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Helicobacter pylori is a Gram-negative bacterium that persistently colonizes the stomachs of >50% of 
the human population, with a prevalence as high as 90% in developing nations [1, 2]. H. pylori infection 
causes gastritis and can lead to the development of peptic ulcer disease and gastric cancer in a subset of 
infected individuals [3, 4]. Gastric cancer is the third leading cause of cancer-related deaths worldwide 
and the World Health Organization has classified H. pylori as a type 1 carcinogen [5].  
 
An important H. pylori virulence factor implicated in these diseases is the pore-forming toxin 
vacuolating cytotoxin A (VacA) [6, 7]. VacA is named for its ability to induce vacuolation in cultured 
eukaryotic cells [8, 9]. VacA has been reported to cause multiple cellular effects in addition to 
cellular vacuolation, including membrane permeabilization, mitochondrial dysfunction, cell death, 
autophagy, T cell inhibition, and other immunomodulatory effects [10].  
 
VacA is secreted from H. pylori as an 88 kDa monomer (p88), which shares very little sequence 
similarity to any characterized proteins from other bacterial species. p88 binds to the surface of gastric 
epithelial cells, oligomerizes, and forms anion-selective membrane channels [10]. p88 is comprised of 
two domains, an N-terminal p33 domain and a C-terminal p55 domain [11]. The p33 domain 
contains a hydrophobic region required for formation of the channel and regions within both the 
p33 and p55 domains mediate VacA oligomerization and binding to host cells [10]. Although most 
of the cellular effects of VacA are dependent on oligomerization, the underlying mechanism for 
how VacA oligomerizes is not understood. 
 
To investigate the structural basis of VacA oligomerization, we analyzed VacA oligomers and VacA 
p88 monomers by single particle cryo-electron microscopy (cryo-EM) (Figure 1). Examining the 
oligomer particles by 2D classification with RELION revealed VacA oligomerizes into hexamers, 
heptamers, dodecamers, and tetradecamers [12]. We generated 3D reconstructions using RELION 
and cisTEM of VacA as a hexamer, heptamer, and dodecamer [12, 13]. Our highest resolution 
structure was of a VacA hexamer. Additionally, we generated a 3D reconstruction of a VacA p88 
monomer using cryoSPARC [14]. Comparison of these structures enabled us to identify regions 
within the VacA p33 and p55 domains involved in oligomerization.  
 
This study provides important insights into how VacA oligomerizes. Since the molecular 
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mechanisms by which VacA elicits its variety of cellular responses are not fully elucidated, these 
structural studies will be used as springboard to understand VacA function within the context of 
cells [15]. 
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Figure 1.  Cryo-EM analysis of VacA s1m1 oligomers. (A) Representative cryo-EM micrograph of 
VacA oligomer particles in vitreous ice. Some particles are highlighted with white circles. Scale bar = 
20 nm.  
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