ‖�‖2 or ‖�‖∞ for the
Markov chain in question. The earliest such results relied on contraction. Let p(· | ·) be the
transition kernel associated with a given Markov chain, and define the (Döblin) contraction
coefficient

κ = sup
x,x′∈N

‖p(· | x)− p(· | x′)‖TV. (1.3)

It is shown in [21] and [33] that η̄ij ≤ κj−i and, therefore, ‖�‖∞ ≤ (1 − κ)−1; this implies
the concentration bound

P(|f − Ef | > nε) ≤ 2 exp(−2(1 − κ)2nε2)

for 1-Lipschitz functions f , which Marton [26] had essentially obtained earlier by other means.
The contraction method was pushed further to obtain concentration results for hidden Markov

chains [21], undirected Markov chains and Markov tree processes [19], but its applicability
requires the rather stringent condition that κ < 1. Marton [27] had already observed that
a significantly weaker mixing condition suffices, and yields tighter and more informative
bounds. Indeed, consider a Markov chain with stationary distribution π and conditional sth
step distribution L(Xs | X1 = x), and define the ‘inverse mixing time’. (This terminology is
nonstandard.)

τs = sup
x∈N

‖L(Xs | X1 = x)− π‖TV. (1.4)

A simple calculation (Lemma 2.3) shows that η̄ij ≤ 2τj−i , and, thus,

‖�‖∞ − 1 = max
1<i<n

n∑
j=i+1

η̄ij ≤ 2 max
1<i<n

n∑
j=i+1

τj−i .

A rich body of work deals with bounding τs via spectral [15], Poincaré [11], log-Sobolev [10],
and Lyapunov [22] methods, among others (and the references therein). From our perspective,
the geometric ergodicity condition allows for the simplest exposition while sacrificing the least
generality. A Markov chain is said to be geometrically ergodic with constants 1 ≤ G < ∞ and
0 ≤ θ < 1 if

τs ≤ Gθs−1, s = 1, 2, . . . .

Any finite ergodic Markov chain is geometrically ergodic, and the dependence ofG, θ on various
structural properties of the chain in question is the subject of a diverse and prolific literature
(including the references above). We also stress that the geometric ergodicity assumption is
largely dictated by expositional convenience, since any nontrivial bound on the inverse mixing
time τs will yield straightforward analogues of our results.
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In this paper we explore some consequences of geometric ergodicity as pertaining to concen-
tration and statistical inference for Markov and hidden Markov chains. We leverage two basic
insights: (i) even though hidden Markov chains are a considerably richer class of processes
than Markov chains (there exist HMMs not realizable by any finite-order Markov chain), for
the purposes of measure concentration, the underlying Markov chain is all that matters, and
(ii) geometric ergodicity, while significantly more general than contractivity, yields essentially
the same concentration bounds. Another advantage of our approach is its elementary nature:
taking the bound in (1.2) as a given, nothing beyond basic linear algebra is used.

Given the recent interest in prediction and parameter inference for HMMs [3], [17], [20], [31],
[34], [36], our results have the potential to be applicable beyond the abstract setting studied here.
Furthermore, since concentration results for Markov chains extend easily for other Markov-type
processes (such as trees [19]), our results here should extend to those as well.

1.2. Main results

Concentration. Our first result is a concentration inequality for hidden Markov chains, which
generalizes many of the previous bounds. Henceforth, we will write ‘(G, θ)-geometrically
ergodic’ as shorthand for ‘geometrically ergodic with constants 1 ≤ G < ∞ and 0 ≤ θ < 1’.
Hidden Markov chains and their associated notions of stationarity and geometric ergodicity are
formally defined in Section 2.1.

Theorem 1.1. Let Y1, Y2, . . . be an N-valued hidden Markov chain whose underlying N-valued
Markov chain is (G, θ)-geometrically ergodic. Then, for any n ∈ N and f : N

n → R with
‖f ‖Lip ≤ 1 under the Hamming metric (see Section 2.7), we have

P(f (Y n1 )− Ef (Y n1 ) > nε) ≤ exp

(
−n(1 − θ)2ε2

2G2

)
,

with an identical bound for the other tail.

