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Abstract

In this paper, we extend the notion of Shintani descent to general (possibly
disconnected) algebraic groups defined over a finite field Fq. For this, it is essential
to treat all the pure inner Fq-rational forms of the algebraic group at the same time.
We prove that the notion of almost characters (introduced by Shoji using Shintani
descent) is well defined for any neutrally unipotent algebraic group, i.e. an algebraic
group whose neutral connected component is a unipotent group. We also prove that
these almost characters coincide with the ‘trace of Frobenius’ functions associated with
Frobenius-stable character sheaves on neutrally unipotent groups. In the course of the
proof, we also prove that the modular categories that arise from Boyarchenko and
Drinfeld’s theory of character sheaves on neutrally unipotent groups are in fact positive
integral, confirming a conjecture due to Drinfeld.

1. Introduction

Let us fix a prime number p, q a power of p, and let us set k = Fq. Let G be an algebraic group
over k equipped with an Fq-structure defined by a Frobenius F : G → G. Shintani descent on
G compares the irreducible representations of the finite groups G(Fqm) and G(Fq) where m is
a positive integer. We begin by recalling the notion of Shintani descent for connected algebraic
groups from [Sho92].

1.1 Shintani descent for connected algebraic groups
We refer to [Sho92] for the details of the constructions in this introduction. On the other hand,
all these constructions will be carried out in detail in a more general setting in the subsequent
sections of this paper.

Suppose that G is connected. Shintani descent for G was studied by Shoji in [Sho92],
extending the work [Shi76] of Shintani for general linear groups. Let m be any positive integer
and consider the mth power of the Frobenius

Fm : G → G.

This is a Frobenius map for an Fqm-rational structure on G. The Frobenius F restricts to a
group automorphism F : GF

m
→ GF

m
of order m and hence acts on the finite set Irrep(GF

m
)

of irreducible characters of GF
m

. Shintani descent gives us a way to compare the two sets
Irrep(GF

m
)F and Irrep(GF ).
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More precisely, consider the action of GF
m

on itself by F -twisted conjugation defined by

g : h 7→ ghF (g−1). (1)

Let us denote the set of orbits of this action by GF
m
/∼F . Let Fun(GF

m
/∼F ) denote the space

of F -conjugation invariant Q`-valued functions on GF
m

where ` 6= p is a prime number.

Remark 1.1. In this paper we will always consider functions and characters with values in Q`

since we will use the theory of Q`-sheaves and complexes. Once we fix an isomorphism Q`
∼= C,

we can talk of ‘complex conjugation’ on the field Q` and we can define the usual Hermitian inner
product on the function spaces Fun(GF

m
/ ∼F ) ⊂ Fun(GF

m
). The choice of the isomorphism

Q`
∼= C does not matter because in this paper we will only need to consider ‘complex conjugation’

on the subfield Qab ⊂ Q` where ‘complex conjugation’ can be canonically defined.

Now given χ ∈ Irrep(GF
m

)F , we can define1 a function χ̃ ∈ Fun(GF
m
/∼F ) (well defined up

to scaling by mth roots of unity). The set {χ̃ | χ ∈ Irrep(GF
m

)F } forms an orthonormal basis of

the Hermitian inner product space Fun(GF
m
/∼F ).

Using Lang’s theorem, we can define the norm map which is a bijection between the set
GF

m
/∼F and the set GF / ∼ of conjugacy classes in GF :

Nm : (GF
m
/∼F )

∼=−→ (GF /∼). (2)

Hence we get an isomorphism of function spaces

N−1
m
∗

: Fun(GF
m
/∼F )

∼=−→ Fun(GF /∼). (3)

Definition 1.2. For a positive integer m, Shintani descent is defined to be the map

Shm : Irrep(GF
m

)F ↪→ Fun(GF / ∼) (4)

defined by

Irrep(GF
m

)F 3 χ 7→ N−1
m
∗
(χ̃) ∈ Fun(GF / ∼). (5)

Remark 1.3. The map Shm is only well defined up to scaling by mth roots of unity since this is
so for the assignment Irrep(GF

m
)F 3 χ 7→ χ̃ ∈ Fun(GF

m
/ ∼F ).

The image of Shm forms an orthonormal basis of the Hermitian space Fun(GF / ∼) which
we call the mth Shintani basis. The set Irrep(GF ) of irreducible characters of GF gives another
orthonormal basis.

Remark 1.4. In general these two bases of Fun(GF / ∼) are not equal (even for m = 1; see § 3.2).
In fact, describing the relationship between these two bases is one of the objectives of this paper.
However, if G = GLn as in the original case studied by Shintani, then these bases are in fact
equal and Shintani descent defines an explicit bijection between the sets Irrep(GLn(Fqm))F and
Irrep(GLn(Fq)).

1 Extend χ to an irreducible character χ′ of the semidirect product GF
m

〈F 〉, where 〈F 〉 is the cyclic group of order
m generated by F . Then set χ̃(g) = χ′(gF ) for g ∈ GF

m

. Note that there is a choice involved in extending χ to
χ′, and the different choices differ by scaling by mth roots of unity on the coset GF

m

· F ⊂ GF
m

〈F 〉.
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Shintani descent for algebraic groups

In [Sho92] Shoji proved that if G is connected and satisfies certain further conditions, then
the mth Shintani basis of Fun(GF / ∼) is (up to scaling by roots of unity) independent of m
if m is sufficiently divisible. The elements of this common Shintani basis (when it exists) for
sufficiently divisible m are known as the almost characters of GF . Shoji proved that the almost
characters are eigenvectors for the twisting operator defined by setting m = 1 in (3):

N∗1 : Fun(GF / ∼) → Fun(GF / ∼). (6)

Moreover, if G is reductive and satisfies some further conditions (e.g. if G has connected center
or G is special linear and if p is not too small) then Shoji has proved that the almost characters
of GF coincide with the ‘trace of Frobenius’ functions associated with F -stable character sheaves
on G. Our main result, Theorem 1.7 below, says that analogues of all these results are true for
neutrally unipotent groups G, namely groups such that their neutral connected components G◦

are unipotent algebraic groups.

1.2 Shintani descent in general and pure inner forms
In [Sho92], an analogous descent construction was also carried out for disconnected groups under
some additional conditions. In § 3 we will define Shintani descent in complete generality. The
main difficulty in treating the disconnected case is the fact that the Lang isogeny for disconnected
groups may not be surjective. However, this can be overcome if we consider not just the Frobenius
F that we start out with, but also all pure inner forms of F . We will now briefly describe the
main results of this paper.

Let G be any (possibly disconnected) algebraic group over k. Let F : G → G be a Frobenius
map defining an Fq-rational structure on G. Consider the F -twisted conjugation action of G on
itself as described by (1). Let H1(F,G) denote the set of F -twisted conjugacy classes in G. By
Lang’s theorem we have a natural bijection H1(F,G) = H1(F,Π0(G)). In particular, H1(F,G) is
a finite set and each orbit of the F -twisted conjugation action is a union of some of the connected
components of the group G.

For each g ∈ G, we can define a new Frobenius map gF := ad(g) ◦ F : G → G which we call
an inner form of F . The isomorphism class of the Fq-rational form of G defined by the Frobenius
gF only depends on the F -twisted conjugacy class of g since we have a commutative diagram

G
gF

//

ad(h)
��

G

ad(h)
��

G
hgF (h−1)F

// G

for each h, g ∈ G. We are interested in the representation theory of GF . However, it is more
natural to consider all pure inner forms Gad(g)◦F as g ∈ G runs over a set of representatives of
H1(F,G).

Definition 1.5. We define the set

Irrep(G,F ) :=
∐

〈g〉∈H1(F,G)

Irrep(Gad(g)◦F ) =
∐

〈g〉∈H1(F,G)

Irrep(GgF ) (7)

and the commutative Q`-algebra (under convolution of functions)

Fun([G], F ) :=
∏

〈g〉∈H1(F,G)

Fun(GgF / ∼). (8)
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We equip Fun([G], F ) with the standard Hermitian inner product. By taking the characters
of irreducible representations, we can consider the set Irrep(G,F ) as an orthonormal basis of
Fun([G], F ).

In § 3.1, for each positive integer m, we will define a Shintani descent map (well defined up
to scaling by mth roots of unity)

Shm : Irrep(G,Fm)F ↪→ Fun([G], F ) (9)

generalizing (4). The image of Shm inside Fun([G], F ) is an orthonormal basis which we again
call the mth Shintani basis (which is well defined up to scaling by mth roots of unity).

Also, just as in the connected case (see (6)), we will construct a (unitary) twisting operator

Θ = N∗1 : Fun([G], F ) → Fun([G], F ). (10)

The map N1 that we will define in § 3.1 permutes the set of rational conjugacy classes of all the
pure inner forms within each geometric conjugacy class.

Remark 1.6. Each irreducible character χ ∈ Irrep(G,F ) ⊂ Fun([G], F ) is supported on exactly
one pure inner form GgF . However, if χ ∈ Irrep(G,Fm)F , then Shm(χ) ∈ Fun([G], F ) can be
non-zero on multiple pure inner forms. Also the map N1 can map a rational conjugacy class of
one inner form to a rational conjugacy class of a different inner form. From these considerations
we see that it is essential to consider all pure inner forms GgF at the same time.

We now introduce the category DG(G). This is the triangulated braided monoidal category of
conjugation equivariant Q`-complexes on G. The monoidal structure comes from the convolution
with compact support of Q`-complexes. For each object C ∈ DG(G), we have functorial
automorphisms θC : C → C known as twists. We refer to [BD14] for more about the structure
of the category DG(G). We recall from [Des14b, § 2.4.8] that, given an object C ∈ DG(G) and
an isomorphism ψ : F ∗C → C, we have the associated ‘trace of Frobenius’ function TC,ψ ∈
Fun([G], F ).

We can now state our main result. Let G be an algebraic group such that its neutral connected
component G◦ is a unipotent group. In this case, the notion of character sheaves on G has been
defined2 in [BD14]. We let CS(G) denote the set of character sheaves on G. These are (the
isomorphism classes of) certain special objects in the category DG(G).

Theorem 1.7. Let G be a neutrally unipotent group over k as above. Let F : G → G be an
Fq-Frobenius. Then we have the following results.

(i) There exists a positive integer m0 such that if m is divisible by m0, then the mth Shintani
basis of Fun([G], F ) is (up to scaling by roots of unity) independent of m. We define almost
characters to be the elements of this common Shintani basis.

(i′) The mth Shintani basis of Fun([G], F ) only depends (up to scaling by roots of unity) on
the residue of m modulo m0.

(ii) The almost characters as defined above are eigenvectors for the twisting operator Θ
(see (10)).

(iii) Recall that the Frobenius F induces a permutation of the set CS(G). The mapping which
takes an F -stable character sheaf to its associated trace of Frobenius function in Fun([G], F )
defines a bijection from the set CS(G)F to the set of almost characters.

2 To be precise, in [BD14] character sheaves are only studied for unipotent groups. However, everything can be
readily extended to the neutrally unipotent case.
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Remark 1.8. We conjecture that in fact the above results should hold for all algebraic groups.
In particular, we expect that there should be an interesting theory of character sheaves on all
algebraic groups.

In § 2 we describe some preliminary constructions. In particular, for each m ∈ Z, we introduce
the Q`-linear triangulated category DFm

G (G) which encodes the representation theory of GF
m

and
all its pure inner forms, and we define associative convolution products DFm1

G (G)×DFm2

G (G) −→
DFm1+m2

G (G) which satisfy some crossed braiding relations. We construct analogues of the sheaf-
function correspondence in certain general settings.

We then use the various constructions from § 2 to define Shintani descent for general algebraic
groups in § 3.1. In § 3.2 we study the special case of Shintani descent for m = 1, namely the
twisting operator introduced in (10). In § 3.3 we prove that the trace functions associated with
F -stable simple objects in DG(G) are always eigenvectors for the twisting operator Θ from (10).

In § 4 we define the notion of twists in the categories DFm

G (G) and study their properties. We
prove that these twists are compatible with the traces in DFm

G (G) that were defined in [Des14b,
§ 2.4.5].

In § 5 we express the inner products between elements of the mth Shintani basis and
irreducible characters in terms of the traces and convolution structure of the categories DFm

G (G).
Note that these inner products are the entries of the unitary matrix which relates the mth
Shintani basis of Fun([G], F ) to the orthonormal basis of Fun([G], F ) formed by the irreducible
characters of all the pure inner forms.

From § 6 onwards we restrict to the case of neutrally unipotent groups. In § 6 we recall some
relevant facts from the theory of character sheaves on unipotent groups. In particular, we recall
the notion of L-packets and prove that Shintani descent respects the L-packet decompositions. We
also state a refined version of Theorem 1.7 which takes into account the L-packet decompositions,
and we deduce Theorem 1.7 from this refined version.

In § 7 we study some properties of the modular categories and their module categories that
arise from the theory of character sheaves on neutrally unipotent groups. In particular, we will
prove (see Theorem 7.5) that the modular categories that arise from this theory are positive
integral.

Finally, in § 8 we complete the proof of the refined version of our main theorem.

2. Preliminary constructions

In this section we will describe some preliminary constructions which will help us to define and
study Shintani descent for general algebraic groups over k equipped with a Frobenius map. In
this paper, by passing to the perfectizations, we will always assume that all our groups are in
fact perfect quasi-algebraic groups over k even though we may not mention this explicitly. For
more about this convention, see [BD14, § 1.9]. With this convention, the Frobenius maps in fact
become automorphisms.

2.1 Twisted conjugation actions
Let G be a (perfect quasi-)algebraic group over k and let γ : G → G be an automorphism. We
define the γ-twisted conjugation action of G on itself by g : h 7→ ghγ(g)−1. Equivalently, we can
think of this action as the action of G by conjugation on the coset Gγ in the semidirect product
G̃ := G〈γ〉 = G o Z under the natural identification of G with Gγ. We let Dγ

G(G) denote the
equivariant derived category for the γ-conjugation action of G on itself.

1701

https://doi.org/10.1112/S0010437X16007429 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007429


T. Deshpande

Now suppose that γ1, γ2 : G → G are automorphisms of G that commute with each other.
Then the following diagram commutes:

(11)

Hence pullback by γ2 induces a functor γ∗2 : Dγ1
G (G) → Dγ1

G (G). We let Dγ1
G (G)γ2 denote

the equivariantization. The objects of Dγ1
G (G)γ2 are pairs (M,ψ) where M ∈ Dγ1

G (G) and

ψ : γ∗2(M)
∼=−→ M is an isomorphism in Dγ1

G (G).
Let us define

Rγ1,γ2 := {(g, h) ∈ G×G | hγ2(g)γ1(h)−1 = g}. (12)

We equip Rγ1,γ2 with an action of G by setting x(g, h) = (xgγ1(x)−1, xhγ2(x)−1) for x ∈ G
and (g, h) ∈ Rγ1,γ2 . We let FunG(Rγ1,γ2) denote the space of Q`-valued G-invariant functions on
Rγ1,γ2 . In our applications in this paper, one or both of the automorphisms will be Frobenius
maps.

Remark 2.1. For (g, h) ∈ Rγ1,γ2 , we can check that we have g−1
(g, h) = (γ1(g), γ1(h)) and also

that h−1
(g, h) = (γ2(g), γ2(h)).

Example 2.2. Let G be connected, let F : G → G be a Frobenius map and let γ : G → G be an
automorphism that commutes with F . Then the quotient set G\Rγ,F is finite and in fact can be
naturally identified with the set GF / ∼γ . Note that in this case, γ induces an automorphism of
the finite group GF . To construct this bijection, we note that since G is connected, the G-orbit
of each (g, h) ∈ Rγ,F contains an element of the form (x, 1) by Lang’s theorem. Also we see
that (x, 1) ∈ Rγ,F if and only if x ∈ GF . Moreover, the γ-twisted conjugacy class of x in GF is
uniquely determined by the G-orbit of (g, h). This defines the desired natural bijection. Hence in
this case we have a natural identification of the spaces FunG(Rγ,F ) ∼= Fun(GF / ∼γ). Some cases
of particular interest to us are when γ = idG or γ is another Frobenius.

Remark 2.3. In this paper we wish to work with possibly disconnected groups. In the general
situation it is more natural to work with the space FunG(Rγ,F ) than with the space Fun(GF / ∼γ)
since the former takes into account all the pure inner forms.

Example 2.4. Let G be any algebraic group equipped with a Frobenius F . In this case the G
orbits in RidG,F are in a natural bijection with the sets of conjugacy classes in all the pure inner
forms GgF . Hence we have a natural identification Fun([G], F ) = FunG(RidG,F ). We will use
these two notations interchangeably.

2.2 Some auxiliary maps
The following simple lemma is key in defining the Shintani descent maps for general algebraic
groups.

Lemma 2.5. (i) Swapping the factors defines a G-equivariant isomorphism

τ : Rγ1,γ2 → Rγ2,γ1 . (13)
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(ii) We have G-equivariant twisting isomorphisms

t1 : Rγ1,γ2 → Rγ1γ2,γ2 (14)

defined by t1(g, h) = (hγ2(g), h) = (gγ1(h), h) and

t2 : Rγ1,γ2 → Rγ1,γ1γ2 (15)

defined by t2(g, h) = (g, hγ2(g)) = (g, gγ1(h)).

Example 2.6. Suppose that G is connected and that F1, F2 : G → G are commuting Frobenius
maps. By Example 2.2, G\RF1,F2 = GF2/ ∼F1 and G\RF2,F1 = GF1/ ∼F2 and the swapping map

τ induces an identification GF2/ ∼F1
∼= GF1/ ∼F2 which agrees with the identification defined

in [Sho92, § 1.1] up to an inversion. This identification was used in [Sho92] to define Shintani
descent for connected groups.

Example 2.7. Let G be connected and let F : G → G be a Frobenius. Then by Example 2.2
we have G\RidG,F = GF / ∼. In this case the G-isomorphism t2 : RidG,F → RidG,F induces the
twisting map N1 : (GF / ∼) −→ (GF / ∼) that is studied in [Sho92, § 4] and that we introduced
in (6). This twisting map is a map which permutes the rational conjugacy classes of GF within
each geometric conjugacy class.

2.3 The sheaf-function correspondence
Given an object (M,ψ) ∈ Dγ1

G (G)γ2 , we will define the associated ‘trace function’ TM,ψ ∈
FunG(Rγ1,γ2). For any g, h ∈ G, the equivariance structure ϕM of M ∈ Dγ1

G (G) and the
γ2-equivariance structure ψ give us isomorphisms of stalks

Mhγ2(g)γ1(h)−1

ϕM (h−1,hγ2(g)γ1(h)−1)
−−−−−−−−−−−−−−−→ Mγ2(g)

ψ(g)
−−→ Mg. (16)

If (g, h) ∈ Rγ1,γ2 , then this composition is an automorphism of the stalk Mg ∈ Db(Vec). Hence
we can define TM,ψ(g, h) to be the trace of this composition.

Example 2.8. Let G be any algebraic group. Set γ1 = idG and γ2 to be an Fq-Frobenius map
F : G → G. In this case, the construction of the trace functions defined here reduces to the
notion of the ‘trace function’ associated with an F -equivariant object of DG(G) that was studied
in [Des14b, § 2.4.8]. Recall from Example 2.4 that in this case the space FunG(RidG,F ) can be

identified with the space Fun([G], F ) of class functions on all pure inner forms of GF . We refer
to [Des14b, § 2.4.8] for details.

Example 2.9. Let G be any algebraic group, but now let γ1 be a Frobenius F : G → G and let
γ2 = idG. In this case, our construction takes an object in DF

G (G)idG and produces a function
in FunG(RF,idG). Let (M, idM ) ∈ DF

G (G)idG . This gives us a function τ∗TM,idM ∈ FunG(RidG,F )
where τ : RidG,F → RF,idG is the swapping map. Then it is easy to check that τ∗TM,idM = χM ,
where χM is the character of M ∈ DF

G (G) as defined in [Des14b, § 2.4.7].

2.4 Algebraic groups over Fq equipped with an Fq-automorphism
In this section we study algebraic groups defined over Fq equipped with an automorphism defined
over Fq. Let G be any algebraic group equipped with an Fq-Frobenius F : G → G and an
automorphism γ : G → G commuting with F . Let us now understand the map of k-schemes

Rγ,F
p2−→ G. For this it is convenient to identify G with the coset Gγ ⊂ G o γZ. Then the
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conjugation action of G on Gγ corresponds to the γ-twisted conjugation on G. For each h ∈ G,
we have the Frobenius map hF : Gγ → Gγ. Under the identification with G, this modified
Frobenius maps g 7→ hF (g)γ(h)−1. Note that this modified Frobenius does not respect the
group structure of G. In other words, we have the following lemma.

Lemma 2.10. In the notation above, (g, h) ∈ Rγ,F if and only if g ∈ (Gγ)hF .

Remark 2.11. Hence we can identify the spaces FunG(Rγ,F ) and Fun([Gγ], F ), the space of class
functions on the Fq-points of all pure inner forms of the coset Gγ.

Let us now study the category DF
G (G)γ and the space FunG(RF,γ). There are only finitely

manyG-orbits inRF,γ and hence FunG(RF,γ) is finite-dimensional. For (g, h) ∈RF,γ its stabilizer,

StabG(g, h) = {x ∈ GgF | hγ(x)h−1 = x} (17)

is finite. We define an Hermitian inner product on FunG(RF,γ) as follows:

〈f1, f2〉 :=
∑

〈(g,h)〉∈G\RF,γ

f1(g, h)f2(g, h)

|StabG(g, h)|
. (18)

As stated earlier, we need to take into consideration all pure inner forms of F . For each g ∈ G
we have the following commutative diagram.

(19)

Hence γ induces an isomorphism γ : GgF
∼=−→ Gγ(g)F and hence it induces a bijection

γ∗ : Irrep(Gγ(g)F )
∼=−→ Irrep(GgF ). (20)

We recall from [Des14b] that the set Irrep(GgF ) is canonically determined by the F -conjugacy
class of g in H1(F,G). Hence we see that γ induces a bijection

γ∗ : Irrep(G,F ) → Irrep(G,F ). (21)

2.5 Irreducible representations fixed by automorphisms
In this section we study the fixed point set Irrep(G,F )γ of the bijection γ∗ : Irrep(G,F ) →

Irrep(G,F ) defined above. Let us recall a simple observation from [Des14b, § 2.4.2]. (See § 2.1 for
the notation.)

Lemma 2.12. We have an equivalence of triangulated categories

DF
G (G) ∼=

⊕
〈g〉∈H1(F,G)

DbRep(GgF ).

The category DF
G (G) is in fact a semisimple abelian category whose (isomorphism classes of)

simple objects are parametrized by Irrep(G,F )× Z, where the integers keep track of the degree
shift. If W ∈ Irrep(GgF ) ⊂ Irrep(G,F ) then we have the associated local system Wloc ∈ DF

G (G)
supported on the F -twisted conjugacy class of g.
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We note that γ acts on the set H1(F,G) which parametrizes the pure inner forms and only
the irreducible representations of γ-fixed pure inner forms can lie in Irrep(G,F )γ . Hence suppose
that g ∈ G represents a γ-fixed F -twisted conjugacy class, i.e. there exists an h ∈ G such that
g = hγ(g)F (h)−1, or in other words an h such that (g, h) ∈ RF,γ . We have an automorphism

hγ : GgF
γ−→ Gγ(g)F ad(h)

−−−→ GgF . (22)

We note that a different choice of h ∈ G only changes the automorphism above by an inner
automorphism of GgF . Hence the action of hγ on Irrep(GgF ) is independent of the choice of
h. Let W ∈ Irrep(GgF ) ⊂ Irrep(G,F ) and consider the local system Wloc ∈ DF

G (G) supported
on the F -twisted conjugacy class of g. Then W ∈ Irrep(G,F )γ if and only if there exists an

intertwiner ψ : (hγ)∗W
∼=−→ W . Then we can define an object (Wloc, ψ) ∈ DF

G (G)γ . Taking the
associated trace function, we get TW,ψ ∈ Fun(GgF / ∼hγ) ⊂ FunG(RF,γ) (see Lemma 2.13). In
fact we can choose the intertwiner ψ in such a way that we obtain an irreducible representation
of the finite group GgF 〈hγ〉, where 〈hγ〉 is the finite cyclic group generated by the automorphism
hγ of GgF . For each W ∈ Irrep(G,F )γ we fix such an intertwiner ψW as above. In this case we
have ‖TW,ψW ‖ = 1 and TW,ψW is well defined by W up to scaling by a root of unity. Here ‖ · ‖
denotes the Hermitian norm on FunG(RF,γ).

In other words, we have the following lemma.

Lemma 2.13. Let W ∈ Irrep(G,F ). Then W ∈ Irrep(G,F )γ if and only if γ∗Wloc
∼= Wloc. If such

a W lies in Irrep(GgF )hγ , we can choose an intertwiner ψW : (hγ)∗W
∼=−→ W such that we obtain

a representation of GgF 〈hγ〉 on W extending the original representation of GgF . Such a ψW is
well defined up to scaling by roots of unity. Further, we have an orthogonal decomposition

FunG(RF,γ) =
⊕

〈g〉∈H1(F,G)|γ〈g〉=〈g〉

Fun(GgF / ∼hγ). (23)

The set

{TW,ψW |W ∈ Irrep(GgF )hγ} ⊂ Fun(GgF / ∼hγ) (24)

is an orthonormal basis, and hence the set

{TW,ψW |W ∈ Irrep(G,F )γ} ⊂ FunG(RF,γ) (25)

is an orthonormal basis.

2.6 Irreducible representations fixed by Frobenius
Let us now refine the results of the previous section in the special case which is of interest from
the point of view of Shintani descent. Let m be any positive integer and let us consider the set
Irrep(G,Fm)F which appears on one side of the Shintani descent map. If W ∈ Irrep(G,Fm)F

we will place some further restrictions on the choice of the intertwiner ψW such that with these
restrictions the different choices differ by mth roots of unity. Hence with each W ∈ Irrep(G,Fm)F

we will be able to associate a function TW,ψW ∈ FunG(RFm,F ) which will be unique up to scaling
by mth roots of unity.

Suppose that W ∈ Irrep(G,Fm)F , where W is an irreducible representation of some pure
inner form GgF

m
. By § 2.5 there must be an h ∈ G such that (g, h) ∈ RFm,F . We can check that

hF (h) · · ·Fm−1(h)g−1 ∈ GgFm ∩GhF .
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Consider the group automorphism hF : GgF
m

→ GgF
m

from § 2.5. Then W ∈ Irrep(GgF
m

)hF .

Let ˜GgFm〈hF 〉 be the quotient of the semidirect product GgF
m o (hF )Z modulo the relation

GgF
m 3 hF (h) · · ·Fm−1(h)g−1 = (hF )m.

This gives us an extension

0 → GgF
m

→ ˜GgFm〈hF 〉→ Z/mZ → 0. (26)

Let us note that the semidirect product GgF
m o (hF )Z as well as the extension above do not

depend (up to a canonical isomorphism) on the choice of h since the possible choices all lie in
the coset GgF

m
h. For example, a different choice of h merely amounts to a different splitting of

the semidirect product.

Since W ∈ Irrep(GgF
m

)hF we can extend the action to obtain a representation of ˜GgFm〈hF 〉
on W . This extension amounts to choosing a suitably normalized intertwiner ψW : (hF )∗W →W
of GgF

m
-representations. We thus obtain an object (Wloc, ψW ) ∈ DFm

G (G) and the corresponding
trace function TW,ψW ∈ FunG(RFm,F ). It is clear that the different choices of extensions of
the representation as above, namely the different choices of normalization of the intertwiner
ψW , differ by scaling by mth roots of unity. (See also Remark 4.1 for another equivalent
characterization of ψW .) Hence we have proved that given W ∈ Irrep(G,Fm)F , we can obtain
the function TW,ψW ∈ FunG(RFm,F ) as above, uniquely determined up to scaling by mth roots
of unity. By Lemma 2.13, we see that the set {TW,ψW }W∈Irrep(G,Fm)F is an orthonormal basis of
FunG(RFm,F ).

2.7 Convolution of functions and module structure
Let F : G → G be a Frobenius map and let γ1, γ2 : G −→ G be group automorphisms
that commute with the Frobenius. In this section we define convolution products (which are
associative)

FunG(Rγ1,F )× FunG(Rγ2,F ) −→ FunG(Rγ1γ2,F ). (27)

If (gi, h) ∈ Rγi,F for i = 1, 2, then we can check that (g1γ1(g2), h) ∈ Rγ1γ2,F . For fi ∈
FunG(Rγi,F ) we define

f1 ∗ f2(g, h) =
∑

g1γ1(g2)=g
(gi,h)∈Rγi,F

f1(g1, h)f2(g2, h) (28)

for each (g, h) ∈ Rγ1γ2,F . Note that the sum is finite (e.g. using Lemma 2.10) and hence the
convolution is well defined. If is easy to check that f1 ∗ f2 ∈ FunG(Rγ1γ2,F ) and also that the
convolution is associative.

Remark 2.14. This convolution of functions may perhaps be more transparent using the
identification of Remark 2.11.

Remark 2.15. Using the convolution, each function space FunG(Rγ,F ) = Fun([Gγ], F ) in fact
becomes a module over the commutative algebra Fun([G], F ).

2.8 Convolution of complexes and sheaf-function correspondence
Let γ1, γ2, F be as in the previous section. Then, using the ‘coset multiplication’

µγ1,γ2 : G×G → G, defined by (g1, g2) 7→ g1γ1(g2), (29)
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we can define a convolution (with compact supports)

Dγ1
G (G)×Dγ2

G (G) −→ Dγ1γ2
G (G). (30)

It may be useful to think of this as the standard convolution DG(Gγ1)×DG(Gγ2)−→ DG(Gγ1γ2).
The map γ1 : G −→ G induces the equivalence

γ1 := γ−1
1
∗

= γ∗1
−1 : Dγ1

G (G)
∼=−→ D

γ1γ2γ
−1
1

G (G). (31)

Moreover, for Mi ∈ Dγi
G (G) we have functorial crossed braiding isomorphisms

βM1,M2 : M1 ∗M2

∼=−→ γ1(M2) ∗M1. (32)

We also have the induced convolution

Dγ1
G (G)F ×Dγ2

G (G)F −→ Dγ1γ2
G (G)F . (33)

Now the sheaf-function correspondence is compatible with pullbacks and pushforwards with
compact supports (see also [Des14b, § 2.2]). Using this, we obtain the following proposition.

Proposition 2.16. The convolution of complexes (as defined above) is compatible with the
convolution of functions (as defined in § 2.7) under the sheaf-function correspondence. Namely,
let Mi ∈ Dγi

G (G)F and let TMi ∈ FunG(Rγi,F ) be the associated trace function. Then

TM1 ∗ TM2 = TM1∗M2 . (34)

3. Shintani descent for general algebraic groups

In this section we define Shintani descent using the constructions from § 2.

3.1 Definition of Shintani descent
In this section we apply our previous results and constructions and define Shintani descent in
general. Let G be any algebraic group over k. Let F : G → G be an Fq-Frobenius map. Let m
be a positive integer. Note that we have a G-equivariant isomorphism (which we will call the
inverse norm map)

N−1
m : R1,F

∼=−→ RFm,F (35)

given by R1,F 3 (g, h) 7→ (ghF (h) · · ·Fm−1(h), h) ∈ RFm,F , i.e. it is the composition of the
twists (14):

R1,F
t1−→ RF,F

t1−→ RF 2,F
t1−→ · · ·RFm,F . (36)

Hence we obtain an isomorphism of Hermitian inner product spaces

N−1
m
∗

: FunG(RFm,F )
∼=−→ FunG(R1,F ) = Fun([G], F ). (37)

Lemma 3.1. For each positive integer m, the map t∗1 : FunG(RFm,F ) −→ FunG(RFm−1,F ) is an

isomorphism of Fun([G], F )-modules (see also Remark 2.15). Hence the map N−1
m
∗

defined above
is a Fun([G], F )-module isomorphism.

Proof. It is enough to check that t∗1 preserves the module structure. Moreover, it is easy to check
that f1 ∗ t∗1f2 = t∗1(f1 ∗ f2) for f1 ∈ Fun([G], F ) and f2 ∈ FunG(RFm,F ). 2
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Given W in Irrep(G,Fm)F , we have the associated trace function TW,ψW ∈ FunG(RFm,F ) as
in § 2.6.

Definition 3.2. We define Shintani descent

Shm : Irrep(G,Fm)F ↪→ Fun([G], F ) = FunG(RidG,F ) (38)

by Shm(W ) = N−1
m
∗
(TW,ψW ) for each W ∈ Irrep(G,Fm)F . By Lemma 2.13, the image of Shintani

descent {Shm(W )}W∈Irrep(G,Fm)F ⊂ Fun([G], F ) is an orthonormal basis known as the mth
Shintani basis.

Remark 3.3. By § 2.6, for each W ∈ Irrep(G,Fm)F , Shm(W ) is uniquely determined up to scaling
by an mth root of unity.

3.2 The twisting operator
In this section we study a special case of Shintani descent when m = 1. In this case Shintani
descent is a map

Sh1 : Irrep(G,F ) = Irrep(G,F )F ↪→ Fun([G], F ). (39)

However, as we will now see, this is not in general the natural inclusion obtained by taking
characters, rather it is a twist of the natural inclusion.

Consider any object M ∈ DF
G (G). Then, as defined in [Des14b, § 2.4.7] (see also Example 2.9),

we have its character χM ∈ FunG(Rid,F ). Let ϕM denote the F -twisted conjugation equivariance

structure associated with M . We recall that for (g, h) ∈ Rid,F , χM (g, h) := tr(Mh
ϕM (g,h)
−−−−−→ Mh).

We further set

ψM (g) := ϕM (g, F (g)) : MF (g)

∼=−→ Mg (40)

and obtain an object (M,ψM ) ∈ DF
G (G)F . Let us compute its associated trace function TM,ψM

in FunG(RF,F ). Suppose that (g, h) ∈ RF,F , i.e. hF (g)F (h)−1 = g. Then TM,ψM (g, h) is the trace
of the automorphism

Mg
ϕM (h−1,g)
−−−−−−→ MF (g)

ϕM (g,F (g))
−−−−−−−→ Mg. (41)

Hence TM,ψM (g, h) = tr(ϕM (gh−1, g)) = χM (gh−1, g). Now let (g, h) ∈ Rid,F . Then using
Lemma 2.5, we see that

N−1
1
∗
TM,ψM (g, h) = TM,ψM (gh, h) = χM (g, gh) = t∗2χM (g, h), (42)

where t2 is as in (15). Hence we see that if W ∈ Irrep(G,F ), then we can canonically define
Sh1(W ) and we have Sh1(W ) = t∗2χW where χW ∈ FunG(Rid,F ) denotes the character of W .

3.3 Sheaf-function correspondence and twists
As we have seen before, the twist isomorphism t2 : Rid,F −→ Rid,F from (15) induces a unitary
operator

t∗2 : Fun([G], F ) −→ Fun([G], F ). (43)

In general, an irreducible character χW for W ∈ Irrep(G,F ) may not be an eigenvector
for the twisting operator defined above. However, as we will see below, if (C,ψ) ∈ DG(G)F is
a conjugation equivariant Weil complex such that End(C) = Q`, then the trace of Frobenius
function TC,ψ ∈ Fun([G], F ) is an eigenvector for the twisting operator.

First we recall from [BD14] that the category DG(G) is equipped with a twist θ, i.e. an
automorphism of the identity functor satisfying some properties. Hence for each C ∈ DG(G) we

have the twist θC : C
∼=−→ C. We now prove the following proposition.
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Proposition 3.4. Let (C,ψ) ∈ DG(G)F be a Weil complex such that θC is a scalar. Then

t∗2TC,ψ = θ−1
C · TC,ψ. (44)

Proof. Let (g, h) ∈ Rid,F . Then we want to prove that

TC,ψ(g, gh) = θ−1
C TC,ψ(g, h). (45)

We have a commutative diagram

(46)

where ϕC denotes the G-equivariance structure associated with C ∈ DG(G). The equality

ϕC(g, g) = θC

follows from the definition of the twist θC (see [BD14]). The trace of the top row is TC,ψ(g, h)
and the trace of the bottom row is TC,ψ(g, gh). Hence (45) holds. 2

4. Traces and twists in module categories

We have seen that the category DF
G (G) is a DG(G)-module category. In this section, we will

study some additional structures on DF
G (G) known as twists and traces.

4.1 Twists in the category DF
G(G)

We know that the category DF
G (G) is a DG(G)-module category and that the category DG(G) is

equipped with a twist θ : idDG(G) → idDG(G). Explicitly, if C ∈ DG(G) and ϕC is the conjugation
equivariance structure associated with C, then

θC(g) = ϕC(g, g) : Cg
∼=−→ Cg.

We will now construct an analogous twist for the module category DF
G (G), namely a natural

transformation θF : idDF
G (G) → F |DF

G (G) = F−1∗|DF
G (G).

Let M ∈ DF
G (G) and let ϕM denote the G-equivariance structure of M . Then θFM : M →

F (M) is defined by

θFM (g) = ϕM (F−1(g), g) : Mg

∼=−→ MF−1(g) = F (M)g. (47)

It is clear that the Frobenius preserves the twists, namely

F (θC) = θF (C) for C ∈ DG(G) and (48)

F (θFM ) = θFF (M) for M ∈ DF
G (G). (49)

Remark 4.1. For each integer m, we have a twist θF
m

in the DG(G)-module category DFm

G (G).
If we have W ∈ Irrep(G,Fm)F , with the choice of ψW as in § 2.6, then the composition

Fm∗Wloc
F (m−1)∗(ψW )
−−−−−−−−→ F (m−1)∗Wloc → · · ·F ∗Wloc

ψW−−→ Wloc (50)

equals Fm∗θF
m

Wloc
.

It is also straightforward to check that the twist θF is compatible with the twist θ in the
category DG(G).
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Lemma 4.2. Let C ∈ DG(G) and let M ∈ DF
G (G). Then θFC∗M is equal to the composition

C ∗M
βC,M−−−→ M ∗ C

βM,C−−−→ F (C) ∗M
θF (C)∗θFM−−−−−−→ F (C) ∗ F (M) −→ F (C ∗M).

Moreover, all the twists θF
a

in DFa

G (G) for a ∈ Z are compatible with each other, i.e. if

L ∈ DFa

G (G) and M ∈ DF b

G (G), then θF
a+b

L∗M equals the composition

L∗M
βL,M−−−→ F a(M)∗L

βFa(M),L−−−−−−→ F b(L)∗F a(M)
θF
a

Fb(L)
∗θFb
Fa(M)

−−−−−−−−−→ F a+b(L)∗F a+b(M) → F a+b(L∗M).

4.2 Compatibility of twists and traces
In [Des14b, § 2.4.5], we have defined a normalized trace trF in the category DF

G (G) which assigns
a number in Q` to each endomorphism in DF

G (G). We now prove the following theorem.

