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Abstract

Consider a well-shuffled deck of cards of n different types where each type occurs m
times. In a complete feedback game, a player is asked to guess the top card from the
deck. After each guess, the top card is revealed to the player and is removed from the
deck. The total number of correct guesses in a complete feedback game has attracted
significant interest in the past few decades. Under different regimes of m, n, the expected
number of correct guesses, under the greedy (optimal) strategy, has been obtained by
various authors, while there are not many results available about the fluctuations. In this
paper we establish a central limit theorem with Berry–Esseen bounds when m is fixed
and n is large. Our results extend to the case of decks where different types may have
different multiplicity, under suitable assumptions.
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1. Introduction

1.1. Lady tasting tea, revisited

Muriel Bristol, a biologist at Rothamsted Research at the dawn of the twentieth century,
once claimed that she could taste whether a cup of tea was prepared by pouring the milk first.
Ronald Fisher, in an attempt to disprove her claim, arranged the following simple experiment:
Bristol was presented with eight cups of tea, half of which were prepared by pouring the milk
first, and she was asked to taste them one by one and identify which were which. This episode
became widely known as the ‘lady tasting tea’ experiment, the very first example appearing in
Fisher’s seminal book [9] on the design of statistical experiments. Its analysis of the experiment
is now a cornerstone of scientific thinking, being also the first appearance of the expression
‘null hypothesis’ in Fisher’s work. In this case, it assumes that Bristol’s guesses are random,
so that the distribution of the score follows a hypergeometric distribution. On average, one
expects four correct guesses, the underlying probability distribution being well understood.

In the original experiment, Bristol did not receive any kind of feedback during the exper-
iment: What if she had been told the correct answer after each attempt? Clearly, since she
knows the exact number of cups of each type, she can always guess the one that appeared the
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CLT in complete feedback games 655

smallest number of times so far, and therefore increase her likelihood of a correct guess at each
step. This does not require any special ability on her part, other than a clever exploitation of the
information she is provided with. There has been a substantial flurry of interest in variations of
this kind, owing to the connection with randomized clinical trials [1] and the testing of claims
of extra-sensory perception [3], which we will review later. While most of the focus has been
on the asymptotic expected score for large experiments, it is clear that a rigorous analysis of
the experiments requires the understanding of the fluctuations of the score. This is the focus of
our paper.

1.2. Model and main result

Consider a well-shuffled deck of cards consisting of n different types of cards where each
card appears m times. Thus, there are mn cards in total. Consider the following complete feed-
back game: a player is asked to guess the type of card appearing on top of the deck. After each
guess the top card is revealed to the player. The game continues until the deck is exhausted.
Let Sm,n denote the total number of correct guesses (also referred to as the score) at the end of
the game. Obviously the score depends on the strategy. For instance, if the player keeps guess-
ing, say, card of type 1, then Sm,n = m. Diaconis and Graham [4] have shown that the greedy
algorithm maximizes the expected number of correct guesses, that is to say, a player should
guess a card that has the maximum multiplicity in the remaining deck. We will refer to the
greedy algorithm as the ‘optimal strategy’ throughout this paper, and we will tacitly assume
that the player is performing this strategy. Our main result is a central limit theorem (CLT) for
the optimal score Sm,n with a Berry–Esseen bound that can be stated as follows.

Theorem 1.1. Consider a deck of cards with n distinct types of cards where each card
appears with a fixed multiplicity m. Let Sn be the total number of correct guesses under the
greedy/optimal strategy. Then we have the following.

• The mean μn := E[Sn] and the variance σ 2
n := Var[Sn] satisfy

μn ∼ σ 2
n ∼

(
1 + 1

2
+ · · · + 1

m

)
ln n

as n → +∞.

• There exists a constant C = C(m) depending only on m such that

sup
x∈R

∣∣∣∣P
(

Sn − μn

σn
≤ x

)
− �(x)

∣∣∣∣ ≤ C
ln ln n√

ln n
,

where � is the cumulative distribution function of a standard normal random variable.

More generally, we prove a CLT result analogous to Theorem 1.1 for a deck of cards where
the cards of each type occur with (possibly) different multiplicity, that is, for a deck with n
different types of cards where the cards of type i for i ∈ [n] appear mi times. We always assume
that, for all n, the deck is shuffled so that all arrangements are equally likely.

Notation. To state our theorem clearly, we need to fix some notation.

(1) For each n ∈N, a vector m := mn = (m1, . . . , mn) denotes a deck of cards with n
different types of cards and where a card of type i ∈ [n] appears mi times in the deck.

(2) Let |m| = |mn| denote the total number of cards in the deck, that is, |m| = ∑n
i=1 mi.
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(3) Let mn
max denote the highest multiplicity of a card in the deck, that is, mn

max =
maxi∈[n] mi.

(4) Let εn denote the fraction of type(s) i such that the cards of type i occur with highest
multiplicity mn

max.

(5) Let Smn be the total number of correct guesses (also referred to as the score) at the end
of the game under the optimal strategy.

Theorem 1.2. Let mn be a sequence of decks, indexed by n, with n distinct types of cards.
Suppose that mn

max ≤ m for some m that is independent of n, and that εn ≥ ε for some positive
ε independent of n. Let Smn be the total number of correct guesses under the greedy/optimal
strategy. Then we have the following.

• The mean μn := E[Smn ] and the variance σ 2
n := Var[Smn ] satisfy

μn ∼ σ 2
n ∼

(
1 + 1

2
+ · · · + 1

mn
max

)
ln n

as n → +∞.

• There exists a constant C = C(ε, m) such that

sup
x∈R

∣∣∣∣P
(

Smn − μn

σn
≤ x

)
− �(x)

∣∣∣∣ ≤ C
ln ln n√

ln n
,

where � is the cumulative distribution function of a standard normal random variable.

Remark 1.1. It is clear that all the assumptions in the Theorem 1.1 are satisfied if mi = m for
all i ∈ [n]. In particular, Theorem 1.1 follows from Theorem 1.2. The result about the mean
was already shown in [4] and [10].

1.3. Related literature

The complete feedback game was originally motivated by clinical trials. For an in-depth
discussion of the problem, a good reference is [8], though the first appearance is in a work by
Blackwell and Hodges [1]. They considered the case where two types of medical treatments
have to be assigned to a fixed number of people, say 2m, who arrive one by one at the clinic.
They were interested in the case where both treatments are provided in the same quantity and
in a random order. However, they assume that the hospital may decide, at their discretion,
whether to rule out some of the subjects because of their medical conditions. Since they have
information on the treatments provided up to that point, they may decide to bias the result of
the experiment towards a specific treatment. This can be done by ruling out a particularly sick
subject if they know that it is more likely that their favorable treatment has to appear next.

In our language, this is precisely the complete feedback case with n = 2, with m = (m, m).
Blackwell and Hodges [1] gave an asymptotic formula for the optimal expected score (in their
language, the selection bias), which was then extended by Diaconis and Graham [4] to the
generic case m = (m1, . . . , mn) with n fixed. As for the fluctuations, the latter reference shows
that, for n = 2 and the m = (m, m) with m large, the limiting optimal score satisfies a central
limit theorem. On the other hand, in the unbalanced case where m = (m1, m2), where m1, m2
grow with m1/m2 → p 
= 1/2, they show that the fluctuations of the optimal score are not
Gaussian. Related results in the case m = 2 also appeared in [11].
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Another occurrence of the complete feedback game is related to the rigorous analysis
for extra-sensory perception claims. In fact, one of the most celebrated experiments in this
direction corresponds precisely to the complete feedback game with a deck of twenty-five
cards (Zener cards), with five symbols each appearing five times. For a historical account,
the interested reader is referred to [3]. Motivated by this, Diaconis and Graham [4] suggest
studying the asymptotic optimal expected score for the complete feedback game with decks
m = (m1, . . . , mn) where n grows. In the case mi ≡ 1, the analysis becomes much simpler
since the sequence of guesses becomes independent. In particular, it is easy to deduce that one
obtains about ln n correct guesses in expectation, with a variance of the same order and normal
fluctuations.

The case where some of the mi are greater than one is more subtle, since the chance of a
correct guess will depend on the history of the draws up to that moment. Diaconis et al. [5]
analyzed the case where mi ≡ m is fixed and n grows to infinity, showing that asymptotically the
expected optimal score is (1 + · · · + 1/m) ln n. The result was substantially refined by He and
Ottolini in [10], where the expected score is determined for decks m = (m1, . . . , mn) under the
same assumptions as in Theorem 1.2. Moreover, their asymptotic result matches the optimal
expected score up to an explicit error that goes to zero. Their main tool is the analysis of a
certain variation of the birthday problem via Stein’s methods, which will be our main tool here
as well. In the case mi ≡ m where both m and n are growing, the asymptotic for the expected
optimal score was obtained by Ottolini and Steinerberger [15], covering a variety of regimes
that include the case n = m (Zener’s original setting).

Variations of the game also include different types of feedback, the most relevant case being
that of yes/no feedback (i.e. the card is shown only when a guess is correct). This becomes
much harder to analyze even for balanced decks m = (m1, . . . , mn) with mi ≡ m. It is known
[4] that the optimal strategy is not the greedy one as soon as m > 1 and n > 2. Some limiting
results were recently obtained in [5] and [13], for instance that the expected optimal score for
n � m � 1 is of the form m + �(

√
m) uniformly in n. