MAXIMAL DETERMINANTS IN COMBINATORIAL INVESTIGATIONS

H. J. RYSER

1. Introduction. Let Q be a matrix of order v, all of whose entries are 0 's and 1 's. Let the total number of 1 's in Q be t, and let the absolute value of the determinant of Q be denoted by $|\operatorname{det} Q|$. In this paper we study the problem of determining the maximum of $|\operatorname{det} Q|$ for fixed t and v. It turns out that this problem is closely related to the v, k, λ problem, which has been extensively studied of late.

A v, k, λ configuration is defined as an arrangement of v elements x_{1}, x_{2}, \ldots, x_{v} into v sets $S_{1}, S_{2}, \ldots, S_{v}$ such that each set contains exactly k distinct elements and such that each pair of sets has exactly λ elements in common $(0<\lambda<k<v)$. If element x_{j} belongs to set S_{i}, let $a_{i j}=1$; and if x_{j} does not belong to S_{i}, let $a_{i j}=0$. The v by v matrix $A=\left[a_{i j}\right]$ is called the incidence matrix of the v, k, λ configuration. These matrices have been very useful in establishing the nonexistence of certain configurations (1;2). A general survey of the literature pertaining to v, k, λ configurations may be found in (4). In particular one proves that in a v, k, λ configuration,

$$
k-\lambda=k^{2}-\lambda v
$$

and

$$
A A^{\mathrm{T}}=A^{\mathrm{T}} A=B
$$

Here A^{T} denotes the transpose of the incidence matrix A, and the matrix B has k in the main diagonal and λ in all other positions. It is easy to see that $\operatorname{det} B=k^{2}(k-\lambda)^{v-1}$, whence it follows that

$$
|\operatorname{det} A|=k(k-\lambda)^{\frac{1}{2}(n-1)} .
$$

2. Theorems on maximal determinants.

Theorem 1. Let Q be a 0,1 matrix of order v, containing exactly t 1's. Let k denote a positive real, and set $\lambda=k(k-1) /(v-1)$. If $t \leqslant k v$ and $0<\lambda$ $\leqslant k-\lambda$, or if $t \geqslant k v$ and $0<k-\lambda \leqslant \lambda$, then

$$
|\operatorname{det} Q| \leqslant k(k-\lambda)^{\frac{1}{2}(0-1)} .
$$

Let E be a 0,1 matrix. Let $E(x, y)$ denote the matrix formed from E by replacing each 1 of E by x and each 0 of E by y, where x and y are indeterminates. Using this notation, we may write

$$
Q_{1}=Q(-(k-\lambda) / \lambda, 1) .
$$

Received May 31, 1955.

Now set $p=(k-\lambda) / \lambda$, and define the matrix \bar{Q} of order $v+1$ by

$$
\bar{Q}=\left[\begin{array}{ll}
p^{\mathrm{T}} & z \tag{1}\\
z^{\mathrm{r}} & Q_{1}
\end{array}\right]
$$

where $z=(\sqrt{ } p, \ldots, \sqrt{ } p)$. By the Hadamard determinant theorem,

$$
\begin{equation*}
|\operatorname{det} \bar{Q}| \leqslant \sqrt{p^{2}+v p} \prod_{i=1}^{0} \sqrt{p+s_{i}}, \tag{2}
\end{equation*}
$$

where s_{i} denotes the sum of the squares of the i th row of Q_{1}. Now

$$
p^{2}+v p=p\left(\frac{k-\lambda+\lambda v}{\lambda}\right)=\frac{k^{2}}{\lambda^{2}}(k-\lambda) .
$$

Moreover,

$$
s_{1}+\ldots+s_{v}=t p^{2}+\left(v^{2}-t\right)=t\left(p^{2}-1\right)+v^{2} .
$$

By hypothesis, $t \leqslant k v$ and $p^{2} \geqslant 1$, or $t \geqslant k v$ and $p^{2} \leqslant 1$. Hence we may conclude

$$
s_{1}+\ldots+s_{v} \leqslant k v\left(p^{2}-1\right)+v^{2}
$$

Now introduce quantities \bar{s}_{i} such that

$$
\bar{s}_{i} \geqslant s_{i}
$$

and

$$
\begin{equation*}
\bar{s}_{1}+\ldots+\bar{s}_{v}=v\left(k p^{2}+v-k\right) . \tag{3}
\end{equation*}
$$

By (3),

$$
\begin{aligned}
\sum_{i=1}^{v}\left(p+\bar{s}_{i}\right) & =v\left(k p^{2}+v-k+p\right)=v\left[k p^{2}+(\lambda v-\lambda k+k-\lambda) / \lambda\right] \\
& =v k p(p+1)=v(k-\lambda) k^{2} / \lambda^{2}
\end{aligned}
$$

Since the geometric mean of v positive quantities is less than or equal to their arithmetic mean, we may write

$$
\begin{equation*}
\prod_{i=1}^{0}\left(p+\bar{s}_{i}\right) \leqslant\left(\frac{1}{v} \sum_{i=1}^{v}\left(p+\bar{s}_{i}\right)\right)^{v} \tag{4}
\end{equation*}
$$

whence

$$
\begin{equation*}
\prod_{i=1}^{v}\left(p+\bar{s}_{i}\right) \leqslant(k-\lambda)^{v} k^{2 v} / \lambda^{2 \theta} . \tag{5}
\end{equation*}
$$

Hence by (2),
(6) $\quad|\operatorname{det} \bar{Q}| \leqslant \frac{k}{\lambda} \sqrt{k-\lambda} \prod_{i=1}^{v} \sqrt{p+\bar{s}_{i}}$

$$
\leqslant \frac{k}{\lambda} \sqrt{k-\lambda}\left(\frac{k}{\lambda} \sqrt{k-\lambda}\right)^{\theta}=\left(\frac{k}{\lambda} \sqrt{k-\lambda}\right)^{p+1} .
$$

To evaluate $\operatorname{det} \bar{Q}$, multiply row one by $-1 / \sqrt{ } p$ and add the resulting row to each of the other rows. From (6) it follows that

$$
\begin{equation*}
|\operatorname{det} \bar{Q}|=p|\operatorname{det} Q(-k / \lambda, 0)| \leqslant(k \sqrt{k-\lambda} / \lambda)^{0+1} \tag{7}
\end{equation*}
$$

But

$$
\begin{array}{r}
|\operatorname{det} Q(-k / \lambda, 0)|=(k / \lambda)^{v}|\operatorname{det} Q| \text {, whence } \\
p|\operatorname{det} Q| \leqslant \frac{k}{\lambda}(\sqrt{k-\lambda})^{0+1},
\end{array}
$$

and

$$
|\operatorname{det} Q| \leqslant k(\sqrt{k-\lambda})^{n-1}
$$

Using the notation of Theorem 1 , we have
Theorem 2. If $|\operatorname{det} Q|=k(k-\lambda)^{\frac{1}{2}(0-1)}$, then Q is the incidence matrix of a v, k, λ configuration.

If equality holds in Theorem 1, then

$$
p\left|\operatorname{det} Q\left(-\frac{k}{\lambda}, 0\right)\right|=\left(\frac{k \sqrt{k-\lambda}}{\lambda}\right)^{0+1}
$$

and by (7),

$$
\begin{equation*}
|\operatorname{det} \bar{Q}|=(k \sqrt{k-\lambda} / \lambda)^{0+1} \tag{8}
\end{equation*}
$$

Equality in (6) implies equality in (5) and (4). But for equality to hold in (4), we must have

$$
p+\bar{s}_{i}=(k-\lambda) k^{2} / \lambda^{2} .
$$

But then the equality in (6) implies

$$
\begin{equation*}
\bar{Q} \bar{Q}^{\mathbf{T}}=\frac{k^{2}(k-\lambda)}{\lambda^{2}} I \tag{9}
\end{equation*}
$$

where I is the identity matrix of order $v+1$. Thus

$$
\begin{equation*}
Q_{1} Q_{1}^{\mathrm{T}}=\frac{k^{2}}{\lambda^{2}}(k-\lambda) I-p S \tag{10}
\end{equation*}
$$

where $Q_{1}=Q(-p, 1)$, and S is the v by v matrix of all 1 's. Let e denote the number of 1 's in row r of Q. Then

$$
p^{2} e+(v-e) \cdot 1=\frac{k^{2}}{\lambda^{2}}(k-\lambda)-p,
$$

and

$$
\left(p^{2}-1\right) e=\frac{k^{2}}{\lambda^{2}}(k-\lambda)-p-v,
$$

whence we conclude that $e=k$. Let f denote the inner product of rows r and s of Q, where $r \neq s$. Then

$$
f p^{2}-2(k-f) p+v-2 k+f=-p,
$$

whence

$$
f\left(p^{2}+2 p+1\right)=2 k p-p+2 k-v
$$

and $f k^{2} / \lambda^{2}=k^{2} / \lambda$. Thus $f=\lambda$, and Q is the incidence matrix of a v, k, λ configuration.

