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Maranda’s theorem for pure-injective
modules and duality
Lorna Gregory
Abstract. Let R be a discrete valuation domain with field of fractions Q and maximal ideal generated
by π. Let Λ be an R-order such that QΛ is a separable Q-algebra. Maranda showed that there
exists k ∈ N such that for all Λ-lattices L and M, if L/Lπk ≃ M/Mπk , then L ≃ M. Moreover, if R
is complete and L is an indecomposable Λ-lattice, then L/Lπk is also indecomposable. We extend
Maranda’s theorem to the class of R-reduced R-torsion-free pure-injective Λ-modules.

As an application of this extension, we show that if Λ is an order over a Dedekind domain R with
field of fractions Q such that QΛ is separable, then the lattice of open subsets of the R-torsion-free
part of the right Ziegler spectrum of Λ is isomorphic to the lattice of open subsets of the R-torsion-
free part of the left Ziegler spectrum of Λ.

Furthermore, with k as in Maranda’s theorem, we show that if M is R-torsion-free and H(M)
is the pure-injective hull of M, then H(M)/H(M)πk is the pure-injective hull of M/Mπk . We use
this result to give a characterization of R-torsion-free pure-injective Λ-modules and describe the
pure-injective hulls of certain R-torsion-free Λ-modules.

1 Introduction

Let R be a discrete valuation domain with maximal ideal generated by π and field
of fractions Q. Let Λ be an order over R (i.e., an R-algebra that is finitely generated
and projective as an R-module) such that QΛ is a separable Q-algebra. For example,
Λ = RG, where G is a finite group and R is a discrete valuation domain whose field
of fractions is characteristic zero. Maranda’s theorem (see [13], [5, Theorem 30.14])
states that there exists k0 ∈ N such that for all k ≥ k0 + 1 and Λ-lattices L, M, L/Lπk ≅
M/Mπk implies L ≅ M and if R is complete then L indecomposable implies L/Lπk is
indecomposable.

For any M ∈ Mod-Λ, M/Mπk may be naturally viewed as a module over the
R/Rπk-Artin algebra Λk ∶= Λ/Λπk . In this paper, we study the functor from the
category of R-torsion-free Λ-modules to the category of Λk-modules which sends M
to M/Mπk for k sufficiently large. In particular, in Section 3, we extend Maranda’s
theorem to a class of R-reduced R-torsion-free pure-injective Λ-modules and show
that this functor preserves pure-injective hulls.

Pure-injective modules generalize injective modules, and they are “injective rel-
ative to pure embeddings.” They correspond, via the tensor embedding, exactly
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to the injective objects in the category of additive functors from the category of
finitely presented modules to abelian groups. Topologically, they are characterized
as direct summands of compact Hausdorff modules. Pure-injective modules play a
prominent role in the model theory of modules because every module is an elementary
substructure of its pure-injective hull. Every module is elementarily equivalent to a
direct sum of indecomposable pure-injective modules, so the indecomposable pure-
injective modules may be viewed as the building blocks of the module category up to
elementary equivalence.

The set of isomorphism types of (right) indecomposable pure-injective modules
over a ring S is equipped with the topology whose closed sets correspond to definable
subcategories of Mod-S. The resulting space is called the (right) Ziegler spectrum ZgS
of S. This space captures the majority of model-theoretic information about Mod-S.

From the perspective of model theory of modules, the natural nonfinitely-
presented generalization of a Λ-lattice is an R-torsion-free Λ-module. This is because
the smallest definable subcategory of Mod-Λ containing all (right) Λ-lattices is exactly
the category, TfΛ , of (right) R-torsion-free Λ-modules. We write ΛTf for the category of
R-torsion-free left Λ-modules. Furthermore, the closed set of indecomposable pure-
injective modules which are R-torsion-free is called the torsion-free part of the Ziegler
spectrum of Λ and is denoted by Zgt f

Λ . (This space is studied in [8, 14, 20].)
An alternative nonfinitely-presented version of a Λ-lattice, the generalized lattice,

was introduced in [4] and further studied in [19, 23].
We must exclude the R-divisible R-torsion-free Λ-modules from our generalization

of Maranda’s theorem because if D is divisible then D/Dπk = 0. However, every R-
torsion-free Λ-module decomposes as a direct sum D ⊕ N of an R-divisible module D
and an R-reduced module N, i.e.,⋂i∈N Nπ i = 0. Thus, by restricting our generalization
of Maranda’s theorem further to the class of R-reduced R-torsion-free Λ-modules, we
do not lose anything because the R-divisible R-torsion-free Λ-modules are just QΛ-
modules and, by assumption, QΛ is semisimple.

In Section 3, with k0 as in the classical version of Maranda’s theorem, we prove the
following theorems.
Theorem 3.4 Let M , N be R-torsion-free R-reduced pure-injective Λ-modules. If
M/Mπk ≅ N/Nπk for some k ≥ k0 + 1, then M ≅ N.
Theorem 3.5 Let k ≥ k0 + 1. If N is an indecomposable R-torsion-free R-reduced pure-
injective Λ-module, then N/Nπk is indecomposable.

Unlike in the classical version of Theorem 3.5, we do not need to assume that R is
complete. However, Λ-lattices are pure-injective if and only if R is complete. So this is
not unexpected.

Using results from [8], which are applications of Maranda’s theorem for Λ-lattices,
we get the following.
Theorem 3.8 Let k ≥ k0 + 1. Suppose that M is R-torsion-free and R-reduced. If u ∶
M → H(M) is the pure-injective hull of M, then u ∶ M/Mπk → H(M)/H(M)πk is the
pure-injective hull of M/Mπk .

Our proofs of these theorems and their applications rely on the fact that the functor
taking M ∈ TfΛ to M/Mπk ∈ Mod-Λ/Λπk , which, for k sufficiently large, we will
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refer to as Maranda’s functor, is an interpretation functor. The original definition (see
Section 2) of an interpretation functor came out of the model-theoretic notion of an
interpretation. However, from an algebraic perspective, interpretation functors are just
additive functors which commute with direct limits and direct products.

Thanks to Maranda’s theorem, in order to get information about the category of
Λ-lattices, we may instead study a subcategory of the category of modules over the
Artin algebra Λ/Λπk . The drawback of both the classical version of Maranda’s theorem
and our extended version is that mod-Λk , respectively, Mod-Λk , is almost always
significantly more complicated than the category of Λ-lattices, respectively, TfΛ . For
instance, the order Z(p)C(p2) is of finite lattice type (see [3]), but the category of
Z(p)/p2Z(p)-free finitely generated Z(p)/p2Z(p)C(p2)-modules is wild [1].

Despite the above, we will see in Sections 4 and 5 that being able to move from TfΛ
to a module category over an Artin algebra has useful applications.

We now describe the applications in Sections 4 and 5, which are largely indepen-
dent of each other. Section 4 presents applications of Theorem 3.8 to pure-injectives
and pure-injective hulls in TfΛ . We give the following characterization of pure-
injective R-torsion-free Λ-modules.

Theorem 4.6 Let M ∈ TfΛ . Then M is pure-injective if and only if
(1) M/Mπk is pure-injective for all k ∈ N and
(2) M is pure-injective as an R-module.

We also give information about the pure-injective hull of an R-reduced R-torsion-
free module M in terms of pure-injective hulls of M/Mπk for all k ≥ k0 + 1. In
particular, when M is reduced, R-torsion-free, and M/Mπk is pure-injective for all
k ∈ N, we show (Theorem 4.6) that the pure-injective hull of M is the inverse limit of
the Λ-modules M/Mπk along the canonical projections.

We use these results to answer the questions at the end of [20]. In particular, we
describe the pure-injective hulls of the Prüfer-like modules, denoted T in [20]. We
show that these pure-injective hulls are indecomposable and hence are points of the
Ẑ(2)-torsion-free part of the Ziegler spectrum of the Ẑ(2)-order Ẑ(2)C2 × C2. As far
as we are aware, until now, the only points of Zgt f

Λ , for any order Λ, which have been
explicitly described as modules are Λ̂-lattices, where R̂ is the completion of R and Λ̂ ∶=
R̂ ⊗ Λ, and the R-divisible modules, which are just the indecomposable QΛ-modules.

The theme of Section 5 is connections between TfΛ and ΛTf. Here, we extend our
setting to include the case where R is a Dedekind domain with field of fractions Q and
Λ is an R-order such that QΛ is a separable Q-algebra. We write S Zg for the left Ziegler
spectrum of S and ΛZgt f for the torsion-free part of the left Ziegler spectrum of Λ.

Herzog [9] showed that for any ring S, the lattice of open subsets of ZgS and the
lattice of open subsets of S Zg are isomorphic. Applying Herzog’s result directly to
ZgΛ shows that the lattice of open subsets of Zgt f

Λ is isomorphic to the lattice of open
subsets of the closed subset of R-divisible modules in ΛZg. Despite this, we are able
to show (Theorem 5.2) that the lattice of open subsets of Zgt f

Λ is also isomorphic, in a
natural way, to the lattice of open subsets of ΛZgt f . This is the main result of Section 5.

We finish Section 5 by showing (Corollary 5.19) that the m-dimension of the lattice
of (right) pp formulas of Λ with respect to the theory of TfΛ is equal to the m-
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dimension of the lattice of (left) pp formulas of Λ with respect to the theory of ΛTf.
As a consequence, we show (Corollary 5.20) that the Krull–Gabriel dimension of
(LattΛ , Ab) f p is equal to the Krull–Gabriel dimension of (ΛLatt, Ab) f p , where LattΛ
is the category of right Λ-lattices and ΛLatt is the category of left Λ-lattices.

Before starting the main body of the paper, the reader should be warned that the
word lattice has two meanings in this paper; the first, a particular type of Λ-module
and the second a partially ordered set with meets and joins. Since these objects are so
different in character, it should not cause confusion.

2 Preliminaries

We start by introducing some notation and basic definitions relating to orders. For a
general introduction to orders and their categories of lattices, we suggest [5].

Let R be a Dedekind domain. We assume throughout that R is not a field.
An R-order Λ is an R-algebra which is finitely generated and R-torsion-free as an
R-module. A Λ-lattice is a finitely generated Λ-module which is R-torsion-free.
We will write LattΛ (respectively, ΛLatt) for the category of right (respectively, left)
Λ-lattices and TfΛ (respectively, ΛTf) for the category of right (respectively, left)
R-torsion-free modules.

Let MaxR denote the set of nonzero prime ideals of R. If P ∈ MaxR, then ΛP , the
localization of Λ at the multiplicative set R/P, is an RP-order. Let R̂P and Λ̂P denote
the P-adic completions of RP and ΛP , respectively. Note that Λ̂P is an R̂P-order. If
L ∈ LattΛ and P ∈ MaxR, then LP will denote RP ⊗R L. If L ∈ LattΛ , then L̂P will denote
the P-adic completion of L. Note that if L ∈ LattΛ , then LP is a ΛP-lattice and L̂P is a
Λ̂P-lattice.

We will assume that QΛ is a separable Q-algebra. This is used in two principal
ways: first, it is an assumption of Maranda’s theorem for lattices over orders (see [5,
30.12]), and second, it implies that for all nonzero prime ideals P ⊲ R, Q̂Λ̂P = Q̂Λ is a
semisimple Q̂-algebra, where Q̂ denotes the field of fractions of R̂P .

We now give a summary of the notions from model theory of modules that will be
used in this paper. For a more detailed introduction, the reader is referred to [15, 17].