Although the result in Theorem 1.1 does not appear to have been published anywhere, it is
a simple consequence of widely known facts (we give a proof in Section 2 for completeness).
Our main contribution lies in the apparently novel applications.

Dvoretzky–Kiefer–Wolfowitz-type inequality. Let us recall the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality [14], [30], stated here for the discrete case. Suppose X1, X2, . . . are inde-
pendent, identically distributed (i.i.d.) N-valued random variables with common distribution
function F , we define the empirical distribution function F̂n induced by (X1, . . . , Xn) as

F̂n(x) = 1

n

n∑
i=1

1{Xi≤x}, x ∈ N.

The DKW inequality states that

P

(
sup
x∈N

∣∣F̂n(x)− F(x)
∣∣> ε

)
≤ 2 exp(−2nε2), ε > 0, n ∈ N.

We present the following Markovian version of this inequality.

Theorem 1.2. Let Y1, Y2, . . . be a stationary N-valued (G, θ)-geometrically ergodic Markov
or hidden Markov chain with stationary distribution ρ ∈ R

N. For n ∈ N, define ρ̂(n) ∈ R
N to
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be the empirical estimate of ρ

ρ̂(n)y = 1

n

n∑
i=1

1{Yi=y}, y ∈ N. (1.5)

Then

P

(
||ρ − ρ̂(n)||∞ >

√
1 + 2Gθ

n(1 − θ)
+ ε

)
≤ exp

(
−n(1 − θ)2ε2

2G2

)
, n ∈ N, ε > 0.

As we show in Section 2.6, the assumption that the chain starts in the stationary distribution
is not at all restrictive. Note that a naive application of Theorem 1.1 to each ρ̂(n)y individually,
combined with the union bound, would yield

P(‖ρ − ρ̂(n)‖∞ > ε) ≤ 2‖ρ‖0 exp

(
−n(1 − θ)2ε2

2G2

)
, (1.6)

where ‖ρ‖0 is the number of nonzero entries in ρ. The bound in (1.6) is considerably weaker
than the one in Theorem 1.2 and in particular is vacuous for ρ with infinite support.

Uniform Chernoff bound. Let Y1, Y2, . . . be a stationary N-valued (G, θ)-geometrically
ergodic Markov or hidden Markov chain as above, and consider the occupation frequency

ρ̂(n)(E) = 1

n

n∑
i=1

1{Yi∈E}, E ⊆ N.

A naive application of Theorem 1.1 might yield a deviation bound along the lines of

P(|ρ(E)− ρ̂(n)(E)| > ε) ≤ 2|E| exp

(
−n(1 − θ)2ε2

2|E|2G2

)
,

where |E| is the cardinality of E and ρ is the stationary distribution as above. We will give a
much stronger bound, that is not only independent ofE but is actually uniform over allE ⊆ N.

Theorem 1.3. For stationary (G, θ)-geometrically ergodic (hidden) Markov chains, define

�n(ρ) = γn(G, θ)
∑

ρy≥1/n

√
ρy + min

{
γn(G, θ)

∑
ρy<1/n

√
ρy,

∑
ρy<1/n

ρy

}
, n ∈ N,

where

γn(G, θ) = 1

2

√
1 + 2Gθ

n(1 − θ)
.

Then

(a) for all distributions ρ ∈ R
N, limn→∞�n(ρ) = 0,

(b) P(supE⊆N |ρ(E)− ρ̂(n)(E)| > �n(ρ)+ ε) ≤ exp(−n(1 − θ)2ε2/2G2).

We remark that although �n(ρ) → 0 as n → ∞ for all stationary distributions ρ, the rate
of decay is ρ-dependent and may be arbitrarily slow for heavy-tailed distributions (compare [4,
Lemma 8]).
For ρ satisfying

∑
y∈N

√
ρy < ∞, the bound in Theorem 1.3 may be somewhat simplified via

�n(ρ) ≤ γn(G, θ)
∑
y∈N

√
ρy.

