tions of surgical wound infections. Am J Infect Control 1992;20:271-274.

- Colbeck JC, Robertson HR, Sutherland WH, Hartley FC. The importance of endogenous staphylococcal infections in surgical patients. *Canad Serv Med J* 1959;15:326-331.
- Weinstein HJ. The relation between nasal-staphylococcal-carrier state and the incidence of postoperative complications. N Engl J Med 1959;260:1303-1308.
- Williams REO, Patricia-Jevons M, Shooter RA, et al. Nasal staphylococci and sepsis in hospital patients. *BMJ* 1959;2:658-662.
- Kluytmans JAJW, van Belkum A, Verburgh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10:505-520.
- Calia FM, Wolinsky E, Mortimer EA, Abram JS, Rammelkamp CH. Importance of the carrier state as a source of *S aureus* in wound sepsis. *J Hyg Camb* 1969;67:49-57.
- White A. Increased infection rates in heavy nasal carriers of coagulasepositive staphylococci. Antimicrob Agents Chemother 1963;30:667-670.
- Bruun JN. Postoperative wound infection. Predisposing factors and the effect of a reduction in the dissemination of staphylococci. Acta Med Scand 1970;514 (suppl):1-89.
- Kluytmans JAJW, Mouton JW, Ijzerman EPF, Vandenbroucke-Grauls CMJE, Maat AWPM, Wagenvoort JHT, et al. Nasal carriage of *S aureus* as a major risk factor for wound infections after cardiac surgery. *J Infect* Dis 1995;171:216-219.
- 24. Kluytmans J, Van Belkum A, Verbrugh H. Nasal carriage of

Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10:505-520.

- Condon RE, Schulte WJ, Malangoni MA, Anderson-Teschendorf MJ. Effectiveness of a surgical wound surveillance program. Arch Surg 1983;118:303-307.
- Olson M, O'Conner M, Schwartz ML. Surgical wound infections. A 5year prospective study of 20,193 wounds at the Minneapolis VA medical center. *Ann Surg* 1984;199:253-259.
- Mead PB, Pories SE, Hall P, Vacek PM, Davies JH Jr, Gamelli RL. Decreasing the incidence of surgical wound infections. Validation of a surveillance notification program. Arch Surg 1986;121:458-461.
- Britt MR, Schleuper CJ, Matsumiya S. Severity of underlying disease as a predictor of nosocomial infection: utility in the control of nosocomial infection. JAMA 1978;239:1047-1051.
- Hooton TM, Haley RW, Culver DH, White JW, Morgan WM, Carroll RJ. The joint association of multiple risk factors with the occurrence of nosocomial infection. Am J Med 1981;70:960-970.
 Kluytmans JA, Mouton JW, VandenBerg MF, Manders MJ, Maat AP,
- Kluytmans JA, Mouton JW, VandenBerg MF, Manders MJ, Maat AP, Wagenvoort JH, et al. Reduction of surgical-site infections in cardiothoracic surgery by elimination of nasal carriage of S aureus. Infect Control Hosp Epidemiol 1996;17:780-785.
- VandenBergh MF, Kluytmans JA, van Hout BA, Maat AP, Seerden RJ, McDonnel J, et al. Cost-effectiveness of perioperative mupirocin nasal ointment in cardiothoracic surgery. *Infect Control Hosp Epidemiol* 1996;17:786-792.

Decrease in Nosocomial Infections During 3-Year Period in Norwegian Hospitals

Gina Pugliese, RN, MS Martin S. Favero, PhD

Andersen and coinvestigators from the Department of Hospital Infection, Ulleval University Hospital, Oslo, Norway, analyzed hospitalacquired infections (HAI) by repeated point-prevalence studies (four each year) performed simultaneously at 14 hospitals in a health region (860,000 inhabitants) during the period 1996 to 1998. The study included 3,200 beds and 121,000 discharged patients each year. An overall prevalence rate of HAI of 6.5% (interhospital range, 1.4%-11.7%) was found for the 32,248 patients studied. The rate of HAI was reduced from 7.7% in 1996 to 5.9% in 1998. Smaller hospitals (<200 beds) generally had lower rates of HAI, community-acquired infections (CAI), postoperative infections, and use of antibacterial agents than the large regional hospital (1,200 beds).

HAI was reduced in nonoperated patients from 5.8% in 1996 to 4.4% in 1998 and in operated patients from 13.2% in 1996 to 10.5% in 1998. The risk of developing HAI was twice as high after surgery. From 1996 to 1998, there was a reduction in urinary tract infections from 2.4% to 1.7%, lower respiratory tract infections from 1.5% to 0.8%, and postoperative wound infections from 5.7% to 4.3%, whereas septicemia remained unchanged (from 0.5% to 0.4%). Rehospitalization because of HAI was registered in 0.6% (interhospital range, 0.3%-1.1%) of patients. The CAI rate in hospitals increased from 8.3% in 1996 to 10.8% in 1998. Approximately 16% (range, 14.4%-20.6%) of the patients had an infection.

FROM: Andersen BM, Ringertz SH, Gullord TP, Hermansen W, Lelek M, Norman BI, et al. A three-year survey of nosocomial and communityacquired infections, antibiotic treatment and re-hospitalization in a Norwegian health region. J Hosp Infect 2000;44:214-223.