It is now clear that we have established the following:
Theorem 3. Let Q be a 0,1 matrix of order v, containing exactly t 1's. Let $k=t / v$ and set $\lambda=k(k-1) /(v-1)$, with $0<\lambda<k<v$. Then

$$
|\operatorname{det} Q| \leqslant k(k-\lambda)^{\frac{1}{2}(0-1)},
$$

and equality holds if and only if Q is the incidence matrix of $a v, k, \lambda$ configuration.
Consider once again Theorem 1. Note that $(k-\lambda) / \lambda=(v-k) /(k-1)$. Thus the requirement $\lambda \leqslant k-\lambda$ means $k \leqslant \frac{1}{2}(v+1)$, and $k-\lambda \leqslant \lambda$ means $k \geqslant \frac{1}{2}(v+1)$. Suppose that $k=\frac{1}{2}(v+1)$. Then if Q is a 0,1 matrix with no restriction on the number of 1 's, we must have

$$
\begin{equation*}
|\operatorname{det} Q| \leqslant \frac{(v+1)^{\frac{1}{2}(v+1)}}{2^{v}} . \tag{11}
\end{equation*}
$$

The incidence matrix associated with the case of equality has parameters $v=4 \lambda-1, k=2 \lambda, \lambda=\lambda$. These incidence matrices give rise to the Hadamard matrices of order 4λ (3). The determination of the maximum of $|\operatorname{det} Q|$, where Q is of arbitrary order v, is an unsolved problem of considerable difficulty (5).

If we place no restriction on the number of 1 's in the 0,1 matrix Q of order v and assume that $|\operatorname{det} Q|=k(k-\lambda)^{\frac{1}{2}(0-1)}$, then we may not conclude in general that Q is the incidence matrix of a v, k, λ configuration. For example, let A be an incidence matrix of a v, k, λ configuration with $v-2 k>0$. Define its complement C by $A+C=S$, where S is the matrix of all 1's. The complement of A is again a v, k, λ configuration with parameters $\bar{v}=v, \bar{k}=v-k$, and $\bar{\lambda}=v-2 k+\lambda$. Note that

$$
|\operatorname{det} C|=(v-k)(k-\lambda)^{\frac{1}{2}(v-1)} .
$$

It is easy to check that

$$
A^{-1}=\frac{1}{(k-\lambda)}\left(A^{\mathrm{T}}-\frac{\lambda}{k} S\right),
$$

where A^{-1} denotes the inverse of A. Thus in $A=\left[a_{r s}\right]$, if $a_{r s}=1$, then the cofactor of $a_{r s}$,

$$
A_{r s}=\frac{1}{k} \operatorname{det} A
$$

Similarly for the complement $C=\left[c_{r s}\right]$, if $c_{r s}=1$, then the cofactor of $c_{r s}$,

$$
C_{r s}=\frac{1}{v-k} \operatorname{det} C .
$$

We are assuming that $v-2 k>0$. Thus we may replace $v-2 k$ of the 1 's in the first row of C by 0 's. The resulting matrix Q is a 0,1 matrix satisfying

$$
|\operatorname{det} Q|=k(k-\lambda)^{\frac{1}{2}(p-1)},
$$

but Q is not an incidence matrix of a v, k, λ configuration.

References

1. R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Can. J. Math., 1 (1949), 88-93.
2. S. Chowla and H. J. Ryser, Combinatorial problems, Can. J. Math., 2 (1950), 93-99.
3. R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys., 12 (1933), 311-320.
4. H. J. Ryser, Geometries and incidence matrices, Slaught Memorial Papers (Suppl. Amer. Math. Monthly), 62 (1955), 25-31.
5. John Williamson, Determinants whose elements are 0 and 1, Amer. Math. Monthly, 53 (1946), 427-434.

Ohio State University