As with Theorem 1.2, the stationarity assumptionp1 = π is not very restrictive (see Section 2.6).
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1.3. Related work

In parallel to the work on concentration of measure results for Markov chains ([1], [2], [7],
[21], [26], [33]), grew a body of work on Chernoff-type bounds for these processes. The papers
[12], [13], [16], [18], [24] played a founding role, and various extensions and refinements
followed [23], [35]. In a remarkable recent development [9], optimal Chernoff–Hoeffding
bounds are obtained based on the mixing time at a constant threshold.

Concentration of Lipschitz functions of mixing sequences, with applications to the Kol-
mogorov–Smirnov statistic, were considered in [32]. Bobkov and Götze [5] examined the
concentration of empirical distributions for nonindependent sequences satisfying Poincaré or
log-Sobolev inequalities.

2. Methods and proofs

2.1. Preliminaries

For clarity, we will sometimes write the matrix entry Ax,y as A(x | y). We will use the
terms hidden Markov chain and HMM interchangeably.

Markov chains. We will represent Markov kernels by column-stochastic N × N matrices
denoted by the letterA. Thus, a Markov chain with transition kernelA and initial distributionp1
induces the following distribution on N

n

L(X1, . . . , Xn) = p1(X1)

n−1∏
i=1

A(Xi+1 | Xi). (2.1)

Hidden Markov chain. A hidden Markov chain (also known as hidden Markov model (HMM))
is specified by the triple (p1, A, B), where (p1, A) are the Markov chain parameters, as above,
and B is an N × N column-stochastic matrix of emission probabilities. This HMM induces
a distribution on N

n as follows. Let X ∈ N
n be distributed according to (2.1) and define the

conditional distribution L(· | X) over Y ∈ N
n as

L(Y | X) =
n∏
i=1

B(Yi | Xi).

It follows that
L(Y ) =

∑
x∈Nn

P(X = x)L(Y | X = x).

We will refer to Y as a hidden Markov chain and to X as its underlying Markov chain.

Stationary distributions and chains. The stationary distribution π ∈ R
N of the Markov chain

with transition kernel A is the unique stochastic vector satisfying Aπ = π . The Markov chain
induced by (p1, A) is said to be stationary if p1 = π . It is well known that, for ergodic Markov
chains

π = lim
n→∞ L(Xn) = lim

n→∞ Eπ̂ (n),

where

π̂ (n)x = 1

n

n∑
i=1

1{Xi=x}, x ∈ N.
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In the geometrically ergodic case, observing that Eπ̂ (n) = (1/n)
∑n
i=1 L(Xi), we have

‖Eπ̂ (n) − π‖TV =
∥∥∥∥1

n

n∑
i=1

(L(Xi)− π)

∥∥∥∥
TV

≤ 1

n

n∑
i=1

‖L(Xi)− π‖TV

= 1

n

n∑
i=1

∥∥∥∥∑
x∈N

L(Xi | X1 = x)p1(x)− π

∥∥∥∥
TV

≤ 1

n

n∑
i=1

∑
x∈N

p1(x)‖L(Xi | X1 = x)− π‖TV

≤ 1

n

n∑
i=1

∑
x∈N

p1(x)Gθ
i−1

= G

(1 − θ)n
.

For a hidden Markov chain, we define the stationary distribution ρ = Bπ , and observe that

ρ = lim
n→∞ L(Yn) = lim

n→∞ Eρ̂(n),

where ρ̂(n) is defined in (1.5). Since ρ̂(n) is distributed as Bπ̂(n), we have

‖Eρ̂(n) − ρ‖TV ≤ ‖Eπ̂ (n) − π‖TV ≤ G

(1 − θ)n
. (2.2)

The bound in (2.2) suggests that, at least to some degree, the statistical behavior of an HMM
is controlled by its underlying Markov chain. We expand upon this observation further in the
following lemma.

Lemma 2.1. Let X and X′ be two Markov chains induced by (ξ, A) and (ξ ′, A′), respectively.
For a given emission matrix B, let Y and Y ′ be the hidden Markov chains induced by (ξ, A,B)
and (ξ ′, A′, B). Then

‖L(Yi∈I )− L(Y ′
i∈I )‖TV ≤ ‖L(Xi∈I )− L(X′

i∈I )‖TV, I ⊆ {1, . . . , n}, n ∈ N.