Theorem 4.3. For each object M ∈ DF
G (G) we define the automorphism νθFM

in DF 2

G (G) to be
the composition

νθFM
: M ∗M

β−1
M,F∗M−−−−−→ M ∗ F ∗M

idM∗F ∗(θFM )
−−−−−−−−→ M ∗M. (51)

Then we have

trF (idM ) = trF 2(νθFM
). (52)

Proof. As usual, let ϕM denote the G-equivariance structure associated with M ∈ DF
G (G). We

will use the integral symbol (
∫

) to denote pushforward with compact supports; if E ∈ D(X), we
use

∫
X E to denote RΓc(X, E). Let t ∈ G. Using the definition of the convolution, the crossed

braidings and the twists, we see that the stalk

νθFm(t) : (M ∗M)t −→ (M ∗M)t

is given by the composition

(M ∗M)t =

∫
h1F (h2)=t

Mh1 ⊗Mh2

∫
ϕM (h−1

2 ,h1)⊗idM−−−−−−−−−−−−→
∫
h1F (h2)=t

Mh−1
2 h1F (h2) ⊗Mh2

=

∫
h1F (h2)=t

F ∗MF−1(h−1
2 h1)h2

⊗Mh2 = (M ∗ F ∗M)t

F ∗(θFM )∗idM=
∫
ϕM (F−1(h−1

2 h1)h2,h
−1
2 h1F (h2))⊗idM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∫
h1F (h2)=t

MF−1(h−1
2 h1)h2

⊗Mh2

× τ=swap−−−−−→
∫
h1F (h2)=t

Mh2 ⊗MF−1(h−1
2 h1)h2

= (M ∗M)t.

Consider the automorphism of the antidiagonal ∆t := {(h1, h2) ∈ G×G | h1F (h2) = t} that
appears implicitly in the stalk of the automorphism νθFm at t as above, namely

(h1, h2) 7→ (h2, F
−1(h−1

2 h1)h2).
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If we identify ∆t and G using the second projection, then the inverse of this automorphism
corresponds to the Frobenius automorphism of G (as a scheme) defined by h2 7→ tF (h−1

2 ).
The fixed point set of this Frobenius map is the set {(h, h) | hF (h) = t} ⊂ ∆t. Hence by the
Grothendieck–Lefschetz trace formula (the trace of the induced map on cohomology equals the
sum of traces of the stalks of the map over all fixed points; see also [Boy13, Lemma 4.4(iii)]), we
deduce that

tr(νθFM
(t)) =

∑
hF (h)=t

tr(τ ◦ (ϕM (1, h)⊗ id) : Mh ⊗Mh

∼=−→ Mh ⊗Mh)

=
∑

hF (h)=t

tr(τ : Mh ⊗Mh

∼=−→ Mh ⊗Mh)

=
∑

hF (h)=t

dimMh.

Now M ∗M is an object of

DF 2

G (G) ∼=
⊕
〈t〉∈

H1(F 2,G)

DbRep(GtF
2
).

Hence by definition of the trace trF 2 on DF 2

G (G) (see [Des14b, § 2.4.5]) we have

trF 2(νθFM
) =

∑
〈t〉∈

H1(F 2,G)

tr(νθFM
(t))

|GtF 2 |
(53)

=
∑
〈t〉∈

H1(F 2,G)

∑
hF (h)=t

dimMh

|GtF 2 |
. (54)

Next note that ∆ := {(h, h) | h ∈ G} is in fact a G-invariant subscheme of RF,F and (h, h) is

mapped to (h, hF (h)) under the G-equivariant isomorphism RF,F
t2−→ RF,F 2 . Hence we obtain

trF 2(νθFM
(t)) =

∑
〈t〉∈

H1(F 2,G)

∑
(h,t)∈t2(∆)

dimMh

|GtF 2 |
(55)

=
∑
〈t〉∈

H1(F 2,G)

∑
(h,t)∈t2(∆)

dimMh

|StabG(h, t)| · |GtF 2-orbit of (h, t)|
(56)

=
∑

〈(h,t)〉∈G\t2(∆)

dimMh

|StabG(h, t)|
(57)

=
∑

〈(h,h)〉∈G\∆

dimMh

|StabG(h, h)|
(58)

=
∑

〈h〉∈H1(G,F )

tr(idMh
)

|GtF |
(59)

= trF (idM ) (60)

as desired. 2
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5. An inner product formula

For each integer m > 0, we have the mth Shintani basis {Shm(W )}W∈Irrep(G,Fm)F of Fun([G], F )
defined in § 3.1. On the other hand, we have the basis Irrep(G,F ) consisting of the irreducible
characters of all the pure inner forms. Our goal in this section is to describe the relationship
between these two bases.

5.1 Twists and sheaf-function correspondence
We know that the category DF

G (G) is equivalent to the direct sum of the bounded derived
categories of the representation categories of all pure inner forms. Let us now observe that we
have a natural identification of all the categories DF

G (G)F
m

for all integers m > 0.

Lemma 5.1. For each m > 0, we have an equivalence of triangulated categories

DF
G (G)idG

∼=−→ DF
G (G)F

m
(61)

and hence the composition

ηm : DF
G (G) −→ DF

G (G)idG
∼=−→ DF

G (G)F
m

(62)

where the first functor is defined by M 7→ (M, idM ).

Proof. It is sufficient to construct an equivalence

DF
G (G)F

m ∼=−→ DF
G (G)F

m+1
(63)

for each m > 0. Let (M,ψ) ∈ DF
G (G)F

m
, where M ∈ DF

G (G) and ψ : Fm∗M
∼=−→ M . On the

other hand, we have the twist θF
F (m+1)∗M

= F (m+1)∗θFM : F (m+1)∗M
∼=−→ Fm∗M . Then

(M,ψ) 7→ (M,ψ ◦ F (m+1)∗θFM ) (64)

defines the desired equivalence. 2

Remark 5.2. From the proof, we see that if M ∈ DF
G (G), then ηm(M) = (M,ψM,m) ∈ DF

G (G)F
m

where

ψM,m : Fm∗M
Fm∗θFM−−−−−→ F (m−1)∗M −→ · · ·F ∗M

F ∗θFM−−−→ M. (65)

Lemma 5.3. The diagram

(66)

is commutative, where the equivalences in the top row are as defined in the proof of the previous
lemma, the isomorphisms in the bottom two rows are induced by the twists t2, t1 from (15), (14)
respectively, and the top vertical arrows are defined by the sheaf-function correspondence from
§ 2.3.

Proof. This is straightforward to check from the definitions. 2
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5.2 The inner product formula
Let m > 0 be an integer. Suppose that we have objects L ∈ DFm

G (G) and M ∈ DF
G (G). Then we

have the functorial crossed braiding isomorphisms (see § 2.8)

β−1
M,F ∗L : L ∗M −→ M ∗ F ∗L (67)

and

β−1
L,Fm∗M : M ∗ L −→ L ∗ Fm∗M (68)

in the category DFm+1

G (G). If L ∈ DFm

G (G)F and M ∈ DF
G (G)F

m
then we obtain an

automorphism

ζL,M : L ∗M
β−1
M,F∗L−−−−−→ M ∗ F ∗L

β−1
F∗L,Fm∗M−−−−−−−→ F ∗L ∗ Fm∗M ψL∗ψM−−−−→ L ∗M (69)

in DFm+1

G (G) where ψL and ψM are the equivariance isomorphisms associated with L ∈DFm

G (G)F

and M ∈DF
G (G)F

m
, respectively. Recall from [Des14b, § 2.4.5], that the category DFm+1

G (G) has a
normalized trace denoted by trFm+1 in the notation from [Des14b, § 2.4.5]. The following theorem
is a generalization of [Des14b, Theorem 2.14].

Theorem 5.4. Let M ∈ DF
G (G) and L ∈ DFm

G (G)F . Then we have the functions N−1
m
∗
TL,ψL and

χM ∈ Fun([G], F ). We also have the equality

〈N−1
m
∗
TL,ψL , χM 〉 = trFm+1(ζL,ηm(M)). (70)

Corollary 5.5. Let V ∈ Irrep(G,F ) with the corresponding local system Vloc ∈ DF
G (G). Let

W ∈ Irrep(G,Fm)F and let (Wloc, ψW ) ∈ DFm

G (G)F where ψW is chosen as in § 2.6. Then we
have the following relationship between the mth Shintani basis and Irrep(G,F ):

〈Shm(W ), χV 〉 = trFm+1(ζ(Wloc,ψW ),ηm(Vloc)). (71)

5.3 Proof of Theorem 5.4
The proof of Theorem 5.4 is similar to the proof of [Des14b, Theorem 2.14] as well as the proof
of Theorem 4.3 above.

Let ηm(M) = (M,ψM ). We will often abuse notation and denote this object simply as M ∈
DF
G (G)F

m
. As before, let ϕL, ϕM denote the equivariance structures on L,M corresponding to

the twisted conjugations actions. Let us compute the stalk of the automorphism ζL,M at a point
t ∈ G. By the definition of the crossed braidings, the stalk

ζL,M (t) : (L ∗M)t −→ (L ∗M)t

is given by the composition

(L ∗M)t =

∫
h1Fm(h2)=t

Lh1 ⊗Mh2∫
ϕL(h−1

2 ,h1)⊗idM−−−−−−−−−−−→
∫
h1Fm(h2)=t

Lh−1
2 h1Fm(h2) ⊗Mh2 = (M ∗ F ∗L)t

∫
idL⊗ϕM (F−1(Fm(h2)−1h−1

1 h2),h2)
−−−−−−−−−−−−−−−−−−−−−−−→

∫
h1Fm(h2)=t

F ∗LF−1(h−1
2 h1Fm(h2)) ⊗MF−1(Fm(h2)−1h−1

1 h2)h1Fm(h2)

= (F ∗L ∗ Fm∗M)t
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∫
ψL(F−1(h−1

2 h1Fm(h2)))⊗ψM (F−1(h−1
2 F−m(h−1

1 h2))F−m(h1)h2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∫

h1Fm(h2)=t
LF−1(h−1

2 h1Fm(h2)) ⊗MF−1(h−1
2 F−m(h−1

1 h2))F−m(h1)h2
= (L ∗M)t.

Consider the automorphism of the antidiagonal ∆t := {(h1, h2) ∈ G × G | h1F
m(h2) = t}

that appears implicitly in the stalk of the automorphism ζL,M as above, namely

(h1, h2) 7→ (F−1(h−1
2 h1F

m(h2)), F−1(h−1
2 F−m(h−1

1 h2))F−m(h1)h2).