We will write x for tuples of variables and likewise m for tuples of elements in a
module.

Let S be a ring. A (right) pp-n-formula is a formula in the language of S-modules
of the form

∃y (y, x)A = 0,

where A is an (l + n) × m matrix with entries from S, y is an l-tuple of variables, x is
an n-tuple of variables, and l , n, m are natural numbers.

If M ∈ Mod-S and ϕ is a pp-n-formula, then we write ϕ(M) for the solution set of
ϕ in M. For any pp-n-formula ϕ and S-module M, ϕ(M) is an End(M)-submodule
of Mn under the diagonal action of End(M) on Mn .

After identifying (right) pp-n-formulas ϕ, ψ such that ϕ(M) = ψ(M) for all M ∈
Mod-S, the set of pp-n-formulas becomes a lattice under inclusion of solution sets,
i.e., ψ ≤ ϕ if ψ(M) ⊆ ψ(M) for all M ∈ Mod-S. We denote this lattice by ppn

S and the
left module version by S ppn . If X is a collection of (right) S-modules, then we write
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ppn
S X for the quotient of ppn

S under the equivalence relation ϕ ∼X ψ if ϕ(M) = ψ(M)
for all M ∈ X.

For ϕ, ψ ∈ ppn
S , we will write ϕ + ψ for the join (least upper bound) of ϕ and ψ in

ppn
S and ϕ ∧ ψ for the meet (greatest lower bound) of ϕ and ψ in ppn

S . Note that, for
all M ∈ Mod-S, (ϕ + ψ)(M) = ϕ(M) + ψ(M) and (ϕ ∧ ψ)(M) = ϕ(M) ∩ ψ(M).

A pp- n-pair, written ϕ /ψ, is a pair of pp-n-formulas ϕ, ψ such that ϕ(M) ⊇ ψ(M)
for all S-modules M. If ϕ /ψ is a pp-n-pair, then we write [ψ, ϕ] for the interval in ppn

S ,
that is, the set of σ ∈ ppn

S such that ψ ≤ σ ≤ ϕ. If X is a collection of (right) S-modules,
we will write [ψ, ϕ]X for the corresponding interval in ppn

S X.
If m is an n-tuple of elements from a module M, then the pp-type of m is the set of

pp-n-formulas ϕ such that m ∈ ϕ(M). If M ∈ mod-S and m is an n-tuple of elements
from M, then [17, Lemma 1.2.6] there exists ϕ ∈ ppn

S such that ψ is in the pp-type of m
if and only if ψ ≥ ϕ. In this case, we say that ϕ generates the pp-type of m.

For each n ∈ N, Prest defined a lattice anti-isomorphism D ∶ ppn
S → S ppn (see [15,

Theorem 8.21], [17, Section 1.3.1]). As is standard, we denote its inverse S ppn → ppn
S

also by D. Apart from the fact that for a ∈ S, D(xa = 0) is a∣x and D(a∣x) is ax = 0,
we will not need to explicitly take the dual of a pp formula here, so we will not give its
definition.

An embedding f ∶ M → N is a pure-embedding if for all ϕ ∈ pp1
S ,

ϕ(N) ∩ f (M) = f (ϕ(M)). Equivalently, for all L ∈ S-mod, f ⊗ − ∶ M ⊗ L → N ⊗ L
is an embedding. We say N is pure-injective if every pure-embedding
g ∶ N → M is a split embedding. Equivalently, N is pure-injective if and only
if it is algebraically compact [17, Theorem 4.3.11]. That is, for all n ∈ N, if
for each i ∈ I, ai ∈ N is an n-tuple and ϕ i is a pp-n-formula, then ⋂i∈I ai +
ϕ i(N) = ∅ implies there is some finite subset I′ of I with ⋂i∈I′ ai + ϕ i(N) = ∅.

We will write pinjS (respectively, S pinj) for the set of (isomorphism types of)
indecomposable pure-injective right (respectively, left) S-modules.

We say a pure-embedding i ∶ M → N with N pure-injective is a pure-injective hull
of M if for every other pure-embedding g ∶ M → K where K is pure-injective, there is
a pure-embedding h ∶ N → K such that hi = g. The pure-injective hull of M is unique
up to isomorphism over M, and we will write H(M) for any module N such that the
inclusion of M in N is a pure-injective hull of M.

The following lemma will be used in Section 5. Its proof is exactly as in [14,
Lemma 3.1].

Lemma 2.1 Let M be a Λ-lattice. The pure-injective hull of M is isomorphic to
∏P∈MaxR M̂P .

A full subcategory of a module category Mod-S is a definable subcategory if it
satisfies the equivalent conditions in the following theorem.

Theorem 2.2 [17, Theorem 3.4.7] The following statements are equivalent for X a full
subcategory of Mod-S.

(1) There exists a set of pp-pairs {ϕ i/ψ i ∣ i ∈ I} such that M ∈ X if and only if ϕ i(M) =
ψ i(M) for all i ∈ I.

(2) X is closed under direct products, direct limits, and pure submodules.
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(3) X is closed under direct products, reduced products, and pure submodules.
(4) X is closed under direct products, ultrapowers, and pure submodules.

For an R-order Λ, a particularly important definable subcategory is, TfΛ , the class
of all R-torsion-free Λ-modules. It is the class of Λ-modules such that for all nonzero
r ∈ R, the solution set of xr = 0 in M is equal to the solution set of x = 0 in M.

Given a class of modules C, let ⟨C⟩ denote the smallest definable subcategory
containing C. Since all modules in TfΛ are direct unions of their finitely generated
submodules and a finitely generated R-torsion-free module is a Λ-lattice, ⟨LattΛ⟩ =
TfΛ .

If C ⊆ Mod-S, then we will write pinj(C) for the set of (isomorphism types of)
indecomposable pure-injective S-modules contained in C. By [17, Corollary 5.1.4],
definable subcategories of Mod-S are determined by the indecomposable pure-
injective S-modules they contain, i.e., C = ⟨pinj(C)⟩.

The (right) Ziegler spectrum of a ring S, denoted ZgS , is a topological space whose
points are isomorphism classes of indecomposable pure-injective (right) S-modules
and which has a basis of open sets given by

(ϕ /ψ) = {M ∈ pinjS ∣ ϕ(M) ⊋ ψ(M)ϕ(M)},

where φ, ψ range over (right) pp-1-formulas. We write SZg for the left Ziegler spectrum
of S.

The sets (ϕ /ψ) are compact, in particular, ZgS is compact.
From (i) of Theorem 2.2, it is clear that if X is a definable subcategory of Mod-S,

then X ∩ pinjS is a closed subset of ZgS and that all closed subsets of ZgS arise
in this way. Since definable subcategories are determined by the indecomposable
pure-injective modules they contain, if X,Y definable subcategories of Mod-S, then
X ∩ ZgS = Y ∩ ZgS if and only if X = Y. Thus, there is an inclusion preserving cor-
respondence between the closed subsets of ZgS and the definable subcategories of
Mod-S. If X is a definable subcategory of Mod-S, then we will write Zg(X) for the
Ziegler spectrum of X, that is, X ∩ ZgS with the topology inherited from ZgS . When
Λ is an R-order, we will write Zgt f

Λ (respectively, ΛZgt f ) for Zg(TfΛ) (respectively,
Zg(ΛTf)).

We finish this section by introducing interpretation functors and proving a result
about them which we will need in Section 5.

LetC ⊆ Mod-S andD ⊆ Mod-T be definable subcategories. Let ϕ/ψ be a pp-m-pair
over S and for each t ∈ T , let ρt(x , y) be a pp-2m-formula such that for each M ∈ C,
the solution set ρt(M , M) ⊆ Mm × Mm defines an endomorphism ρM

t of the abelian
group ϕ(M)/ψ(M) and such that ϕ(M)/ψ(M) is a T-module inDwhen for all t ∈ T ,
the action of t on ϕ(M)/ψ(M) is given by ρM

t . In this situation, (ϕ/ψ; (ρt)t∈T) defines
an additive functor I ∶ C→D. Following [16], we call any functor equivalent to one
defined in this way an interpretation functor.

From the definition, it is clear that for k ∈ N, the functor I ∶ TfΛ → Mod-Λ/πk Λ
which sends M ∈ TfΛ to M/Mπk is an interpretation functor. We will consider another
interpretation functor, Butler’s functor, at the end of Section 4.

The following theorem, due to Prest in full generality and Krause in a special case,
gives a completely algebraic characterization of interpretation functors.
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Theorem 2.3 [11, Theorem 7.2], [18, Corollary 25.3] An additive functor I ∶ C→D is
an interpretation functor if and only if it commutes with direct products and direct limits.

There are many ways to see that interpretation functors preserve pure-injectivity.
Working with pp formulas, it is easiest to show that interpretation functors preserve
algebraic compactness by translating systems of cosets of solution sets of pp formulas
for IN into a system of cosets of solution sets of pp formulas for N via I. For the more
categorically minded, the most direct route is to use the fact [17, Theorem 4.3.6] that
a module M is pure-injective if and only if for any cardinal κ, the summation map
ΣM ∶ M(κ) → M factors through the canonical embedding of M(κ) into Mκ. Note
that since interpretation functors are additive and commute with direct limits, they
commute with infinite direct sums. One sees that IΣM is the summation map ΣIM ∶
IM(κ) → IM because it is the unique map which is the identity when composed with
the component maps IM into IM(κ).

Define ker I to be the definable subcategory of objects L ∈ C such that IL = 0. For
D′ a definable subcategory ofD, let I−1D′ be the definable subcategory of objects L ∈ C
such that IL ∈D′.

The following lemma is used in various places in the literature. It follows easily from
(3) of Theorem 2.2.
Lemma 2.4 Let I ∶ C→D be an interpretation functor and C′ a definable subcategory
of C. Then the closure of IC′ under pure-subobjects is a definable subcategory of D.
Lemma 2.5 Let I ∶ C→D be an interpretation functor such that for all N ∈ pinj(C),
IN = 0, or IN ∈ pinj(D) and if N , M ∈ pinj(C), IN , IM ≠ 0, and IN ≅ IM, then
N ≅ M.
(i) If C′ is a definable subcategory of C containing ker I, then I−1⟨IC′⟩ = C′.

(ii) If D′ is a definable subcategory of ⟨IC⟩, then ⟨I(I−1D′)⟩ =D′.
Proof (i) Suppose M ∈ C′. Then IM ∈ ⟨IC′⟩. So M ∈ I−1⟨IC′⟩.

Suppose N ∈ pinj(C) and N ∈ I−1⟨IC′⟩. If IN = 0, then N ∈ C′, since ker I ⊆ C′. So
we may assume that IN ≠ 0 and IN is a pure-subobject of IL for some L ∈ C′ by Lemma
2.4. Since N is pure-injective, so is IN . Hence, IN is a direct summand of IL. By the
hypotheses on I, IN is indecomposable. So by [17, Proposition 18.2.24], there exists
L′ ∈ pinj(C′) such that IN is a direct summand of IL′. By the hypothesis on I, IL′
is indecomposable and hence IN ≅ IL′. By the other hypothesis on I, L′ ≅ N . Thus,
N ∈ C′, as required.

Since definable subcategories are determined by the indecomposable pure-injective
modules they contain, I−1⟨IC′⟩ ⊆ C′.
(ii) Suppose D′ is a definable subcategory of ⟨IC⟩. Since D′ is a definable subcat-

egory, ⟨I(I−1D′)⟩ ⊆D′ if and only if I(I−1D′) ⊆D′. Take M ∈ I−1D′. By definition,
IM ∈D′. So I(I−1D′) ⊆D′.

We now show that D′ ⊆ ⟨I(I−1D′)⟩. Suppose N ∈ pinj(D′). Since D′ ⊆ ⟨IC⟩, by
Lemma 2.4, there exists L ∈ C such that N is pure-subobject of IL. Thus, N is a direct
summand of IL. By [17, Proposition 18.2.24], we may assume L is also indecomposable
pure-injective. Thus, N ≅ IL. So L ∈ I−1D′ and N ≅ IL ∈ I(I−1D′), as required. ∎

Corollary 2.6 Let I ∶ C→D be an interpretation functor such that for all N ∈ pinj(C),
IN = 0, or IN ∈ pinj(D) and if N , M ∈ pinj(C), IN , IM ≠ 0, and IN ≅ IM, then N ≅
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M. The maps

ker I ⊆ C′ ⊆ C↦ ⟨IC′⟩

and
D′ ⊆ ⟨IC⟩ ↦ I−1D′

give a inclusion preserving bijective correspondence between definable subcategories in
⟨IC⟩ and definable subcategories of C containing ker I.
Proof We have shown that if C′ is a definable subcategory of C containing ker I, then
I−1⟨IC′⟩ = C′, and if D′ is a definable subcategory of ⟨IC′⟩, then ⟨I(I−1D′)⟩ =D′.

That this correspondence is inclusion preserving follows directly from its defini-
tion. ∎

The following is very close to [11, Theorem 7.8], [16, Theorem 3.19], and [17,
Corollary 18.2.26], but our hypotheses are slightly different. This statement will be
needed in Section 5.
Proposition 2.7 Let I ∶ C→D be an interpretation functor such that for all N ∈
pinj(C), IN = 0, or IN ∈ pinj(D) and if N , M ∈ pinj(C), IN , IM ≠ 0, and IN ≅ IM,
then N ≅ M. The assignment N ↦ IN induces a homeomorphism between Zg(C)/ker I
and its image in Zg(D) which is closed.
Proof Suppose L ∈ ⟨IC⟩ ∩ Zg(D). Then L is a pure-subobject of some IN for some
N ∈ Zg(C). By hypothesis on I, IN is indecomposable. So L ≅ IN . Thus, the closed set
⟨IC⟩ ∩ Zg(D) is the image of Zg(C)/ker I under I.

Suppose X is a closed subset of Zg(D) contained in IZg(C). Let X be the definable
subcategory of D generated by X. Let Y ∶= I−1X and Y ∶= Y ∩ Zg(C). Since X ⊆ ⟨IC⟩,
IL ∈ X if and only if L ∈ Y by Lemma 2.5. So N ∈ Y if and only if IN ∈ X. Thus, N ↦ IN
is continuous.

Suppose Y is a closed subset of Zg(C). We may replace Y by the closed subset
Y ∪ (ker I ∩ Zg(C)) without changing its intersection with Zg(C)/ker I. Let Y be the
definable subcategory of C generated by Y, and let X = ⟨IY⟩ ∩ Zg(D). Now, N ∈ Y if
and only N ∈ I−1⟨IY⟩ by Lemma 2.5. So N ∈ Y if and only if IN ∈ X. Thus, the inverse
of N ↦ IN is continuous. ∎

3 Maranda’s functor

Throughout this section, R will be a discrete valuation domain with field of fractions
Q and maximal ideal generated by π, and Λ will be an R-order such that QΛ is a
separable Q-algebra.

The basis of Maranda’s theorem is the existence1 of a nonnegative integer l such that
for all Λ-lattices L and M,

π l Ext1(L, M) = 0.

Throughout this section, let k0 be the smallest such nonnegative integer. We will call
this natural number Maranda’s constant (for Λ as an R-order).

1The existence of such a nonnegative integer is implied by the fact that QΛ is separable (see [5,
Corollary 29.5] and the discussion just after [5, 30.12]).
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Note that since Λ is Noetherian, Ext1(L,−) is finitely presented as a func-
tor in (mod-Λ, Ab) (see [17, Theorem 10.2.35]). Hence, πk0 Ext1(L,−) is also
finitely presented. Since TfΛ is the smallest definable subcategory containing LattΛ ,
πk0 Ext1(L, N) = 0 for all L ∈ LattΛ and N ∈ TfΛ .

Throughout this section, when k ∈ N is clear from the context, for M ∈ Mod-Λ
and m ∈ M, we will often write M for M/Mπk and m for m + Mπk . If f ∶ M →
N ∈ Mod-Λ, then we will write f for the induced homomorphism from M/Mπk

to N/Nπk . This is to allow us to use subscripts on modules as indices and to ease
readability. We will write Λk for the ring Λ/πk Λ.

The proof of the next lemma can easily be extracted from the proof of [5, Theorem
30.14].
Lemma 3.1 Let L ∈ LattΛ and M ∈ TfΛ . If k ≥ k0 + 1, then for all g ∈
HomΛk(L/Lπk , M/Mπk), there exists h ∈ HomΛ(L, M) such that for all m ∈ L,
πk−k0 + Λπk ∣h(m) − g(m).

The following proposition is key to proving both parts of our extension of
Maranda’s theorem.
Proposition 3.2 Let M , N be R-torsion-free Λ-modules with N pure-injective. If k ≥
k0 + 1, then for all g ∈ HomΛk(M/Mπk , N/Nπk), there exists h ∈ HomΛ(M , N) such
that for all m ∈ M, πk−k0 + Λπk ∣h(m) − g(m).
Proof Since M ∈ TfΛ , there exists a directed system of Λ-lattices L i for i ∈ I and σi j ∶
L i → L j for i ≤ j ∈ I such that M is the direct limit of this directed system. Let f i ∶ L i →
M be the component maps.

Our aim is to find h i ∶ L i → N for all i ∈ I such that h i = h jσi j and for all a ∈ L i ,
πk−k0 + Λπk ∣h i(a) − g( f i(a)).

If we can do this, then there exists h ∶ M → N such that h i = h f i for all i ∈ I.
This homomorphism is then as required by the statement of the proposition for the
following reasons. For all m ∈ M, there exist i ∈ I and a ∈ L i such that f i(a) = m. So

h(m) − g(m) = h f i(a) − g( f i(a)) = h i(a) − g( f i(a))

is divisible by πk−k0 + Λπk .
For each i ∈ I, let ε i ∶ L i → N be such that for all a ∈ L i , πk−k0 + Λπk divides

ε i(a) − g( f i(a)). Such an ε i exists by Lemma 3.1 since L i is a Λ-lattice.
Let ci ∶= (c i1 , . . . , c i l i ) generate L i as an R-module, and let ϕ i generate the pp-type

of ci. Note that m ∈ ϕ i(N) if and only if there exists a q ∶ L i → N such that q(ci) = m.
Let

χ i(x1 , . . . , x l i ) ∶= ϕ i(x1 , . . . , x l i ) ∧
l i

⋀
j=1

πk−k0 ∣x j .

We now show that m − ε i(ci) ∈ χ i(N) if and only if there exists a homomorphism
q ∈ Hom(L i , N) such that q(ci) = m and for all a ∈ L i , πk−k0 + Λπk divides q(a) −
g( f i(a)).

Suppose m − ε i(ci) ∈ χ i(N). Since ε i(ci) ∈ ϕ i(N), m ∈ ϕ i(N), and hence there
exists q ∈ Hom(L i , N) such that q(ci) = m. For each 1 ≤ j ≤ l i , πk−k0 divides q(c i j) −
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ε i(c i j) = m j − ε i(c i j). By definition of ε i , πk−k0 + Λπk divides ε i(c i j) − g( f i(c i j)).
So πk−k0 + Λπk divides q(c i j) − g( f i(c i j)) for 1 ≤ j ≤ l i . Since ci generates L i , πk−k0 +

Λπk divides q(a) − g( f i(a)) for all a ∈ L i .
Now, suppose that q ∈ Hom(L i , N) is such that q(ci) = m and that for all a ∈ L i ,

πk−k0 + Λπk divides q(a) − g( f i(a)). Then m − ε i(ci) = (q − ε i)(ci) ∈ ϕ i(N). By
definition of ε i , πk−k0 + Λπk divides ε i(a) − g( f i(a)) for all a ∈ L i . So πk−k0 + Λπk

divides q(a) − ε i(a) for all a ∈ L i . Since k ≥ k − k0, πk−k0 divides q(a) − ε i(a) for all
a ∈ L i . So, in particular, πk−k0 divides q(c i j) − ε i(c i j) = m j − ε i(c i j) for all 1 ≤ j ≤ l i .
Thus, m − ε i(c i) ∈ χ i(N), as required.

For i ≤ j ∈ I, let tij ∈ R l j×l i be such that σi j(ci) = cj ⋅ tij.
Consider the system of linear equations and cosets of pp-definable subsets

xi ∈ ε i(ci) + χ i(N)(1)i

for i ∈ I and

xi = xj ⋅ tij(2)i j

for i ≤ j ∈ I.
Let I0 ⊆ I be a finite subset of I. Since I is directed, by adding an element to I0 if

necessary, we may assume that there is a p ∈ I0 such that i ≤ p for all i ∈ I0.
Let mp = εp(cp) and for i ∈ I0, and let mi = mp ⋅ tip. Then

mi = εp(cp) ⋅ tip = εp(cp ⋅ tip) = εp(σi p(ci)),

for all i ∈ I0.
Suppose that i ≤ j ∈ I0. Then σi p = σ jp ○ σi j . So

mi = εp(σ jp ○ σi j(ci)) = εp(σ jp(cj ⋅ tij)) = εp(σ jp(cj)) ⋅ tij = mj ⋅ tij .

Thus, (mi)i∈I0 satisfies (2)i j for all i ≤ j ∈ I0.
We now need to show that for all i ∈ I0, mi − ε i(ci) ∈ χ i(N). Let q ∶= εp ○ σi p . Then

q(ci) = εp(σi p(ci)) = mi; furthermore, by definition of εp , for all a ∈ L i , πk−k0 + Λπk

divides εp(σi p(a) − g( fp(σi p(a))) = q(a) − g( f i(a)). Thus, using the characteriza-
tion of the solution set of χ i(N) proved earlier, mi − ε i(ci) ∈ χ i(N).

Since the system of equations (1)i and (2)i j is finitely solvable and N is pure-
injective, there exists (mi)i∈I with mi ∈ N satisfying (1)i and (2)i j for all i ≤ j ∈ I.
For each i ∈ I, let h i ∶ L i → N be the homomorphism which sends ci to mi. Condition
(2)i j ensures that for all i ≤ j ∈ I, h i = h j ○ σi j . This is because h j(σi j(ci)) = h j(cj ⋅
tij) = h j(cj) ⋅ tij = mj ⋅ tij = mi. Condition (1)i ensures that πk−k0 + Λπk divides
h i(a) − g( f i(a)) for all a ∈ L i . ∎

Lemma 3.3 Let N ∈ Mod-Λk , and let g , σ ∈ EndN. Suppose that for all m ∈ N, π +
Λπk ∣σ(m). Then g − σ is an isomorphism if and only if g is an isomorphism.

Proof Suppose that g is an isomorphism. Then (g − σ)g−1 = IdN − σ g−1. Let
h ∶= σ g−1 and f ∶= IdN + h +⋯hk−1. Since π + Λπk ∣σ(m) for all m ∈ N , hk = 0.
Thus, (IdN − h) ○ f = f ○ (IdN − h) = IdN . So (g − σ)g−1 f = IdN and g−1 f (g − σ) =
g−1 f (g − σ)g−1 g = IdN . Therefore, g − σ is an isomorphism. For the converse,
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note that for all m ∈ N , π + Λπk ∣ − σ(m). Thus, the implication we have just
proved also shows that if g − σ is an isomorphism, then g = (g − σ) − (−σ) is an
isomorphism. ∎

Theorem 3.4 Let M , N ∈ TfΛ be R-reduced and pure-injective. If M/Mπk ≅ N/Nπk

for some k ≥ k0 + 1, then M ≅ N.

Proof We first show that if f ∶ M → N is such that f ∶ M → N is an isomorphism,
then f is an isomorphism.

Suppose f is an isomorphism and f (m) = 0. If m ≠ 0, then since M is reduced,
there exists n ∈ M and l a nonnegative integer such that m = nπ l where π does not
divide n. Since N is R-torsion-free, f (m) = f (n)π l = 0 implies f (n) = 0. So f (n) = 0.
Therefore, n = 0. This implies π divides n, contradicting our assumption. So m = 0.
Therefore, f is injective.

We now show that f is surjective. Since f is surjective, for all n ∈ N , there exists m ∈
M such that n − f (m) ∈ Nπk . Suppose m l is such that n − f (m l) ∈ Nπ l k . Let aπ l k =
n − f (m l). There exists b ∈ M such that a − f (b) ∈ Nπk . Thus, aπ l k − f (b)π l k ∈
Nπ(l+1)k . So n − f (bπ l k + m l) ∈ Nπ(l+1)k and (bπ l k + m l) − m l ∈ Mπ l k . So there
exists a sequence (m l)l∈N in M such that for all l ∈ N, n − f (m l) ∈ Nπ l k and m l+1 −
m l ∈ Mπ l k . Since M is pure-injective, there exists an m ∈ M such that m − m l ∈ Mπkl

for all l ∈ N. Thus, f (m) − n = f (m − m l) − (n − f (m l)) ∈ Nπkl for all l ∈ N. Since
N is reduced, f (m) = n.

Suppose that g ∶ M → N is an isomorphism with inverse h ∶ N → M. There exists
e ∈ HomΛ(M , N) such that for all m ∈ M, πk−k0 + Λπk divides e(m) − g(m) and f ∈
HomΛ(N , M) such that for all m ∈ N , πk−k0 + Λπk divides f (m) − h(m). Since f ○
e = ( f − h) ○ (e − g) + ( f − h) ○ g + h ○ (e − g) + h ○ g, Lemma 3.3 implies that f ○
e is an isomorphism. Similarly, we can show that e ○ f is an isomorphism. Thus, e
and f are both isomorphisms. So the above arguments imply that e and f are both
isomorphisms. ∎

Theorem 3.5 Let k ≥ k0 + 1. If N is an indecomposable R-torsion-free R-reduced pure-
injective Λ-module, then N/Nπk is indecomposable.

Proof We will show that for all f ∈ EndN , either f is an isomorphism, or 1 − f is an
isomorphism. Hence, EndN is local.

Proposition 3.2 implies that the homomorphism sending f ∈ EndN to f ∈ EndN
induces a surjective ring homomorphism from EndN to EndN/{g ∈ EndN ∣ g(n) ∈
Nπ for all n ∈ N}.

Suppose f ∈ EndN is not an isomorphism. There exist g ∈ EndN and σ ∈ EndN
such that f = g + σ and σ(n) ∈ Nπ for all n ∈ N . By Lemma 3.3, g is not an iso-
morphism, and hence neither is g. Since EndN is local, IdN − g is an isomorphism.
Thus, IdN − g is an isomorphism. So, by Lemma 3.3, IdN − f = IdN − (g + σ) is an
isomorphism, as required. ∎

We now show that Maranda’s functor preserves pure-injective hulls. The proof uses
somewhat different techniques to those used so far and relies on [8, Proposition 4.6].
In order to avoid introducing various definitions that will not be used in the rest of
this paper, we state only the part of that proposition which we need.
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Proposition 3.6 Let k ≥ k0 + 1. For all ψ ∈ [πk−k0 ∣x, x = x] ⊆ ppn
Λ , there exists ψ̂ ∈

[πk−k0 + Λπk ∣x, x = x] ⊆ ppn
Λk

such that for all M ∈ TfΛ and m ∈ M, m ∈ ψ(M) if and
only if m + Mπk ∈ ψ̂(M/Mπk).

The following useful lemma was communicated to me by Prest.

Lemma 3.7 Let M ∈ Mod-S, H(M) be its pure-injective hull, and let b ∈ H(M)
be an n-tuple. Suppose that b ∈ ϕ(H(M))/⋃l

i=1 ψ i(H(M)), where ϕ, ψ1 , . . . , ψn are
pp-n-formulas. There exist an n-tuple b′ ∈ M and a pp-n-formula θ such that θ(b′ − b)
holds and

H(M) ⊧ θ(b′ − y) → ϕ(y) ∧
n
⋀
i=1
¬ψ i(y).

Proof Let b ∈ H(M). Suppose that b ∈ ϕ(H(M)) and b ∉ ⋃l
i=1 ψ i(H(M)).

By [15, Lemma 4.1] and [15, Theorem 4.10(c)], there exist a ∈ M and a pp formula
χ(x, y) such that χ(a, b) holds in H(M) and

H(M) ⊧ χ(a, y) → ϕ(y) ∧
n
⋀
i=1
¬ψ i(y).

Since H(M) is an elementary extension of M, there exists b′ ∈ M such that χ(a, b′)
holds in M and hence in H(M). Thus, χ(0, b′ − b)holds in H(M). Set θ(z) ∶= χ(0, z).
So θ(b′ − b) holds in H(M).

Suppose c ∈ H(M) and θ(b′ − c) holds in H(M). Then χ(a, c) holds in H(M).
Thus, ϕ(c) ∧ ⋀l

i=1 ¬ψ i(c) holds in H(M). So θ(b′ − b) holds and

H(M) ⊧ θ(b′ − y) → ϕ(y) ∧
l
⋀
i=1
¬ψ i(y). ∎

The following theorem is motivated by [16, Lemma 3.16].

Theorem 3.8 Let k ≥ k0 + 1 and M ∈ TfΛ . If u ∶ M → H(M) is a pure-injective hull of
M, then the induced map u ∶ M/Mπk → H(M)/H(M)πk is a pure-injective hull for
M/Mπk .
Proof We identify M with its image in H(M). Our aim is to show that for all b ∈
H(M) with b ≠ 0, there exists a ∈ M and χ(x , y) ∈ pp2

Λk
such that χ(a, b) holds in

H(M)/H(M)πk and χ(a, 0) does not hold in H(M)/H(M)πk .
Suppose that π does not divide b ∈ H(M). Since H(M) is the pure-injective hull of

M, by Lemma 3.7, there exist a ∈ M and a pp formula θ(x) ∈ pp1
Λ such that θ(a − b)

holds in H(M) and θ(a − x) → ¬π∣x. Let Δ(x) ∶= θ(x) + π∣x. Then Δ(a − b) holds
in H(M), and for all c ∈ H(M), Δ(a − cπ) does not hold. Let Δ̂ be as in Proposition
3.6. So Δ̂(a − b) holds in H(M)/H(M)πk .

Now, suppose that e ∈ H(M)/H(M)πk , e = bπn , and π does not divide b. Note
that this implies n < k. Let Δ and a ∈ M be as in the previous paragraph, i.e., Δ ≥
π∣x, Δ(a − b) holds in H(M), and for all c ∈ H(M), Δ(a − cπ) does not hold.
Let χ(x , y) ∶= ∃z Δ̂(x − z) ∧ y = zπn ∈ pp2

Λk
. Suppose that χ(a, 0) holds. Then there

exists d ∈ H(M) such that dπn = 0 and Δ̂(a − d) holds. But then dπn ∈ H(M)πk .
Since M and hence H(M) and R-torsion-free, d ∈ H(M)πk−n . This contradicts the
definition of Δ. Thus, χ(a, e) holds and χ(a, 0) does not hold in H(M)/H(M)πk .

https://doi.org/10.4153/S0008414X22000098 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000098


Maranda’s theorem for pure-injective modules and duality 593

Suppose that H(M)/H(M)πk = N ⊕ N ′ and M/Mπk ⊆ N . If c ∈ H(M)/H(M)πk

is nonzero, then we have shown that there exist a ∈ M and χ(x , y) ∈ pp2
Λk

such
that χ(a, c) holds and χ(a, 0) does not hold. Since the solution sets of pp formulas
commute with direct sums, this implies that if c ∈ N ′, then c = 0. Thus, N ′ is the zero
module, and H(M)/H(M)πk is the pure-injective hull of M/Mπk . ∎

4 Pure-injectives and pure-injective hulls

As in the previous section, R will be a discrete valuation domain with field of fractions
Q and maximal ideal generated by π, and Λ will be an R-order such that QΛ is a
separable Q-algebra.

We start this section by showing that the pure-injective hull of an R-reduced R-
torsion-free Λ-module is R-reduced. The proof of the following remark is the same as
[14, Claim 2, p. 1128].

Remark 4.1 If M ∈ TfΛ is R-divisible, then M is injective as a Λ-module.

This allows us to deduce that all M ∈ TfΛ decompose as the direct sum of the
divisible part DM of M and an R-reduced module. Explicitly, let

DM ∶= {m ∈ M ∣ πn ∣m for all n ∈ N}.

It is easy to check that DM is R-divisible. So, since R-divisible R-torsion-free Λ-
modules are injective, DM is a direct summand of M. Hence, M ≅ DM ⊕ M/DM . Now,
note that if m ∈ M and πn ∣m + DM for all n ∈ N, then πn ∣m for all n ∈ N. Thus, M/DM
is R-reduced.

Lemma 4.2 Let S be a ring, C , M , E ∈ Mod-S, and E injective. Suppose that C , E ⊆ M
and C ∩ E = {0}. There exists N ′ ⊆ M such that C ⊆ N ′ and N ′ ⊕ E = M.

Proof Using injectivity of E, there is an f ∶ M → E such that f ∣C = 0 and f ∣E = IdE .
So C ⊆ ker f and M = E ⊕ ker f . ∎

Lemma 4.3 If C ∈ TfΛ is R-reduced, then H(C) is R-reduced.

Proof Since QΛ is separable, H(C) = N ⊕ DH(C). Since C is pure in H(C) and
C is reduced, C ∩ DH(C) = {0}. By Lemma 4.2, there exists N ′ ⊆ H(C) such that
N ′ ⊕ DH(C) = H(C) and C ⊆ N ′. Since N and N ′ are isomorphic, N ′ is reduced. Since
N ′ is a direct summand of H(C) and C ⊆ N ′ ⊆ H(C), N ′ = H(C). Thus, H(C) is
R-reduced. ∎

Definition 4.1 If M is a Λ-module, then let M∗ denote the inverse limit along the
canonical maps M/Mπn+1 → M/Mπn .

Remark 4.4 If M ∈ Mod-Λ is R-reduced and pure-injective as an R-module, then
the canonical map v ∶ M → M∗, induced by the quotient maps from M to M/Mπn , is
an isomorphism of Λ-modules.

Proof Since M is R-reduced, v is an embedding. Since M is pure-injective as an
R-module (equivalently, algebraically compact), v is surjective. ∎
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Theorem 4.5 Let M ∈ TfΛ . Then M is pure-injective if and only if

(1) M/Mπk is pure-injective for all k ∈ N and
(2) M is pure-injective as an R-module.

Proof Certainly, if M is pure-injective, then conditions (1) and (2) hold.
So suppose that (1) and (2) hold. We know that M is isomorphic to DM ⊕ N

and that DM is injective. Thus, M is pure-injective if and only if N is pure-injective.
Moreover, if conditions (1) and (2) hold for M, then they also hold of N. Let H(N) be
the pure-injective hull of N. Since N/Nπk is pure-injective, Theorem 3.8 implies that
H(N)/H(N)πk = N/Nπk . By Lemma 4.3, H(N) is reduced, and hence is isomorphic
to H(N)∗ ≅ N∗. Since N is reduced and pure-injective as an R-module, N ≅ N∗. Thus,
N ≅ H(N) and is hence pure-injective. Thus, M = DM ⊕ N is also pure-injective. ∎

Theorem 4.6 Let M ∈ TfΛ be R-reduced, and suppose that M/Mπn is pure-injective
for all n ∈ N. Then the canonical map v ∶ M → M∗ is the pure-injective hull of M.

Proof Let u ∶ M → H(M) be a pure-injective hull of M. For each k ∈ N, let uk ∶
M/Mπk → H(M)/H(M)πk be the homomorphism induced by u. For each k ≥
k0 + 1, uk ∶ M/Mπk → H(M)/H(M)πk is the pure-injective hull of M/Mπk . Since
M/Mπk is pure-injective, uk is an isomorphism. The maps uk induce an isomorphism
w ∶ M∗ → H(M)∗. Since M and hence, by Lemma 4.3, H(M) are reduced, H(M) ≅
H(M)∗. Viewing H(M)∗ as a submodule of ∏i∈N H(M)/H(M)π i , for all m ∈ M,
wv(m) = (u(m) + H(M)π i)i∈N. Thus, v = w−1u. ∎

The same argument as used in the proof above shows that for any R-reduced M ∈
TfΛ , the pure-injective hull of M is lim

←-
H(M/Mπ i) along some surjective homomor-

phisms p i ∶ H(M/Mπ i+1) → H(M/Mπ i). Unfortunately, it is not clear how to explic-
itly describe the homomorphisms p i beyond saying that ker p i = H(M/Mπ i+1)π i .

For the rest of this section, we focus on an application of Theorem 4.6. We will
calculate the pure-injective hull of the direct limit at the “top” of a generalized tube
in LattΛ . This will allow us to describe certain points of Zgt f

Λ as modules when Λ =
Ẑ(2)C2 × C2 and answer the questions at the end of [20].

Following Krause in [12], we define a generalized tube in mod-S to be a sequence
of tuples T ∶= (M i , f i , g i)i∈N0 where M i ∈ mod-S, M0 = 0, f i ∶ M i+1 → M i , and g i ∶
M i → M i+1 such that for every i ∈ N,

M i

g i

��

f i−1 �� M i−1

g i−1
��

M i+1
f i �� M i

is a pushout and a pullback.
We will show that if T is a generalized tube in LattΛ , then its image, denoted Tk , in

mod-Λk is a generalized tube.
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Recall that a diagram

B
a
��

b �� L
g
��

M
f �� P

is a pushout and a pullback if and only if

0 �� B
( a

b ) �� M ⊕ L
( f −g ) �� P �� 0

is an exact sequence.
We say a generalized tube (M i , f i , g i)i∈N0 is trivial if M i = 0 for all i ∈ N0.

Remark 4.7 If (M i , f i , g i)i∈N0 is a nontrivial generalized tube, then there exists n ∈ N
such that g i is not an epimorphism for all i ≥ n.

Proof Let n ∈ N be least such that Mn ≠ 0. Then gn−1 is not an epimorphism. Since
the pushout of an epimorphism is an epimorphism, g i is not an epimorphism for all
i ≥ n − 1. ∎

The following remark seems like it should be false because certainly Maranda’s
functor does not send monomorphisms between lattices to monomorphisms. Con-
sider the exact sequence below. Since M is projective as an R-module and β is
surjective, there exists γ ∈ HomR(M , N) such that βγ = IdM . Thus, the exact sequence
is split when viewed as an exact sequence of R-modules. Therefore, the second
sequence is a split exact sequence of Rk-modules. Hence, it is an exact sequence of
Λk-modules.

Remark 4.8 If

0 �� L α �� N
β �� M �� 0

is an exact sequence of Λ-lattices, then

0 �� Lk
α �� Nk

β �� Mk �� 0

is an exact sequence of Λk-modules.

It follows that if T is a generalized tube of Λ-lattices, then Tk ∶= ((M i)k , f i , g i)i∈N0

is a generalized tube of finitely presented Λk-modules.
Given a generalized tube T = (M i , f i , g i)i∈N0 , define T[∞] to be the direct limit

along the embeddings g i ∶ M i → M i+1. Note that if T is trivial, then T[∞] = 0.
Recall that a module M ∈ Mod-S is Σ-pure-injective if M(κ) is pure-injective for

every cardinal κ. Equivalently [17, Theorem 4.4.5], M is Σ-pure-injective if and only
if pp1

S M has the descending chain condition.

Proposition 4.9 Let T = (M i , f i , g i)i∈N0 be a nontrivial generalized tube in LattΛ .
Then
(i) T[∞] is R-torsion-free and R-reduced,

(ii) T[∞] is not pure-injective,
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(iii) for all k ∈ N, T[∞]/T[∞]πk is Σ-pure-injective, and
(iv) T[∞]∗ is the pure-injective hull of T[∞].

Proof (i) and (ii): As a direct limit of lattices, T[∞] is R-torsion-free. Each g i is split
when viewed as a homomorphism of R-modules. Since T is nontrivial, there exists an
n ∈ N such that g i is not an isomorphism for all i ≥ n. Therefore, T[∞] is isomorphic
to R(ℵ0) as an R-module. So T[∞] is reduced. Since R is not Σ-pure-injective as a
module over itself [17, Theorem 4.4.8], R(ℵ0) is not pure-injective as an R-module,
and hence T[∞] is not pure-injective as a Λ-module.

(iii): Krause shows [12, Proposition 8.3] that ifT is a generalized tube in the category
of finitely presented modules over an Artin algebra, then T[∞] is Σ-pure-injective.
Since Maranda’s functor commutes with direct limits and sends generalized tubes to
generalized tubes, if T = (M i , f i , g i)i∈N0 is a generalized tube in LattΛ , then Tk[∞] =
T[∞]/T[∞]πk . Thus, T[∞]/T[∞]πk is Σ-pure-injective.

(iv): Follows directly from (i), (iii), and Theorem 4.6. ∎

When R is complete and QΛ is a separable Q-algebra, the category of Λ-lattices has
almost split sequences (see [22]). A stable tube is an Auslander–Reiten component of
the form ZA∞/τn , and we call n the rank of the tube. Explicitly, a stable tube of rank
n has points S i[ j] for 1 ≤ i ≤ n and j ∈ N. We read the index i mod n. For all i , j ∈ N, a
stable tube has a single (trivially valued) arrow S i[ j] → S i[ j + 1] and a single (trivially
valued) arrow S i[ j + 1] → S i+1[ j]. We will identify the points with (the isomorphism
type of) the Λ-lattice they represent. As for Artin algebras, generalized tubes can be
constructed from stable tubes using the following two facts.
• If A, B, C ∈ LattΛ are indecomposable and pairwise nonisomorphic and u ∶ A →

B and v ∶ A → C are irreducible morphisms, then there is w ∶ A → D such that
(u v w)T ∶ A → B ⊕ C ⊕ D is left minimal almost split.

• If u ∶ S i[ j] → S i[ j + 1] is an irreducible map, w ∶ S i[ j] → W , and W ∈ LattΛ is
indecomposable and is not isomorphic to any of S i[ j], S i+1[ j − 1], . . . , S i+( j−1)[1],
then there exists γ ∶ S i[ j + 1] → W such that w = γu.

Krause [12, Theorem 9.1] showed that if T is a stable tube (of rank n) in the module
category of an Artin algebra, with the labeling of modules as above, then for each 1 ≤
i ≤ n, the direct limit lim

-→
S i[ j] is an indecomposable pure-injective. For stable tubes in

categories of lattices, we know (Proposition 4.9) that⊕n
i=1 lim
-→

S i[ j]has a pure-injective
hull (⊕n

i=1 lim
-→

S i[ j])∗. Hence, the pure-injective hull of lim
-→

S i[ j] is (lim
-→

S i[ j])∗. This
raises the following question.

Question Let R be a complete discrete valuation domain with field of fractions Q,
and let Λ be an order R such that QΛ is a separable Q-algebra. If T is a direct
limit up a ray of irreducible monomorphisms in a stable tube in LattΛ , then is T∗
indecomposable? ∎

We are able to answer this question positively for the Ẑ2-order Γ ∶= Ẑ2C2 × C2.
The torsion-free part of the Ziegler spectrum of Γ was described in [20]. However, the
points were not described as modules.

We start by explaining the setup. Let e1 , e2 , e3 , e4 be the primitive orthogonal
idempotents as in [20]. Using these idempotents, Butler [2] defined a full functor Δ
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from the category of b-reduced Γ-lattices to the category of finite-dimensional vector
spaces over F2 with four distinguished subspaces. A Ẑ2-torsion-free Γ-module M is b-
reduced if M ∩ Me i = 2Me i for all 1 ≤ i ≤ 4. Note that, since e i ∉ Ẑ2C2 × C2, Me i and
M2e i are calculated inside Q̂2M. Puninski and Toffalori extended this functor to the
category of b-reduced Ẑ2-torsion-free modules and showed [20, Theorem 5.4] that it
is full on Ẑ2-torsion-free b-reduced pure-injective Γ-modules.

Let M be a b-reduced Ẑ2-torsion-free Ẑ2C2 × C2-module. Define M⋆ ∶= Me1 ⊕
⋯⊕ Me4. Then Δ(M) ∶= (V ; V1 , V2 , V3 , V4), where V ∶= M⋆/M and Vi ∶= Me i +
M/M ≅ Me i/M ∩ Me i = Me i/2Me i .

The category of finite-dimensional vector spaces over F2 with four distinguished
subspaces may be identified with a full subcategory of modules over the path algebra
F2D̃4. The only indecomposable representations which are not in this full subcategory
are the simple injective F2D̃4-modules. We will make this identification and consider
Δ as a functor to Mod-F2D̃4.

As observed by Puninski and Toffalori, just from the construction, one can see that
Δ is an interpretation functor. Note that if M is b-reduced and Ẑ2-torsion-free, then
Δ(M) = 0 if and only if M is Ẑ2-divisible.

Dieterich, in [6], showed that Δ induced an isomorphism from the Auslander–
Reiten quiver of F2D̃4 with all projective points removed and all simple injective
modules removed and the Auslander–Reiten quiver of LattΓ restricted to the b-
reduced lattices. Using this, he was able [6, Proposition 3.4] to compute the full
Auslander–Reiten quiver of Latt

Ẑ2 C2×C2
. Moreover, see the proof of [6, Lemma 2.2] and

[6, Proposition 3.4], Δ induces a bimodule isomorphism between IrrLattΓ(M , L) and
Irr

F2 D̃4
(Δ(M), Δ(L)) for all L, M indecomposable b-reduced Γ-lattices. In particular,

Δ sends irreducible morphisms between indecomposable b-reduced Γ-lattices to
irreducible morphisms in mod-F2D̃4. This implies that the Auslander–Reiten quiver
of Latt

Ẑ2 C2×C2
has infinitely many stable tubes of rank 1 and rank 3 stable tubes of rank

2 and Δ sends each stable tube in Latt
Ẑ2 C2×C2

to a stable tube in mod-F2D̃4.
Keeping our notation as above, let S i[ j] be the lattices in a stable tube of rank

n = 1 or n = 2 in Latt
Ẑ2 C2×C2

. Fix 1 ≤ i ≤ n and for each j ∈ N let w j ∶ S i[ j] → S i[ j + 1]
be an irreducible map. Let S i[∞] ∶= lim

-→
S i[ j] be the direct limit along the maps w j .

Then ΔS i[∞] = lim
-→

ΔS i[ j] is pure-injective and indecomposable by [12, Theorem 9.1]
since Δ sends stable tubes to stable tubes. Since Δ is full on pure-injective modules,
by [16, Lemmas 3.15 and 3.16],2 it preserves pure-injective hulls. Thus, Δ(S i[∞]) ≅
Δ(S i[∞]∗). Since S i[∞]∗ is reduced and Δ(S i[∞]∗) is indecomposable, S i[∞]∗ is
indecomposable.

So, finally, for each quasi-simple S at the base of a tube (i.e., S i[1] for some stable
tube), the S-prüfer point in [20, Theorem 6.1] is S[∞]∗, where S[∞] is the direct limit
up a ray of irreducible monomorphisms starting at S.

The module T in Question 6.2 of [20] is indecomposable but not pure-injective;
however, its pure-injective hull is indecomposable (and Ẑ2-reduced).

2The proof of the required part of [16, Lemma 3.16] is a little unclear. Lemma 3.7 clears this up.
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5 Duality

Throughout this section, let R be a Dedekind domain which is not a field, Q its field of
fractions, Λ an R-order, and QΛ a separable Q-algebra. The main aim of this section
is to show that the lattice of open sets of Zgt f

Λ is isomorphic to the lattice of open sets
of ΛZgt f . We will also show, by other methods, that the m-dimension of pp1

Λ(TfΛ)
is equal to the m-dimension of Λpp1(ΛTf) and that the Krull–Gabriel dimension of
(LattΛ , Ab) f p is equal to the Krull–Gabriel dimension of (ΛLatt, Ab) f p .

5.1 Duality for the R-reduced part of Zgt f
Λ when R is a discrete valuation domain

Throughout this subsection, R will be a discrete valuation domain, k will be a natural
number strictly greater than Maranda’s constant for Λ as an R-order, and I ∶ TfΛ →
Mod-Λk (respectively, I ∶ ΛTf → Λk-Mod) will be Maranda’s functor.

Maranda’s functor I ∶ TfΛ → Mod-Λk is an interpretation functor. The kernel of I is
the definable subcategory of R-divisible modules. Since QΛ is separable, by Remark 4.1
and the discussion just below it, all indecomposable pure-injective modules in TfΛ are
either R-reduced or R-divisible modules. When Λ is an order over a discrete valuation
domain R, we will write Zgr t f

Λ for the subset of R-reduced modules in Zgt f
Λ . We have

shown in Section 3 that if N , M ∈ TfΛ are R-reduced and pure-injective, then IN ≅ IM
implies N ≅ M and that if N is also indecomposable, then so is IN . Thus, Proposition
2.7 gives us the following theorem.

Theorem 5.1 The map which sends N ∈ Zgr t f
Λ to N/Nπk ∈ ZgΛk

induces a homeomor-
phism onto its image which is closed.

In theory, the above theorem could be used to give a description of Zgr t f
Λ and

hence Zgt f
Λ based on a description of ZgΛk

. However, as explained in Section 1, ZgΛk

is generally much more complicated than Zgt f
Λ .

Based on Prest’s duality for pp formulas, Herzog defined a lattice isomorphism
between the lattice of open subsets of ZgS and the lattice of open subsets of S Zg.

Theorem 5.2 [9] There is a lattice isomorphism D between that lattice of open subsets
of ZgS (respectively, SZg) and the lattice of open subsets of S Zg (respectively, ZgS), which
is given on basic open sets by

(ϕ/ψ) ↦ (Dψ/Dϕ)

for ϕ, ψ pp-1-formulas. Moreover, D2 is the identity map.

It is unknown if this lattice isomorphism is always induced by a homeomorphism.
If X is a closed subset of ZgS , then we will write DX for S Zg/D(ZgS/X). Since

closed subsets of ZgS are in correspondence with the definable subcategories of
Mod-S, this isomorphism also defines an inclusion preserving bijection between the
definable subcategories of Mod-S and S-Mod. IfX ⊆ Mod-S is a definable subcategory,
then we will write DX for the corresponding definable subcategory of S-Mod.

Herzog’s duality can be applied to closed subspaces of ZgS as follows. Let X
be a closed subset of ZgS . Open subsets of ZgS containing ZgS/X are in bijective
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correspondence with open subsets of X equipped with the subspace topology via the
map U ↦ U ∩ X. If U is an open subset of ZgS containing ZgS/X, then DU is an open
subset of S Zg containing S Zg/DX. Thus, D induces a lattice isomorphism between
the lattice of open sets of X and the lattice of open sets of DX both equipped with the
appropriate subspace topology.

Herzog’s isomorphism D sends the definable subcategory TfΛ to the definable
subcategory of R-divisible Λ-modules. Thus, directly applying Herzog’s duality does
not give an isomorphism between the open subsets of Zgt f

Λ and ΛZgt f . With this in
mind, we instead use the right module version of Maranda’s functor I to move to
Mod-Λk , then we apply D there, and then we use the left module version of Maranda’s
functor to move back to ΛTf. This will give us an isomorphism between the lattice of
open subsets of Zgr t f

Λ and ΛZgr t f .
Our first step is to show that ⟨ITfΛ⟩ = D⟨IΛTf⟩.
The contravariant functor

HomR(−, R) ∶ Mod-Λ → Λ-Mod

induces an equivalence between the category of right Λ-lattices and the opposite of
the category of left Λ-lattices (see [21, Section IX 2.2]). If M is right Λ-lattice, denote
the left Λ-lattice HomR(M , R) by M†.

The ring Λ/πn Λ is an R/πn R-Artin algebra. For all S-Artin algebras A, there is a
duality between mod-A andA-mod given by HomS(−, E)where E is the injective hull
of S/rad(S). We will write M∗ for Hom(M , E). If S = R/πn R, then S/rad(S) = R/πR.
One can check, using Baer’s criterion, that R/πn R is injective as an S-module. The map
which sends a + πR ∈ R/πR to aπn−1 + πn R ∈ R/πn R embeds R/πR into the socle of
R/πn R which is simple. Thus, E = R/πn R is the injective hull of S/rad(S) = R/πR.

We will now show that if L is a right Λ-lattice, then (IL)∗ = IL†.
Lemma 5.3 If M is a right Λ-lattice and n ∈ N, then

HomR(M , R)/πnHomR(M , R) ≅ HomR/πn(M/Mπn , R/πn R).

Proof For f ∈ HomR(M , R), let f ∶ M/Mπn → R/πn R ∈ HomR/πn R(M/Mπn ,
R/πn R) be the homomorphism which sends m + Mπn to f (m) + πn R.

Let Φ ∶ HomR(M , R) → HomR/πn R(M/Mπn , R/πn R) be defined by Φ( f ) = f . It
is clear that Φ is a homomorphism of left Λ-modules. Since M is projective as an R-
module, Φ is surjective.

If Φ( f ) = 0, then for all m ∈ M, πn ∣ f (m). For all m ∈ M, let g(m) ∈ M be such
that g(m)πn = f (m). Since M is R-torsion-free, the choice of g(m) is unique. From
this, it follows easily that g is a homomorphism of R-modules. Thus, if Φ( f ) = 0, then
f ∈ πnHomR(M , R). ∎

The next remark follows from the fact (see [17, Corollary 1.3.13] for instance) that
if A is an Artin algebra, ϕ/ψ is a pp-pair, and M is a finite length A-module, then
ϕ(M) = ψ(M) if and only if Dϕ(M∗) = Dψ(M∗).
Remark 5.4 Suppose that A is an Artin algebra and {M i ∣ i ∈ I} is a set of finite
length right A-modules. Then

D⟨M i ∣ i ∈ I⟩ = ⟨M∗i ∣ i ∈ I⟩.
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Lemma 5.5 The following equalities hold.

⟨ITfΛ⟩ = ⟨IL ∣ L is an indecomposable right Λ-lattice⟩(1)

= ⟨IM† ∣ M is an indecomposable left Λ-lattice⟩(2)

= ⟨(IM)∗ ∣ M is an indecomposable left Λ-lattice⟩(3)

= D⟨IM ∣ M is an indecomposable left Λ-lattice⟩(4)
= D⟨IΛTf⟩.(5)

Proof (1) and (5). These hold because all N ∈ TfΛ are direct limits of Λ-lattices, all
Λ-lattices are direct sums of indecomposable Λ-lattices, and I commutes with direct
limits.

(2) For all (right) Λ-lattices L†† ≅ L and L† is a (left) Λ-lattice. (3) holds by Lemma
5.3 and (4) holds by Remark 5.4. ∎

Herzog’s duality D gives an isomorphism from the lattice of open sets of Zg(⟨ITfΛ⟩)
to the lattice of open sets of Zg(D⟨ITfΛ⟩). By Lemma 5.5, D⟨ITfΛ⟩ = ⟨IΛTf⟩.

If U is an open subset of Zgr t f
Λ (respectively, ΛZgr t f ), then write IU for the set of

all IN where N ∈ U .

Definition 5.1 Let U be an open subset of Zgr t f
Λ . Define

dU ∶= {N ∈ ΛZgr t f ∣ IN ∈ DIU}.

By Theorem 5.1, IU is an open subset of Zg(⟨ITfΛ⟩). So DIU is an open subset of
Zg(⟨IΛTf⟩). Again by Theorem 5.1, the set of N ∈ ΛZgr t f such that IN ∈ DIU is an
open subset of ΛZgr t f .

Proposition 5.6 The map d between the lattice of open sets of Zgr t f
Λ and ΛZgr t f is a

lattice isomorphism.

Proof The homeomorphism from Theorem 5.1 sends an open subset U of Zgr t f
Λ to

IU ⊆ Zg(⟨ITfΛ⟩). So the map sending U to IU is a lattice isomorphism. By Lemma 5.5,
Herzog’s duality gives a lattice isomorphism between the open subsets of Zg(⟨ITfΛ⟩)
and the lattice of open subset of Zg(⟨IΛTf⟩). Thus, the map which sends an open subset
U of Zgr t f

Λ to DIU ⊆ Zg(⟨IΛTf⟩) is a lattice isomorphism. Finally, the inverse of the
homeomorphism from Theorem 5.1 sends an open subset of W ⊆ Zg(⟨IΛTf⟩) to the
set of all N ∈ ΛZgr t f such that IN ∈ W . So this map is also a lattice isomorphism.
Since d is the composition of these three lattice isomorphisms, d is also a lattice
isomorphism. ∎

If Λ is an order over a complete discrete valuation domain, then the Λ-lattices are
pure-injective (see [8, Proposition 2.2] for instance). When R is not complete, we can
instead consider the lattices over the R̂-order Λ̂. Then the Λ̂-lattices are pure-injective
as Λ̂-modules and hence also as Λ-modules. Moreover, if L is an indecomposable Λ̂-
lattice, then, since L is R-reduced, L is also indecomposable as a Λ-module (see [14,
Remark 1] for a proof over group rings that also works in our context).
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Proposition 5.7 Let R be a discrete valuation domain and Λ an R-order. If L is an
indecomposable right Λ̂-lattice, then for all open sets U ⊆ Zgr t f

Λ , L ∈ U if and only if
L† ∈ dU where L† ∶= HomR̂(L, R̂).
Proof First note that IL is finite-length as a Λk-module. Since Λk is an Artin algebra,
if M ∈ Zg(⟨ITfΛ⟩) is finite-length, then for all open subsets U of Zg(⟨ITfΛ⟩), M ∈ U
if and only if M∗ ∈ DU (see [17, Corollary 1.3.13]). So, if L is an indecomposable right
Λ̂-lattice, then L ∈ U if and only if IL ∈ IU and IL ∈ IU if and only if (IL)∗ ∈ DIU . By
Lemma 5.3, (IL)∗ = IL†, so (IL)∗ ∈ DIU if and only if L† ∈ dU . So L ∈ U if and only if
L† ∈ dU . ∎

5.2 Duality for Zgt f
Λ

We now work to extend Proposition 5.6 in two ways concurrently. We extend the
isomorphism to an isomorphism between the lattices of open subsets of Zgt f

Λ and
ΛZgt f and we extend the statement to the case where R is a Dedekind domain (which
is not a field).

In order to do this, we need to recall some key features of Zgt f
Λ from [8]. As

explained in [8, Section 3], for each P ∈ MaxR, the canonical homomorphism Λ → ΛP

induces, via restriction of scalars, an embedding of Zgt f
ΛP

into Zgt f
Λ and the image of

this embedding is closed. We identify Zgt f
ΛP

with its image. Moreover, for all N ∈ Zgt f
Λ ,

there exists a P ∈ MaxR such that N ∈ Zgt f
ΛP

. So

Zgt f
Λ = ⋃

P∈MaxR
Zgt f

ΛP
.

Finally, if N ∈ ZgΛP
for all P ∈ MaxR, then N is R-divisible and hence may be viewed

as a module over QΛ. Since QΛ is separable, hence semisimple, all indecomposable
R-divisible modules, when viewed as QΛ-modules, are simple.

For each P ∈ MaxR, let P∣x denote the pp formula ∃y1 , . . . , yn x = ∑n
i=1 y i r i , where

r1 , . . . rn generate P. In all Λ-modules M, P∣x defines the subset MP. If P, P′ ∈ MaxR
are not equal, then (x = x/P∣x) ∩ (x = x/P′∣x) is empty. For all N ∈ Zgt f

Λ , either N is
R-divisible or N ∈ (x = x/P∣x) for some P ∈ MaxR. So

Zgt f
Λ = ZgQ Λ ∪ ⋃

P∈MaxR
(x = x/P∣x).

Note that (x = x/P∣x) = Zgt f
ΛP
/ZgQ Λ . Under the assumption that QΛ is a semisim-

ple Q-algebra, this means that (x = x/P∣x) is the set of RP-reduced indecomposable
pure-injective ΛP-modules. For this reason, we will write Zgr t f

ΛP
for this set. Note that

this notation matches that of the previous section when Λ is an order over a discrete
valuation domain.
Theorem 5.8 [8, Theorem 3.1] Let R be a Dedekind domain with field of fractions Q,
and Λ an R-order such that QΛ is semisimple. If N ∈ Zgt f

Λ , then either
• N is a simple QΛ-module or
• there is some maximal ideal P of R such that N ∈ Zgt f

Λ̂P
and N is RP-reduced.

Moreover, if N ∈ Zgt f
Λ̂P

is RP-reduced, then N ∈ Zgt f
Λ .
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This theorem means that if QΛ is separable, then the RP-reduced points of Zgt f
Λ

can be identified with the R̂P-reduced (equivalently, RP-reduced) points of Zgt f
Λ̂P

.
Following [14], it is shown in [8, Theorem 3.3] that the topology on the set of RP-
reduced points of Zgt f

Λ is the same whether it is viewed as a subspace of Zgt f
ΛP

or Zgt f
Λ̂P

.

Thus, we may identify Zgr t f
ΛP

and Zgr t f
Λ̂P

.
We have already mentioned in Section 5.1 that a Λ̂P-lattice is pure-injective.

Therefore, the restrictions of indecomposable Λ̂P-lattices to Λ are points in Zgt f
Λ .

From now on, if P ∈ MaxR, then let dP denote the isomorphism between the
lattice of open subsets of Zgr t f

ΛP
and of ΛP Zgr t f induced by d for ΛP . Patching the dP

together as P ∈ MaxR varies will give us an isomorphism between the open subset of
⋃P∈MaxR Zgr t f

ΛP
⊆ Zgt f

Λ and the open subsets of⋃P∈MaxR ΛP Zgr t f ⊆ ΛZgt f . Thus, we just
need to know what to do with open subsets which contain R-divisible points.

Let e1 , . . . , en be a complete set of centrally primitive orthogonal idempotents for
QΛ. For each 1 ≤ i ≤ n, e i QΛ is isomorphic as a right QΛ-module to S(α i)

i for some
simple right QΛ-module S i and if S i ≅ S j then i = j.

Lemma 5.9 [8, Lemma 2.7] Let N ∈ Zgt f
Λ and S ∈ ZgQ Λ . If S is a direct summand of

QN, then S is in the closure of N. In particular, if N is a closed point in Zgt f
Λ , then N ∈

ZgQ Λ .
Lemma 5.10 Let D be a Dedekind domain with field of fractions Q, and let Λ be an
order over D such that QΛ is semisimple. Let e ∈ QΛ be a centrally primitive idempotent,
let S be the simple right QΛ-module corresponding to e, and suppose that d ∈ D is such
that ed ∈ Λ. The following are equivalent for all N ∈ Zgt f

Λ .
(1) N ∈ (xd(1 − e) = 0/x = 0).
(2) S is a direct summand of QN.
(3) S is in the closure of N.
Proof (1) ⇒ (2) Suppose md(1 − e) = 0 and m ≠ 0. Then, as an element of QN
viewed as a QΛ-module, m(1 − e) = 0. Thus, m = me. The kernel of the homomor-
phism from QΛ to QN sending 1 to m contains (1 − e)QΛ and thus induces a
nonzero homomorphism from eQΛ to QN . Thus, S is a submodule and hence a direct
summand of QN .
(2) ⇒ (3) This is Lemma 5.9.
(3) ⇒ (1) Suppose S is in the closure of N. Since eQΛ(1 − e)d = 0, S ∈

(xd(1 − e) = 0/x = 0). Thus, N ∈ (xd(1 − e) = 0/x = 0). ∎

Note that the above shows that the set of points specializing to a closed point in
Zgt f

Λ is an open set. For S ∈ ZgQ Λ , we will write V(S) for the open set of points whose
closure contains S.

Corollary 5.11 Let U be an open subset of Zgt f
Λ . Then

U = ⋃
P
(U ∩ Zgr t f

ΛP
) ∪ ⋃

S∈λ(U)
V(S),

where λ(U) ∶= U ∩ ZgQ Λ .
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Proof If N ∈ Zgt f
Λ , then either N ∈ Zgr t f

ΛP
for some P ∈ MaxR or N ∈ ZgQ Λ . So, since

for all S ∈ ZgQ Λ , S ∈ V(S), U ⊆ ⋃P(U ∩ Zgr t f
ΛP
) ∪ ⋃S∈λ(U)V(S).

Suppose S ∈ λ(U) and N ∈ V(S). Then S is in the closure of N. Hence, N ∈ U . Thus,
V(S) ⊆ U . So U ⊇ ⋃P(U ∩ Zgr t f

ΛP
) ∪ ⋃S∈λ(U)V(S). ∎

For each simple QΛ-module S, we now consider where to send the open set V(S).
In particular, we need to calculate the image of V(S) ∩ Zgr t f

ΛP
under dP for each P ∈

MaxR.

Lemma 5.12 Let R be a discrete valuation domain and Λ an R-order. For all M ∈ LattΛ ,
QHomR(M , R) and HomQ(MQ , Q) are isomorphic as QΛ-modules.

Proof Let Δ ∶ HomR(M , R) → HomQ(MQ , Q) be defined by setting Δ( f )(m ⋅ q) =
f (m) ⋅ q for all m ∈ M and q ∈ Q. A quick computation shows that for all f ∈
HomR(M , R), Δ( f ) is a well-defined element of HomQ(MQ , Q) and Δ is an injective
homomorphism of left Λ-modules. Since HomQ(MQ , Q) is Q-divisible, Δ extends to
an injective homomorphism Δ′ from QHomR(M , R) to HomQ(MQ , Q).

Suppose that M is rank n. Then dimQ MQ = dimQ HomQ(MQ , Q) =
dimQ QHomR(M , R) = n. Thus, Δ′ is an injective homomorphism between
two n-dimensional Q-vector spaces and hence is surjective. ∎

Lemma 5.13 Let R be a discrete valuation domain. Let L ∈ LattΛ , e a central idempo-
tent of QΛ, and d ∈ R be such that ed ∈ Λ. Then L ∈ (x(e − 1)d = 0/x = 0) if and only
if L† ∈ ((e − 1)dx = 0/x = 0).

Proof Suppose L ∈ (x(e − 1)d = 0/x = 0). Then there exists a ∈ QL/{0} such that
a(e − 1) = 0. By Lemma 5.12, QHomR(L, R) ≅ HomQ(QL, Q). Thus, we need to show
that there exists 0 ≠ f ∈ HomQ(QL, Q) such that (e − 1) ⋅ f = 0. Since e is central,
QL = QLe ⊕ QL(e − 1) and QLe ≠ 0. Take f ∈ HomQ(QL, Q) such that f is zero on
QL(e − 1) and nonzero on QLe. Then for all m ∈ QL, (e − 1) ⋅ f (m) = f (m(e − 1)) =
0, but f ≠ 0. Thus, there exists b ∈ QL†/{0} such that (e − 1) ⋅ b = 0. There exists
r ∈ R/{0} such that rb ∈ L† and (e − 1)d ⋅ rb = 0. So L† ∈ ((e − 1)dx = 0/x = 0). ∎

Lemma 5.14 Let a ∈ Λ. The set of indecomposable Λ̂P-lattices, as P ∈ MaxR varies, is
dense in Zgt f

Λ / (xa = 0/x = 0).

Proof Suppose that (ϕ/ψ) ∩ (Zgt f
Λ / (xa = 0/x = 0)) ≠ ∅. Pick N ∈ (ϕ/ψ) ∩

(Zgt f
Λ / (xa = 0/x = 0)). Since N is a direct union of its finitely generated submodules,

there exists a finitely generated submodule L of N such that ϕ(L) ⊋ ψ(L). Since L
is a submodule of N, L is R-torsion-free and annL a = 0. Thus, ϕ(H(L)) ⊋ ψ(H(L))
and annH(L)a = 0. Since H(L) is isomorphic to ∏P∈MaxR L̂P by Lemma 2.1, for all
P ∈ MaxR, annL̂P

a = 0, and there exists P ∈ MaxR such that ϕ(L̂P) ⊋ ψ(L̂P). Thus,
there exist a P ∈ MaxR and a Λ̂P-lattice M such that ϕ(M) ⊋ ψ(M) and annM a = 0.
Since the category of Λ̂P-lattices is Krull–Schmidt, it follows that there exists an
indecomposable Λ̂P-lattice with the required properties. ∎

The following is proved in the case that R is a discrete valuation domain in [14].
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Corollary 5.15 The set of indecomposable Λ̂P-lattices, as P ∈ MaxR varies, is a dense
subset of Zgt f

Λ , and each Λ̂P-lattice is isolated in Zgt f
Λ . Therefore, all isolated points in

Zgt f
Λ are Λ̂P-lattices for some P ∈ MaxR.

Proof Density is a special case of Lemma 5.14. It is shown in [8, Lemma 2.4] that the
indecomposable Λ̂P-lattices are isolated in Zgt f

Λ̂P
. As explained just after Theorem 5.8,

we may identify Zgr t f
Λ̂P

with Zgr t f
ΛP

. Thus, the Λ̂P-lattices are isolated in Zgr t f
ΛP

. Finally,

viewed as a subspace of Zgt f
Λ , Zgr t f

ΛP
is equal to the open set (x = x/P∣x). Thus, the

indecomposable Λ̂P-lattices are isolated in Zgt f
Λ . The final statement follows from the

first two statements. ∎

Recall that for each P ∈ MaxR, dP is the isomorphism between the lattice of open
subsets of Zgr t f

ΛP
and of ΛP Zgr t f defined in Section 5.1.

Lemma 5.16 For all simple QΛ-modules S and all P ∈ MaxR,

dP(V(S) ∩ Zgr t f
ΛP
) = V(S∗) ∩ ΛP Zgr t f .

Proof We first show that if L is an indecomposable right Λ̂P-lattice and S is
a simple right QΛ-module, then L ∈ V(S) if and only if L† ∈ V(S∗). Let e be a
centrally primitive idempotent of QΛ corresponding to S. Note that e is central
and idempotent as an element of Q̂P Λ̂. We have shown in Lemma 5.13 that L ∈
(x(e − 1)d = 0/x = 0) if and only if L† ∈ ((e − 1)dx = 0/x = 0). So it is enough to
show that ((e − 1)dx = 0/x = 0) = V(S∗). However, this is clear because certainly
(e − 1)S∗ = 0, and thus e is a centrally primitive idempotent corresponding to S∗.

Since, by Lemma 5.14, the indecomposable right Λ̂P-lattices are dense in the closed
subset Zgr t f

ΛP
/ (x(e − 1)d = 0/x = 0) of Zgr t f

ΛP
,

Zgr t f
ΛP
/ (x(e − 1)d = 0/x = 0) ⊆ Zgr t f

ΛP
/dP(((e − 1)dx = 0/x = 0) ∩ ΛP Zgr t f ).

So dP(((e − 1)dx = 0/x = 0) ∩ ΛP Zgr t f ) ⊆ (x(e − 1)d = 0/x = 0). The same argu-
ment using left Λ̂P-lattices shows that

dP((x(e − 1)d = 0/x = 0) ∩ Zgr t f
ΛP
) ⊆ ((e − 1)dx = 0/x = 0) .

So, since d2
P is the identity,

dP((x(e − 1)d = 0/x = 0) ∩ Zgr t f
ΛP
) = ((e − 1)dx = 0/x = 0) ∩ ΛP Zgr t f . ∎

Definition 5.2 Let U be an open subset of Zgt f
Λ . Define

dU ∶= ⋃
P∈MaxR

dP(U ∩ Zgr t f
ΛP
) ∪ ⋃

S∈λ(U)
V(S∗),

where λ(U) ∶= U ∩ ZgQ Λ .
We will also use d to denote the analogous map for open subsets of ΛZgt f .

Theorem 5.17 Let R be a Dedekind domain, Q its field of fractions, and Λ an R-order
with QΛ a separable Q-algebra.
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The mapping d is an isomorphism between the lattice of open sets of Zgt f
Λ and ΛZgt f

such that
(1) if L is an indecomposable right Λ̂P-lattice, then for all open sets U ⊆ Zgt f

Λ , L ∈ U if
and only if L† ∈ dU, and

(2) for all open sets U ⊆ Zgt f
Λ , if S is a simple QΛ-module, then S ∈ U if and only if

S∗ ∈ dU.

Proof Let U be an open subset of Zgt f
Λ . We start by showing that for all open subsets

U ⊆ Zgt f
Λ , d2U = U . So

d2U = d[⋃
P

dP(U ∩ Zgr t f
ΛP
) ∪ ⋃

S∈λ(U)
V(S∗)]

= ⋃
P

dP[dP(U ∩ Zgr t f
ΛP
) ∪ ⋃

S∈U
V(S∗) ∩ ΛP Zgr t f ] ∪ ⋃

S∈λ(U)
V(S)

= ⋃
P

d2
P(U ∩ Zgr t f

ΛP
) ∪⋃

P
⋃

S∈λ(U)
dP[V(S∗) ∩ ΛP Zgr t f ] ∪ ⋃

S∈λ(U)
V(S)

= ⋃
P
(U ∩ Zgr t f

ΛP
) ∪ ⋃

S∈λ(U)
V(S)

= U .

The first two equalities follow from the definition of d. The third is true because each dP
is a lattice homomorphism. The fourth follows from Lemma 5.16 and the fifth follows
from Corollary 5.11.

Thus, d gives a bijection between the lattice of open subsets of Zgt f
Λ and ΛZgt f . We

now just need to show that d preserves inclusion.
Suppose U ⊆ W are open subsets of Zgt f

Λ . Then λ(U) ⊆ λ(W) and U ∩ Zgr t f
ΛP

⊆

W ∩ Zgr t f
ΛP

for all P ∈ Max(R). So dP(U ∩ Zgr t f
ΛP
) ⊆ dP(W ∩ Zgr t f

ΛP
) for all P ∈ MaxR.

For all open sets U, S ∈ λ(U) if and only if S∗ ∈ λ(dU). So λ(U) ⊆ λ(W) implies
λ(dU) ⊆ λ(dW). Therefore, dU ⊆ dW .

Finally, (1) holds for d by Proposition 5.6 and (2) holds by definition of d. ∎

We finish this section with a different aspect of duality.

Corollary 5.18 Let R be a discrete valuation domain with maximal ideal generated
by π. The lattices [π∣x , x = x]TfΛ

and [π∣x , x = x]ΛTf are anti-isomorphic.

Proof Let k > k0, and let p = π + πk Λ. By Proposition 3.6, [π∣x , x = x]TfΛ is isomor-
phic to [p∣x , x = x]⟨ITfΛ⟩ and [π∣x , x = x]ΛTf is isomorphic to [p∣x , x = x]⟨IΛTf⟩. So, it
is enough to show that [p∣x , x = x]⟨ITfΛ⟩ is anti-isomorphic to [p∣x , x = x]⟨IΛTf⟩.

We have seen in Lemma 5.5 that D⟨ITfΛ⟩ = ⟨IΛTf⟩. Thus, Prest’s duality for pp
formulas gives an anti-isomorphism between pp1

Λk
(⟨ITfΛ⟩) and Λk pp1(⟨IΛTf⟩). Thus,

[p∣x , x = x]⟨ITfΛ⟩ is anti-isomorphic to [x = 0, px = 0]⟨IΛTf⟩.
The formula y = x pk−1 induces a lattice isomorphism between the intervals

[x pk−1 = 0, x = x] and [y = 0, pk−1∣y] of pp1
Λk

defined by

ϕ(x) ↦ ∃x(y = x pk−1 ∧ ϕ(x))
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(see the proof of Goursat’s lemma [24, Lemma 8.9]). On ⟨IΛTf⟩, pk−1x = 0 is equivalent
to p∣x and pk−1∣y is equivalent to py = 0. Thus, [x = 0, px = 0]⟨IΛTf⟩ is isomorphic to
[p∣x , x = x]⟨IΛTf⟩. ∎

For the definition of the m-dimension of a modular lattice, see [17, Section 7.2].
Corollary 5.19 Suppose R is a Dedekind domain with field of fractions Q, Λ is an R-
order, and QΛ is separable. The m-dimensions of pp1

Λ(TfΛ) and Λpp1(ΛTf) are equal.
Proof For each P ∈ MaxR, by [8, Corollary 3.8], the m-dimension of pp1

ΛP
(TfΛP)

is equal to the m-dimension of [P∣x , x = x]TfΛP
plus 1. Since RP is discrete valua-

tion domain, by Corollary 5.18, the m-dimension of [P∣x , x = x]TfΛP
is equal to the

m-dimension of [P∣x , x = x]ΛP Tf. Thus, by [8, Corollary 3.8], ΛP pp1(ΛP Tf) has m-
dimension equal to the m-dimension of [P∣x , x = x]TfΛP

plus 1, i.e., equal to the m-
dimension of pp1

ΛP
(TfΛP).

By [8, Remark 3.9], the m-dimension of pp1
Λ(TfΛ) (respectively, Λpp1(ΛTf))

is equal to the supremum of the m-dimensions of pp1
ΛP
(TfΛP) (respectively,

ΛP pp1(ΛP Tf)) where P ∈ MaxR. ∎

We now translate the above corollary into a result about the Krull–Gabriel dimen-
sions of (LattΛ , Ab) f p and (ΛLatt, Ab) f p . See [7, Definition 2.1] for a definition of the
Krull–Gabriel dimension of a (skeletally) small abelian category.

Recall that a full subcategory C ⊆ mod-S which is closed under isomorphism,
finite direct sums, and direct summands is covariantly finite in mod-S if for each
M ∈ mod-S there exists a homomorphism fM ∶ M → MC with MC ∈ C such that all
homomorphisms g ∶ M → L with L ∈ C, factor through fM . For M ∈ mod-Λ, let torM
denote the submodule {m ∈ M ∣ there exists r ∈ R/{0} with mr = 0} consisting of R-
torsion elements of M. Then M/torM ∈ LattΛ and for any L ∈ LattΛ and g ∶ M → L,
torM ⊆ ker g. Hence, g factors through the canonical surjection fM ∶ M → M/torM.
Therefore, LattΛ is covariantly finite in mod-Λ.

If C ⊆ mod-S is a covariantly finite subcategory, then (C, Ab) f p is equivalent to
(mod-S , Ab) f p/S(C), the Serre localization of (mod-S , Ab) f p at the Serre subcate-
gory

S(C) ∶= {F ∈ (mod-S , Ab) f p ∣ FC = 0 for all C ∈ C}.

See [10] for details.
By [17, Corollary 13.2.2], the Krull–Gabriel dimension of (C, Ab) f p/S(C) is equal

to the m-dimension of pp1
S(⟨C⟩).

Applying this to LattΛ as a covariantly finite subcategory of mod-Λ, we get that the
Krull–Gabriel dimension of (LattΛ , Ab) f p is equal to the m-dimension of pp1

ΛTfΛ .
Thus, we get the following corollary to Corollary 5.19.
Corollary 5.20 Suppose R is a Dedekind domain with field of fractions Q, Λ is an R-
order, and QΛ is separable. The Krull–Gabriel dimension of (LattΛ , Ab) f p is equal to
the Krull–Gabriel dimension of (ΛLatt, Ab) f p .
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