Proof. The proof is immediate from Jensen’s inequality, since hidden Markov chains are
convex mixtures of Markov chains.

The proofs of Theorems 1.2 and 1.3 will require bounds on ‖ρ̂(n) − ρ‖, but unlike in (2.2),
the expectation is on the outside of the norm.

2.2. Markov contraction

Let us recast the contraction coefficient defined in (1.3) in the language of Markov kernels

κ = sup
x,x′∈N

‖A(· | x)− A(· | x′)‖TV.

The term ‘contraction’ is justified by the following simple fact [6], [21].
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1106 A. KONTOROVICH AND R. WEISS

Lemma 2.2. (Markov [25].) For any two stochastic vectors ξ, ψ ∈ R
N, we have

‖A(ξ − ψ)‖TV ≤ κ‖ξ − ψ‖TV.

Our principal application of this result will be in the context of geometrically ergodic Markov
kernels.

Corollary 2.1. Let A be a (G, θ)-geometrically ergodic Markov kernel. Then, for all n ∈ N,
the n-step kernel An has contraction coefficient κ ≤ 2Gθn.

Proof. Let π be the stationary distribution of A and ξ, ψ ∈ R
N two point masses. Then

‖Anξ − Anψ‖TV ≤ ‖Anξ − π‖TV + ‖Anψ − π‖TV ≤ 2τn+1 ≤ 2Gθn.

2.3. Proof of main inequality

In this section, we prove Theorem 1.1. The first order of business is to bound the η-mixing
coefficient by the inverse mixing time, and, hence, in terms of G and θ .

Lemma 2.3. Let Y be a (G, θ)-geometrically ergodic hidden Markov chain and let η̄ij and τs
be as defined in (1.1) and (1.4), respectively. Then

η̄ij ≤ 2τj−i+1 ≤ 2Gθj−i , n ∈ N, 1 ≤ i < j ≤ n.

Proof. LetX be the Markov chain underlying Y and endow η̄ij (X), η̄ij (Y )with the obvious
meaning. Then [21, Theorem 7.1] shows that

η̄ij (Y ) ≤ η̄ij (X).

Next, Remark 4 and the theorem preceding it in [19] show that

η̄ij (X) ≤ κ(Aj−i ),

where κ(Aj−i ) is the contraction coefficient of the (j − i)-step Markov kernel of X. Finally,
Corollary 2.1 yields

κ(Aj−i ) ≤ 2τj−i+1 ≤ 2Gθj−i .

Proof of Theorem 1.1. By (1.2), it suffices to upper bound

‖�‖∞ = 1 + max
1<i<n

n∑
j=i+1

η̄ij .

Applying Lemma 2.3, we obtain

max
1<i<n

n∑
j=i+1

η̄ij ≤ 2G max
1<i<n

n∑
j=i+1

θj−i ≤ 2G
∞∑
k=1

θk.

Since G ≥ 1 by assumption, we have

1 + 2G
∞∑
k=1

θk ≤ 2G
∞∑
k=0

θk ≤ 2G

1 − θ
.
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2.4. Proof of the DKW-type inequality

In this section we prove Theorem 1.2. Let Y1, Y2, . . . be a stationary (G, θ)-geometrically
ergodic hidden Markov chain with stationary distribution ρ, and define the {0, 1}-indicator
variables

ξ
(y)
i = 1{Yi=y}, i, y ∈ N. (2.3)

Then ρ̂, defined in (1.5), is given by ρ̂y = (1/n)
∑n
i=1 ξ

(y)
i , where we have dropped the

superscript (n) from ρ̂ for readability. Observing that the map (Y1, . . . , Yn) �→ n‖ρ − ρ̂‖∞ is
1-Lipschitz under the Hamming metric (Lemma 2.7), we apply Theorem 1.1 to obtain

P(‖ρ − ρ̂‖∞ > E‖ρ − ρ̂‖∞ + ε) ≤ exp

(
−n(1 − θ)2ε2

2G2

)
.

Hence, it remains to bound E‖ρ − ρ̂‖∞.