The fixed point set of this automorphism is the finite set {(h1, h2) ∈∆t | (h1, h2) ∈ RFm,F }. If
we identify ∆t andG using the first projection, then the inverse of this automorphism corresponds
to the Frobenius automorphism of G (as a scheme) defined by h1 7→ tFm+1(h1)Fm(t)−1. Hence
by the Grothendieck–Lefschetz trace formula and using the definition of the trace functions
TL,ψL , TM,ψM , we deduce that

tr(ζL,M (t)) =
∑

(h1,h2)∈RFm,F
h1Fm(h2)=t

TL,ψL(h1, h2) · TM,ψM (h2, h1). (72)

Now L ∗M is an object of

DFm+1

G (G) ∼=
⊕
〈t〉∈

H1(Fm+1,G)

DbRep(GtF
m+1

).

Hence by definition of the trace trFm+1 on DFm+1

G (G) (see [Des14b, § 2.4.5]) we have

trFm+1(ζL,M ) =
∑
〈t〉∈

H1(Fm+1,G)

tr(ζL,M (t))

|GtFm+1 |
(73)

=
∑
〈t〉∈

H1(Fm+1,G)

∑
(h1,h2)∈RFm,F
h1Fm(h2)=t

TL,ψL(h1, h2) · TM,ψM (h2, h1)

|GtFm+1 |
(74)

=
∑
〈t〉∈

H1(Fm+1,G)

∑
(h,t)=(h1,h1Fm(h2))∈

RFm,Fm+1

TL,ψL(h, F−m(h−1t)) · TM,ψM (F−m(h−1t), h)

|GtFm+1 |
.

(75)

Note that in the last equality, we used the G-equivariant isomorphism t2 : RFm,F
∼=−→ RFm,Fm+1

defined by (15). Hence continuing further, we get

trFm+1(ζL,M ) =
∑
〈t〉∈

H1(Fm+1,G)

∑
(h,t)∈

RFm,Fm+1

TL,ψL(h, F−m(h−1t)) · TM,ψM (F−m(h−1t), h)

|StabG(h, t)| · |GtFm+1-orbit of (h, t)|
(76)

=
∑

〈(h,t)〉∈G\RFm,Fm+1

TL,ψL(h, F−m(h−1t)) · TM,ψM (F−m(h−1t), h)

|StabG(h, t)|
(77)

=
∑

〈(h1,h2)〉∈G\RFm,F

TL,ψL(h1, h2) · TM,ψM (h2, h1)

|StabG(h1, h2)|
(78)
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=
∑

〈(g,h)〉∈G\RidG,F

N−1
m
∗
TL,ψL(g, h) ·N−1

m
∗
τ∗TM,ψM (g, h)

|StabG(g, h)|
(79)

=
∑

〈(g,h)〉∈G\RidG,F

N−1
m
∗
TL,ψL(g, h) · χM (g−1, h)

|StabG(g, h)|
(80)

= 〈N−1
m
∗
TL,ψL , χM 〉 (81)

as desired. Here in (80), we have used Lemma 5.3 and Example 2.9.

6. Shintani descent for neutrally unipotent groups

In the remainder of this paper, we restrict our attention to neutrally unipotent groups G over
k equipped with an Fq-Frobenius F . In this section, we will describe a refined version (see
Theorem 6.6) of Theorem 1.7 and deduce that the theorem in fact follows from this refinement.
We will prove Theorem 6.6 in § 8. We will use the theory of character sheaves on neutrally
unipotent groups. Let us begin by recalling some aspects of this theory.

6.1 L-packets of characters of neutrally unipotent groups
In [Boy13] a partitioning of the set Irrep(G,F ) of irreducible characters into L-packets has been

constructed. Let us recall this notion. Let Ĝ denote the set of isomorphism classes of minimal
idempotents in the braided monoidal category DG(G). The L-packets of irreducible characters
are parametrized by the set ĜF of F -stable minimal idempotents in DG(G).

Definition 6.1. Let e ∈ ĜF and let ψe : F ∗e
∼=−→ e be the unique isomorphism such that

Te := Te,ψe ∈ Fun([G], F )

is an idempotent. Let W ∈ Irrep(G,F ). We say that W lies in the L-packet associated with
e, or equivalently that W ∈ Irrepe(G,F ), if and only if the following equivalent (see [Des14b,
Theorem 2.27]) conditions hold.

(i) The character χW lies in TeFun([G], F ) ⊂ Fun([G], F ).

(ii) The dual (i.e. ‘complex conjugate’) idempotent Te ∈ Fun([G], F ) acts as the identity on
W . To be more precise, suppose that W is an irreducible representation of a pure inner form
GgF . Then we want the idempotent Te(·, g) ∈ Fun(GgF )G

gF
to act trivially on W .

(iii) The local system Wloc ∈ eDF
G (G) ⊂ DF

G (G).

In [BD14], character sheaves and their L-packets are also defined. The L-packets of character
sheaves are parametrized by Ĝ. Let us recall this.

Definition 6.2. Let e ∈ DG(G) be a minimal idempotent. LetMG,e ⊂ eDG(G) be the modular
category associated with e as defined in [BD14]. Then the set CSe(G) of character sheaves in
the L-packet associated with e is defined to be the set of simple objects (up to isomorphism) of
the modular category MG,e ⊂ DG(G). The set CS(G) of all character sheaves on G is defined

to be the union (which turns out to be disjoint) of all the sets CSe(G) as e ranges over Ĝ.

We recall the following results from [Boy13].
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Theorem 6.3. (i) We have a partition

Irrep(G,F ) =
∐
e∈ĜF

Irrepe(G,F ) (82)

and an isomorphism of algebras

Fun([G], F ) =
⊕
e∈ĜF

TeFun([G], F ). (83)

(ii) The set Irrepe(G,F ) is (after taking characters of the irreducible representations) an
orthonormal basis of TeFun([G], F ).

(iii) For each C ∈ CSe(G)F , we choose ψC : F ∗C
∼=−→ C so that3 ‖TC,ψC‖ = 1. Then the set

{TC,ψC}C∈CSe(G)F is also an orthonormal basis of TeFun([G], F ).

6.2 Shintani descent and L-packets
In this section we show that Shintani descent respects the L-packet decomposition. In particular,
we will show that to prove Theorem 1.7, it is enough to restrict our attention to each L-packet.

For any positive integer m we have

Irrep(G,Fm) =
∐

e∈ĜFm
Irrepe(G,F

m). (84)

Moreover, by Definition 6.1(iii) and the fact that F ∗ preserves convolution, the permutation of
the set Irrep(G,Fm) induced by F (see §§ 2.4, 2.6) preserves this L-packet decomposition:

F ∗ : Irrepe(G,F
m)

∼=−→ IrrepF ∗e(G,F
m). (85)

Hence

Irrep(G,Fm)F =
∐
e∈ĜF

Irrepe(G,F
m)F . (86)

Recall that Shintani descent is a map Shm : Irrep(G,Fm)F ↪→ Fun([G], F ).

Proposition 6.4. Let e ∈ ĜF . Then we have Shm(Irrepe(G,F
m)F ) ⊂ TeFun([G], F ) and the

image is an orthonormal basis of TeFun([G], F ). In other words, Shintani descent preserves
L-packets.

Proof. Let W ∈ Irrepe(G,F
m)F and let ψW be an intertwiner as in § 2.6. Since W lies in the

L-packet associated with e, Wloc ∈ eDFm

G (G), i.e. e ∗Wloc
∼= Wloc. Hence by Proposition 2.16,

TWloc,ψW ∈ TeFunG(RFm,F ) ⊂ FunG(RFm,F ). Now by Lemma 3.1,

N−1
m
∗

: FunG(RFm,F ) → Fun([G], F )

is a Fun([G], F )-module isomorphism. Hence Shm(W ) = N−1
m
∗
TWloc,ψW ∈ TeFun([G], F ) as

desired. Moreover, since Shm(Irrep(G,Fm)F ) is an orthonormal basis of Fun([G], F ), by
Theorem 6.3(i) and (86) it follows that Shm(Irrepe(G,F

m)F ) ⊂ TeFun([G], F ) must in fact be
an orthonormal basis. 2

Remark 6.5. We say that the image Shm(Irrepe(G,F
m)F ) is the mth Shintani basis of the

subspace TeFun([G], F ) associated with the minimal idempotent e.

3 It is possible to impose some additional conditions so that ψC will be uniquely determined up to scaling by roots
of unity.
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6.3 A refined version of Theorem 1.7
We can now state the refined version of our main result, Theorem 1.7, and deduce the main
theorem from this refinement.

Theorem 6.6. Let e ∈ ĜF be an F -stable minimal idempotent. Then we have the following
results.

(i) There exists a positive integer m0 such that if m is divisible by m0, then the mth Shintani
basis of TeFun([G], F ) (see Remark 6.5) is (up to scaling by roots of unity) independent of m.
We define almost characters associated with e to be the elements of this common Shintani basis.

(i′) The mth Shintani basis of TeFun([G], F ) only depends (up to scaling by roots of unity)
on the residue of m modulo m0.

(ii) The almost characters associated with e as defined above are eigenvectors for the twisting
operator Θ (see (10)).

(iii) The mapping which takes an F -stable character sheaf C ∈ CSe(G)F to its associated
trace of Frobenius function TC,ψC in TeFun([G], F ) defines a bijection from the set CSe(G)F to
the set of almost characters associated with e.

We will prove the theorem in § 8 below.
To prove Theorem 1.7(i) from this, it suffices to take a common multiple of all the positive

integers m0 corresponding to the minimal idempotents e in the finite set ĜF . Parts (ii) and (iii)
of Theorem 1.7 also follow readily from the above refinement.

7. Categorical preliminaries

We fix an F -stable minimal idempotent e in DG(G). Note that we have the integer ne from [BD14,
Theorem 1.15] such that the category MG,e[−ne] ⊂ DG(G) consists of perverse sheaves.

