THE AUTOMORPHISMS OF THE GROUP OF ROTATIONS AND ITS PROJECTIVE GROUP CORRESPONDING TO QUADRATIC FORMS OF ANY INDEX

MARÍA J. WONENBURGER¹

Let M be a vector space of dimension n over a field K of characteristic $\neq 2$ and f a non-degenerate quadratic form on M. The automorphisms of the orthogonal group $O_n(K,f)$, the rotation group $O_n^+(K,f)$, and their corresponding projective groups $PO_n(K,f)$, $PO_n^+(K,f)$, were determined by J. Dieudonné for n sufficiently large under the condition that the index of f is greater than zero (see 2). It was shown by Rickart in (4) that for the group $O_n(K, f)$ the Dieudonné result still holds without this condition and J. Walter showed in (5) that the condition is also superfluous for the group $PO_n(K, f)$. In the present note, under the assumption that K has more than 5 elements, we give a characterization of the involutions of $O_n^+(K,f)$ of type (2, n-2)or (n-2,2) without any restriction on the index of f which also works for the group $PO^+(K, f)$. This characterization simplifies the first part of the Dieudonné proofs of Theorems 16 and 18 of (2) and although it leaves out the case when K has only 3 or 5 elements, it makes it possible to extend his results to the case of a quadratic form of index 0 (see 3, Chapter IV, §§ 5, 7). Hence the theorems mentioned above can be stated as follows.

THEOREM 1. Every automorphism ϕ of the group of rotations $O_n^+(K, f)$, where K is a field of characteristic $\neq 2$ and $n \geqslant 5$, may be written in the form

$$\phi(S) = \chi(S) TST^{-1}$$

where $\chi(S)$ is a representation of $O^+(K, f)$ in the multiplicative group $\{1, -1\}$ and T is a semi-similar of f.

Theorem 2. Every automorphism of the projective group of rotations $PO^+(K, f)$, where K is a field of characteristic $\neq 2$ and $n \geqslant 5$, $n \neq 8$, is induced by an automorphism of $O^+(K, f)$.

The proof of the lemma given below rests on the two following facts:

1. In a vector space of dimension 2 the group of rotations is commutative (see 1, p. 121). Moreover, if K has more than 5 elements the commutator group $\Omega_2(K, f)$ of the orthogonal group contains elements which are not involutions. (If x_1 , x_2 is an orthogonal basis of M with respect to f there exists an $\alpha \in K$, $\alpha \neq 0$, such that $x_1 + \alpha x_2$ and $x_1 - \alpha x_2$ are non-isotropic

Received April 5, 1962.

¹Postdoctorate Fellow (of the National Research Council of Canada) at Queen's University.

vectors and not orthogonal to each other. The product of the symmetries defined by $x_1 + \alpha x_2$ and $x_1 - \alpha x_2$ is an element of $\Omega_2(K, f)$ which is not an involution.)

2. If $n \ge 3$ the centre of the commutator group $\Omega_n(K, f)$ consists of either the identity transformation I or of I and -I. The same is true of the centralizer of $\Omega_n(K, f)$ in $O_n^+(K, f)$ (see 1, Theorem 3.23).

LEMMA. Let M be a vector space over a field K of characteristic $\neq 2$ which contains more than 5 elements. Let f be a non-degenerate quadratic form on M, U an involution of $O_n^+(K,f)$ and $(C_{O^+}(U))'$ the commutator of the centralizer of U in $O_n^+(K,f)$. Then the centre of $(C_{O^+}(U))'$ contains elements which are not involutions if and only if one of the subspaces of the involution U has dimension 2.

Proof. Let M^+ and M^- be the plus and minus spaces of U and n-2p and 2p their respective dimensions. Let f^+ and f^- be the restrictions of f to these subspaces. Then the centralizer of U in $O_n^+(K,f)$ can be described as the subgroup of $O_{n-2p}(K,f^+) \times O_{2p}(K,f^-)$ consisting of the pairs $S_1 \times S_2$, where S_1 and S_2 are both rotations or neither is a rotation. Hence

$$(C_{o^+}(U))' = \Omega_{n-2p}(K, f^+) \times \Omega_{2p}(K, f^-)$$

and its centre contains elements which are not involutions if and only if 2p = 2 or n - 2p = 2.

The same characterization can be given for the cosets in $PO_n^+(K,f)$ of the (2, n-2) or (n-2, 2) involutions among the cosets of the involutions of $O^+(K,f)$. The only modification in the proof comes from the fact that, when 2p=n-2p, there might exist elements of $O_n^+(K,f)$ which anticommute with U; therefore, the centralizer of the coset of U might be larger than the group of cosets determined by the subgroup of $O_{n-2p}(K,f^+) \times O_{2p}(K,f^-)$ defined above. At any rate the commutator of the centralizer of the coset of U consists of the cosets of $PO_n^+(K,f)$ defined by the elements of a group G, such that

$$O_{n-2p}^+(K,f^+) \times O_{2p}^+(K,f^-) \supseteq G \supseteq \Omega_{n-2p}(K,f^+) \times \Omega_{2p}(K,f^-)$$

and the result is still true.

REFERENCES

- 1. E. Artin, Geometric algebra (New York, 1957).
- 2. J. Dieudonné, On the automorphisms of the classical groups, Mem. Amer. Math. Soc., No. 2 (1951).
- 3. La géométrie des groupes classiques (Berlin, 1955).
- 4. C. E. Rickart, Isomorphic groups of linear transformations I and II, Amer. J. Math., 72 (1950), 451-464, and 73 (1951), 697-716.
- J. H. Walter, Isomorphisms between projective unitary groups, Amer. J. Math., 77 (1955), 805-844.

Queen's University