Lemma 2.4. It holds that

E‖ρ − ρ̂‖∞ ≤
√

1 + 2Gθ

n(1 − θ)
.

Remark. This estimate is nearly optimal: in the case where Yi are i.i.d. (i.e. θ = 0) Bernoulli
variables with parameter p, we have [4, Theorem 1]√

p(1 − p)

2n
≤ E‖ρ − ρ̂‖∞ ≤

√
p(1 − p)

n
, n ≥ 2, p ∈

(
1

n
, 1 − 1

n

)
.

Proof. Jensen’s inequality yields

(E‖ρ − ρ̂‖∞)2 ≤ E[‖ρ − ρ̂‖2∞]
≤ E

[∑
y∈N

|ρy − ρ̂y |2
]

=
∑
y∈N

E(ρy − ρ̂y)
2

=
∑
y∈N

var[ρ̂y]. (2.4)

Putting S(y)n = ∑n
i=1 ξ

(y)
i , we have

n2 var[ρ̂y] = E(S
(y)
n )2 − (ES

(y)
n )2 (2.5)

and
ES

(y)
n = nρy. (2.6)

To bound E(S
(y)
n )2, we compute

E(S
(y)
n )2 = E

[ ∑
1≤i,j≤n

ξ
(y)
i ξ

(y)
j

]

=
n∑
i=1

E(ξ
(y)
i )2 + 2

∑
1≤i<j≤n

E[ξ (y)i ξ
(y)
j ]

= nρy + 2
∑

1≤i<j≤n
E[ξ (y)i ξ

(y)
j ], (2.7)

https://doi.org/10.1239/jap/1421763330 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763330


1108 A. KONTOROVICH AND R. WEISS

where the last identity holds since ξ (y)i ∈ {0, 1}. It now remains to estimate E[ξ (y)i ξ
(y)
j ]. To

this end, we claim that

‖L(Yi | Y1 = y)− ρ‖∞ ≤ Gθi−1, i, y ∈ N.

Indeed, denoting the parameters of Y by (π,A,B) and letting X be the underlying Markov
chain, we have

‖L(Yi | Y1 = y1)− ρ‖∞ ≤ ‖L(Yi | Y1 = y1)− ρ‖TV

= 1

2

∑
yi∈N

|P(Yi = yi | Y1 = y1)− ρyi |

= 1

2

∑
yi∈N

∣∣∣∣∑
xi∈N

Byi,xi (P(Xi = xi | Y1 = y1)− πxi )

∣∣∣∣
≤ 1

2

∑
yi∈N

∑
xi∈N

Byi,xi |P(Xi = xi | Y1 = y1)− πxi |

= 1

2

∑
xi∈N

|P(Xi = xi | Y1 = y1)− πxi |

=
∥∥∥∥ ∑
x1∈N

L(Xi | X1 = x1)P(X1 = x1 | Y1 = y1)− π

∥∥∥∥
TV

≤ sup
x1∈N

‖L(Xi | X1 = x1)− π‖TV

≤ Gθi−1.

Hence,

E[ξ (y)i ξ
(y)
j ] = P(Yi = y, Yj = y)

= P(Y1 = y, Yj−i+1 = y)

= P(Y1 = y)P(Yj−i+1 = y | Y1 = y)

≤ ρy(ρy +Gθj−i ),

and, therefore,

(2.8)
∑

1≤i<j≤n
E[ξ (y)i ξ

(y)
j ] =

n−1∑
k=1

(n− k)P(Y1 = y)P(Yk+1 = y | Y1 = y)

≤
n−1∑
k=1

(n− k)ρy(ρy +Gθk)

= n(n− 1)

2
ρ2
y + Gθ

1 − θ

(
n− 1 − θn

1 − θ

)
ρy

≤ n(n− 1)

2
ρ2
y + n

Gθ

1 − θ
ρy. (2.9)
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Combining (2.5), (2.6), (2.7), and (2.9), we have

var[ρ̂y] ≤ 1

n2

(
nρy + n(n− 1)ρ2

y + 2n
Gθ

1 − θ
ρy − n2ρ2

y

)

= ρy

n

(
1 − ρy + 2Gθ

1 − θ

)

≤ ρy
1 + 2Gθ

n(1 − θ)
.