Let MGF,e ⊂ eDG(GF ) ∼= eDF
G (G) be the full subcategory formed by those objects whose

underlying Q`-complex is a perverse sheaf shifted by ne. By [Des14b, Theorem 2.27], MGF,e is
an invertible MG,e-module category. By the results of [BD14, Des14b] we also have eDG(G) ∼=
DbMG,e and eDFm

G (G) ∼= DbMGFm,e.
To complete the proof of Theorem 6.6, we will use some categorical notions and results

from [ENO10]. In this section we recall some of these facts and apply them in our setting of
neutrally unipotent groups.

7.1 Twists in module categories
By [ENO10, Theorem 5.2], we have an equivalence of groupoids

Pic(MG,e) ∼= EqBr(MG,e). (87)

Under this equivalence the invertibleMG,e-module categoryMGF,e corresponds to the modular
autoequivalence F = F−1∗ :MG,e →MG,e since for C ∈ MG,e ⊂ eDG(G) and M ∈ MGF,e ⊂
eDF

G (G) we have the functorial crossed braiding isomorphisms βM,C : M ∗ C → F (C) ∗M .
Let us consider the semidirect product G〈F 〉 = Go Z. The categories

eDG(G〈F 〉) :=
⊕
m∈Z

eDG(GFm) and (88)

MG〈F 〉,e :=
⊕
m∈Z
MGFm,e (89)
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are (infinite) spherical braided Z-crossed categories with trivial components eDG(G) and MG,e

respectively with a (rigid) duality functor which we denote by (·)∨ (cf. [Des10, § 2.3]) and a

natural isomorphism (·)∨∨ ∼= id of monoidal functors. In particular, for each M ∈ eDF
G (G) we

have a twist θF,eM defined as the composition

θF,eM : M
idM∗coevM−−−−−−−→ M ∗M ∗M∨

βM,M−−−→ F (M) ∗M ∗M∨
idF (M)∗evM∨−−−−−−−−→ F (M). (90)

From [BD14, Des10], it is known that the twist θ : idDG(G) → idDG(G) in DG(G) defines
the spherical structure of the modular categoryMG,e ⊂ eDG(G). Similarly, we can define twists
θF

m,e in each eDG(G)-module category eDFm

G (G). Then using the properties of spherical braided
crossed categories (e.g. using string diagrams to aid visualization), we can prove analogues of
Lemma 4.2 and Theorem 4.3.

Lemma 7.1. (i) Let C ∈ eDG(G) and let M ∈ eDF
G (G). Then θF,eC∗M is equal to the composition

C ∗M
βC,M−−−→ M ∗ C

βM,C−−−→ F (C) ∗M
θF (C)∗θ

F,e
M−−−−−−→ F (C) ∗ F (M) −→ F (C ∗M). (91)

(ii) In fact, all the twists θF
a,e in eDFa

G (G) for a ∈ Z are compatible with each other, namely

if L ∈ eDFa

G (G) and M ∈ eDF b

G (G) then θF
a+b,e

L∗M equals the composition

L ∗M
βL,M−−−→ F a(M) ∗ L

βFa(M),L−−−−−−→ F b(L) ∗ F a(M)
θF
a,e

Fb(L)
∗θF

b,e
Fa(M)

−−−−−−−−−→ F a+b(L)

∗F a+b(M) −→ F a+b(L ∗M). (92)

(iii) For M ∈ eDF
G (G) we define the automorphism ν

θF,eM
in eDF 2

G (G) to be the composition

ν
θF,eM

: M ∗M
β−1
M,F∗M−−−−−→ M ∗ F ∗M

idM∗F ∗(θF,eM )
−−−−−−−−→ M ∗M. (93)

Then we have

trF,e(idM ) = trF 2,e(νθF,eM
), (94)

where trF,e denotes the eDG(G)-module trace (cf. [Sch13]) in eDF
G (G) coming from the natural

spherical structure.

Combining this with Lemma 4.2, we conclude that both the twists θF and θF,e in the invertible
MG,e-module category MGF,e are compatible with the twist θ in MG,e. Hence we must have
the following proposition.

Proposition 7.2. For each m ∈ Z, there is a constant cFm,e ∈ Q×` such that for each M ∈
eDFm

G (G), we have θF
m

M = cFm,e ·θF
m,e

M and that cFm,e = (cF,e)
m for each m ∈ Z. In fact we must

have

cF,e = σF,e ·
qdimG

qde
, (95)

where de := (dimG− ne)/2 is called the functional dimension of e and where σF,e = ±1.

Proof. Equality (95) is proved by (99) below. The remaining part of the proposition is clear from
the previous results and the uniqueness (cf. [Sch13]) of module traces up to scaling. 2
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7.2 Positivity of spherical structure

By [Des14a, Theorem 2.17], the Frobenius–Perron dimension of MG,e is an integer. In this

section, let us choose an identification Q`
∼= C. Then by [DGNO10, Corollary 2.24] the braided

monoidal category MG,e has a unique positive (with respect to our chosen identification)

spherical structure. Let us denote the corresponding twist by θ+ : idMG,e
→ idMG,e

. Similarly, the

crossed braided category MG〈F 〉,e also has a unique positive spherical structure. Using this, we

obtain new twists θF
m,e,+ in the module categoriesMGFm,e for each m ∈ Z. LetM+

G〈F 〉,e denote

the braided Z-crossed category equipped with this positive spherical structure. For each m ∈ Z,

let tr+
Fm,e denote the M+

G,e-module trace in M+
GFm,e corresponding to the positive spherical

structure. Using [DGNO10, § 2.4.3] we deduce the following lemma.

Lemma 7.3. For m ∈ Z and a simple object M ∈MGFm,e, we must have

θF
m,e,+

M = σMθ
Fm,e
M : M

∼=−→ Fm(M)

where σM = ±1.

Remark 7.4. Since θ+, θF
m,e,+, tr+

Fm,e are all defined using a spherical structure on a braided

Z-crossed category, they must satisfy analogues of Lemma 7.1. In particular, for each M ∈M+
GF,e

we must have

tr+
F,e(idM ) = tr+

F 2,e
(ν
θF,e,+M

). (96)

Let M ∈MGF,e be a simple object. By Theorem 4.3, we have

trF (idM ) = trF 2(νθFM
) = trF 2(ν

σM ·cF,e·θF,e,+M
) = σM · cF,e · trF 2(ν

θF,e,+M
). (97)

In [Des14b, Theorem 2.30], we have described the explicit relation between the trace trF and
tr+
F,e. Using this, we obtain

(−1)2de√
dimMG,e

· qde

qdimG
· tr+

F,e(idM ) =
(−1)2de√
dimMG,e

· q2de

q2 dimG
· σM · cF,e · tr+

F 2,e
(ν
θF,e,+M

), (98)

where de is the functional dimension of e (see Proposition 7.2). Comparing with (96), we obtain

cF,e = σM ·
qdimG

qde
. (99)

In particular, this means that σM does not depend on M and we set σF,e = σM . This implies

that the natural MG,e-module trace trF,e in MGF,e is either purely positive or purely negative.

Hence the natural spherical structure on MG,e must in fact be positive. Moreover, this is true

with respect to any identification Q`
∼= C. This means that the weakly integral modular category

MG,e must actually be integral. Hence we obtain the following result which confirms a conjecture

from [Des14b].

Theorem 7.5. Let G be any neutrally unipotent group defined over k and let e ∈ DG(G) be

any minimal idempotent. Then the modular category MG,e is positive integral.
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Proof. By the results of [BD14], the minimal idempotent e can be obtained from some admissible
pair4(H,L). Now the subgroup H must be stable under some Frobenius map F : G → G. In fact
we may choose a Frobenius F so that the multiplicative local system L ∈ H∗ (the Serre dual of
H; cf. [BD14]) is also F -stable. Then the minimal idempotent e is also F -stable for such an F .
Now we are in the situation where we can apply our previous results to deduce the theorem. 2

Using the observations of this section and [Des14b, Theorem 2.30], we see that the following
corollary holds.

Corollary 7.6. There is the following relationship between the eDG(G)-module traces trF and
trF,e in the category eDF

G (G):

trF,e = σF,e · (−1)2de
√

dimMG,e ·
qdimG

qde
· trF = (−1)2de

√
dimMG,e · cF,e · trF . (100)

7.3 Braided monoidal actions and braided crossed categories
In this section we will use the notation and results from [ENO10]. For example, Pic(MG,e)
denotes the categorical 2-group of invertible MG,e-module categories, and by truncating it
we obtain the categorical 1-group Pic(MG,e) and the ordinary group Pic(MG,e). We refer
to [ENO10] for details. Now by [ENO10, Theorem 4.5], we must have Fn

′ ∼= idMG,e
as

braided monoidal functors for some positive integer n′. This gives us a group homomorphism
Z/n′Z → Pic(MG,e) ∼= EqBr(MG,e). However, this may not necessarily give rise to a braided
monoidal action of Z/n′Z onMG,e. By [ENO10, § 8], the obstruction is described by a 3-cocycle
in H3(Z/n′Z, Z) where Z is the group of automorphisms of idMG,e

considered as a braided tensor
functor or equivalently Z = AutMG,e-Mod(MG,e). We can trivialize this 3-cocycle by choosing

a suitable multiple n of n′. This means that we have a natural equivalence idMG,e

ξ−→ Fn

(of braided monoidal functors) such that this defines a braided monoidal action of Z/nZ on
MG,e or equivalently a map

Z/nZ −→ EqBr(MG,e) ∼= Pic(MG,e). (101)

Now note that in fact the cohomology group H4(Z/nZ,Q×` ) is trivial. Hence by [ENO10, § 8] we
can in fact lift the map (101) to obtain a map

Z/nZ −→ Pic(MG,e). (102)

In other words, we can put a structure of a braided Z/nZ-crossed category on the category

D :=
n−1⊕
i=0

MGF i,e. (103)

This means that we have an induced action of Z/nZ on each of the categoriesMGFa,e compatible
with the braided monoidal action of Z/nZ onMG,e. We have well-defined natural isomorphisms

F a
ξma−→ F a+m for each a ∈ Z and m ∈ nZ. Also we have the corresponding equivalences of

MG,e-module categories

ξ̃ma :MGFa,e

∼=−→MGFa+m,e (104)

for a ∈ Z,m ∈ nZ, and these satisfy certain compatibility conditions. The functor ξ̃ma commutes
with the actions of Z/nZ.

4 We refer to [BD14] for a precise definition.
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Note that we have the equivalence of MG,e-module categories

ξ̃ = ξ̃n0 :MG,e

∼=−→MGFn,e. (105)

In particular, we have the object ξ̃e ∈MGFn,e, and the functor ξ̃ above is canonically equivalent

to the functors C 7→ ξ̃e ∗ C and C 7→ C ∗ ξ̃e. And similarly, for each a ∈ Z,m ∈ nZ and M ∈
MGFa,e, we have natural isomorphisms (ξ̃e)∗m/n ∗M ∼= ξ̃ma (M) ∼= M ∗(ξ̃e)∗m/n

∼=−→ F a(ξ̃e)∗m/n ∗
M giving us a canonical isomorphism ξ̃e ∼= F a(ξ̃e) for each a ∈ Z.

Remark 7.7. The fact that
⊕

i∈ZMGF i,e is a spherical braided Z-crossed category implies that
each MGF i,e is equipped with a normalized MG,e-module trace (in the sense of [Des14b, § 2.3.1

(2)]). Hence under the MG,e-module equivalence ξ̃n0 , the MG,e-module traces on MG,e and
MGFn,e must either agree or be negatives of each other. In any case the traces on MG,e and
MGF 2n,e must agree. Hence, replacing n by 2n if required, we may assume that the traces agree
and hence we obtain a spherical structure on the category D .

Note that all the structures above can be extended to the corresponding bounded derived
categories. Recall from (69) that for C ∈ eDG(G)F and M ∈ eDF

G (G) we have the composition

ζC,M : C ∗M
β−1
M,F∗C−−−−−→ M ∗ F ∗C

β−1
F∗C,M−−−−−→ F ∗C ∗M ψC∗idM−−−−−→ C ∗M (106)

in the category eDF
G (G). Then we have the following lemma.

Lemma 7.8. Let m ∈ nZ. Then the automorphism ξ̃m1 (ζC,M ) in eDFm+1

G (G) is equal to the
composition5

ξ̃m1 (ζC,M ) : ξ̃m0 C ∗M
β−1

−−→ M ∗ F ∗ξ̃m0 C
β−1

−−→ F ∗ξ̃m0 C ∗ Fm
∗M

ξ̃m0 (ψC)∗(ξm0 )Fm∗M−−−−−−−−−−−−→ ξ̃m0 C ∗M.

(107)

7.4 Certain twists are roots of unity
Recall from (90) that we have the twist θF,e in the MG,e-module category MGF,e. For each
M ∈MGF,e we have the following automorphism of M :

ωM : M
θF,eM−−→ F (M)

F (θF,eM )
−−−−→ · · ·

Fn−1(θF,eM )
−−−−−−−→ Fn(M)

(ξn0 )−1
M−−−−→ M. (108)

Lemma 7.9. If M ∈MGF,e is a simple object then ωM is a root of unity.

Proof. We have the spherical braided Z/nZ-crossed category D . Taking the equivariantization

we obtain the modular category DZ/nZ. We choose an isomorphism M
ψM−−→ F (M) such that

(M,ψM ) defines a Z/nZ-equivariant object in the categoryMZ/nZ
GF,e ⊂ DZ/nZ. Or in other words,

we must have

idM : M
ψM−−→ F (M)

F (ψM )
−−−−→ · · ·

Fn−1(ψM )
−−−−−−→ Fn(M)

(ξn0 )−1
M−−−−→ M. (109)

Since DZ/nZ is a modular category, it is equipped with a twist θ′. The twist θ′M,ψM
is equal to

the composition M
θF,eM−−→ F (M)

ψ−1
M−−→ M . We know that twists of simple objects in a modular

category are roots of unity. Hence θ′M,ψM
is a root of unity. On the other hand, by comparing (108)

and (109) we see that ωM = (θ′M,ψM )n. Hence ωM is also a root of unity. 2

5 For brevity, we may occasionally omit the lower indices of the crossed braiding isomorphisms.
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Corollary 7.10. There exists a positive integer m0 divisible by n such that, for each m ∈
m0Z ⊂ nZ and each simple object M ∈MGF,e, the composition

M
θF,eM−−→ F (M)

F (θF,eM )
−−−−→ · · ·

Fm−1(θF,eM )
−−−−−−−→ Fm(M)

(ξm0 )−1
M−−−−→ M (110)

is equal to the identity, or equivalently (see Lemma 7.2), such that the composition

M
θFM−−→ F (M)

F (θFM )
−−−−→ · · ·

Fm−1(θFM )
−−−−−−→ Fm(M)

(ξm0 )−1
M−−−−→ M (111)

equals scaling by (cF,e)
m.

Proof. Since MGF,e has finitely many simple objects, there exists a positive integer b such that
ωbM = 1 for all simples M . Then it is easy to check that m0 = nb satisfies the desired property. 2

8. Completion of the proof

We can now complete the proof of Theorem 6.6. Let M ∈ DF
G (G) and let m be any integer.

Then we have the object ηm(M) = (M,ψM,m) ∈ DF
G (G)F

m
defined by Lemma 5.1. Suppose that

m ∈ m0Z, where m0 is as in Corollary 7.10. Applying Fm∗ (which is inverse to the functor Fm;
cf. § 7.1) to (111) and comparing with (65), we see that

ψM,m = (cF,e)
m · Fm∗(ξm0 )M = (cF,e)

m · (ξm0 )Fm∗M : Fm∗M → M (112)

for each m ∈ m0Z.
We will now prove that the integer m0 above satisfies the desired properties of Theorem 6.6.

Let m be any positive multiple of m0. Let C ∈ MG,e be an F -stable simple object. We choose

an F -equivariance isomorphism ψC,m : F ∗C
∼=−→ C such that the composition

C
F (ψC,m)
−−−−−→ F (C)

F 2(ψC,m)
−−−−−−→ · · ·

Fm(ψC,m)
−−−−−−→ Fm(C)

(ξm0 )−1
C−−−−→ C (113)

equals the twist θC : C → C. Consider the F -stable object Lm := ξ̃m0 (C) inMGFm,e ⊂ eDFm

G (G).
It is equipped with the associated F -equivariance isomorphism

ψLm := cF,e · ξ̃m0 (ψC,m) : F ∗Lm = F ∗ξ̃m0 (C) = ξ̃m0 (F ∗C)
∼=−→ ξ̃m0 (C) = Lm. (114)

The reason for introducing the scaling factor cF,e in the definition of ψLm is that now the
composition

Lm
F (ψLm )
−−−−−→ F (Lm)

F 2(ψLm )
−−−−−→ · · ·

Fm(ψLm )
−−−−−−→ Fm(Lm) (115)

equals (cF,e)
m · θF

m,e
Lm

= cFm,e · θF
m,e

Lm
= θF

m

Lm
. Now Lm[−dimG− ne] is an F -stable local system,

say equal to Wmloc where Wm ∈ Irrep(G,Fm)F . Then by (115) the F -equivariance structure

ψWm := ψLm [−dimG− ne] : F ∗Wmloc

∼=−→ Wmloc (116)

satisfies the desired property as described in § 2.6 and Remark 4.1. In particular, we must have

‖TWm,ψWm
‖ = ‖TLm,ψLm‖ = ‖cF,e · TC,ψC,m‖ = ‖TC,cF,e·ψC,m‖ = 1, (117)

where ‖ · ‖ denotes the norm with respect to the Hermitian inner products on the corresponding
function spaces.
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Combining Lemma 7.8 and (112), we see that the composition (see (69))

ζ
(ξ̃m0 C,ξ̃

m
0 (ψC,m)),ηmM

: ξ̃m0 C ∗M
β−1

−−→ M ∗ F ∗ξ̃m0 C
β−1

−−→ F ∗ξ̃m0 C ∗ Fm
∗M

ξ̃m0 (ψC)∗ψM,m−−−−−−−−−→ ξ̃m0 C ∗M
(118)

is equal to (cF,e)
m · ξ̃m1 (ζ(C,ψC,m),M ). Hence we see that

ζ(Lm,ψLm ),ηmM = (cF,e)
m+1 · ξ̃m1 (ζ(C,ψC,m),M ) (119)

and that

ζ(Wmloc,ψWm ),ηmM = (−1)2de · (cF,e)m+1 · ξ̃m1 (ζ(C,ψC,m),M ). (120)

Now under the identification

ξ̃m1 : eDF
G (G)

∼=−→ eDFm+1

G (G), (121)

the traces trF,e and trFm+1,e defined using the spherical structure on eDG(G〈F 〉) agree. Hence

trFm+1,e(ζ(Wmloc,ψWm ),ηmM ) = (−1)2de · (cF,e)m+1 · trF,e(ζ(C,ψC,m),M ). (122)

Hence, using Corollary 7.6, we obtain

trFm+1(ζ(Wmloc,ψWm ),ηmM ) =
1√

dimMG,e

· trF,e(ζ(C,ψC,m),M ) (123)

= (−1)2decF,e · trF (ζ(C,ψC,m),M ) = (−1)2de trF (ζ(C,cF,e·ψC,m),M ).

(124)

Now let V ∈ Irrepe(G,F ) and set M = Vloc ∈ eDF
G (G). Then from Theorem 5.4 and Corollary 5.5

we deduce that

〈Shm(Wm), χV 〉 = (−1)2de〈TC,cF,e·ψC,m , χV 〉. (125)

Now the twist θC is a root of unity. Hence the F -equivariance isomorphisms ψC,m : F ∗C
∼=−→ C

(chosen according to (113)) for different m ∈ m0Z differ from each other only up to scaling
by roots of unity. Hence Shm(Wm) for different values of m (in m0Z>0) as well as the trace of
Frobenius functions TC,cF,e·ψC,m = cF,e · TC,ψC,m all differ from each other only up to scalings by
roots of unity. This completes the proof of Theorem 6.6(i) and (iii). The proof of (i′) is similar.
Theorem 6.6(ii) also follows from Proposition 3.4.
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