Since
∑
y∈N

ρy = 1, the claim follows from (2.4).

Remark. Note that in the process of proving a deviation estimate on ‖ρ − ρ̂‖∞, we have
actually proven a stronger one: namely, for the �2 norm.

2.5. Proof of the uniform Chernoff bound

In this section we prove Theorem 1.3. As before, Y1, Y2, . . . is a stationary (G, θ)-geometri-
cally ergodic hidden Markov chain with stationary distribution ρ. Since by Lemma 2.7 the map
(Y1, . . . , Yn) �→ n‖ρ − ρ̂‖TV is 1-Lipschitz under the Hamming metric, Theorem 1.1 applies

P(‖ρ − ρ̂‖TV > E‖ρ − ρ̂‖TV + ε) ≤ exp

(
−n(1 − θ)2ε2

2G2

)
. (2.10)

As before, the crux of the matter is to bound E‖ρ − ρ̂‖TV. Recall the definition of�n from the
statement of Theorem 1.3.

Lemma 2.5. It holds that
E‖ρ − ρ̂‖TV ≤ �n.

Remark. This bound is nearly optimal: when the Yi are i.i.d., we have [4, Proposition 3]

E‖ρ − ρ̂‖TV ≥ 1

4
�n − 1

8
√
n
, n ≥ 2, p ∈

(
1

n
, 1 − 1

n

)
.

Proof. We proceed by breaking up the expectation into two terms

E‖ρ − ρ̂‖TV = 1

2

∑
y : ρy<1/n

E|ρy − ρ̂y | + 1

2

∑
y : ρy≥1/n

E|ρy − ρ̂y |, (2.11)

and bounding each term separately. To bound the second term, we note, as in the proof of
Lemma 2.4, that

E|ρy − ρ̂y | ≤
√

var[ρ̂y] ≤
√
ρy

1 + 2Gθ

n(1 − θ)
, y ∈ N. (2.12)

To bound the first term, we recall the indicator variables ξ (y)i defined in (2.3) such that

nE|ρy − ρ̂y | = E

∣∣∣∣
n∑
i=1

ξ
(y)
i − nρy

∣∣∣∣ ≤ nE|ξ (y)i − ρy | = 2nρy(1 − ρy) ≤ 2nρy,

where stationarity was used in the last line of the derivation.
Combining the last display with (2.11) and (2.12) yields the claim.
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Proof of Theorem 1.3. (a) Since obviously∑
ρy<1/n

ρy → 0 as n → ∞,

it suffices to show that
1√
n

∑
ρy≥1/n

√
ρy → 0 asn → ∞. (2.13)

The latter was proved in [4, Lemma 7], but we will present a simpler proof here. This elegant
proof is due to Asaf Shachar. Andrew Barron points out that (2.13) may be easily derived from
Lebesgue’s dominated convergence theorem.

Assume without loss of generality that ρ1 ≥ ρ2 ≥ · · · , pick an arbitrary ε > 0, and let
N ∈ N be large enough so that

∑
j≥N ρj < ε.

Then
1√
n

∑
ρj≥1/n

√
ρj ≤ 1√

n

∑
j≤N

√
ρj + 1√

n

∑
j>N,ρj≥1/n

√
ρj

≤
√
N

n
+ 1√

n

√ ∑
ρj≥1/n

1
√∑
j>N

ρj

≤
√
N

n
+ √

ε,

since there can be at most n terms with ρj ≥ 1/n.

(b) The claim follows from (2.10) and the fact that for any two distributions φ,ψ ∈ R
N,

‖φ − ψ‖TV = sup
E⊆N

|φ(E)− ψ(E)|.

2.6. The stationarity assumption

To state the bounds in Theorems 1.2 and 1.3 more cleanly, we had assumed that the Markov
and hidden Markov chains in question are stationary, i.e. that the initial distribution p1 is
identical to the stationary one π . In this section we show (Corollary 2.2) that for strongly
mixing chains the stationarity assumption may be relaxed, at the cost of additional terms in the
deviation bounds.

Let Y = (Y1, . . . , Yn) be a (G, θ)-geometrically ergodic hidden Markov chain with param-
eters (π ′, A, B), where π ′ ∈ R

N is some stochastic vector. A simple dimension-free bound on
the statistical distance between Y and its stationary version is available.

Theorem 2.1. Let Y ′ = (Y ′
1, . . . , Y

′
n) be the stationary version of Y , i.e. a HMM with param-

eters (π,A,B), where π is the stationary distribution of the kernel A. Then

‖L(Y )− L(Y ′)‖TV ≤ ‖π − π ′‖TV.

First, we prove an analogous result for Markov chains.

Lemma 2.6. Let A be a Markov kernel and let ξ, ξ ′ ∈ R
N be two arbitrary stochastic vectors.

Let X = (X1, . . . , Xn) and X′ = (X′
1, . . . , X

′
n) be the Markov chains induced by (ξ, A) and

(ξ ′, A), respectively. Then

‖L(X)− L(X′)‖TV = ‖ξ − ξ ′‖TV.
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Proof. We have

‖L(X)− L(X′)‖TV = 1

2

∑
x∈Nn

|(ξx1 − ξ ′
x1
)Ax2,x1 · · ·Axn,xn−1 |

= 1

2

∑
x∈Nn

Ax2,x1 · · ·Axn,xn−1 |ξx1 − ξ ′
x1

|

= 1

2

∑
x1∈N

|ξx1 − ξ ′
x1

|

= ‖ξ − ξ ′‖TV.

Proof of Theorem 2.1. Lemma 2.1 lets us restrict our attention to the underlying Markov
chains X and X′, respectively

‖L(Y1≤i≤n)− L(Y ′
1≤i≤n)‖TV ≤ ‖L(X1≤i≤n)− L(X′

1≤i≤n)‖TV

= ‖L(X1)− L(X′
1)‖TV

= ‖π − π ′‖TV,

where the first identity follows from Lemma 2.6.

Corollary 2.2. Let Y1, Y2, . . . be a (not necessarily stationary) N-valued (G, θ)-geometrically
ergodic hidden Markov chain with stationary distribution ρ = Bπ and initial distribution
ρ′ = Bπ ′. Then the deviation bounds stated in Theorems 1.2 and 1.3 hold with an additive
correction of ‖π − π ′‖TV on the right-hand side.

2.7. Auxiliary lemma

The Hamming metric on N
n is defined by d(x, y) = ∑n

i=1 1{xi 
=yi } for x, y ∈ N
n.

Lemma 2.7. Suppose n ∈ N and p ∈ R
N is a distribution. Define the functions g, h : N

n → R

g(x) = sup
j∈N

∣∣∣∣npj −
n∑
i=1

1{xi=j}
∣∣∣∣, x ∈ N

n,

h(x) =
∑
j∈N

∣∣∣∣npj −
n∑
i=1

1{xi=j}
∣∣∣∣, x ∈ N

n.

Then ‖g‖Lip ≤ 1 and ‖h‖Lip ≤ 2 with respect to the Hamming metric

|g(x)− g(y)| ≤ d(x, y), |h(x)− h(y)| ≤ 2d(x, y) for all x, y ∈ N
n.

Proof. We only prove the claim for h (the proof for g is analogous). Let the function
n̂j : N

n → N count the number of times j appears in x; formally, n̂j (x) = ∑n
i=1 1{xi=j}. Now

suppose x, y ∈ N
n differ only in coordinate k, with xk = a and yk = b. Then

h(x)− h(y)

=
∑
j∈N

|npj − n̂j (x)| −
∑
j∈N

|npj − n̂j (y)|

= (|npa − n̂a(x)| + |npb − n̂b(x)|)− (|npa − n̂a(y)| + |npb − n̂b(y)|)
= (|npa − n̂a(x)| + |npb − n̂b(x)|)− (|npa − (n̂a(x)− 1)| + |npb − (n̂b(x)+ 1)|)
≤ ||npa − n̂a(x)| − |npa − (n̂a(x)− 1)|| + ||npb − n̂b(x)| − |npb − (n̂b(x)+ 1)||
≤ 2.
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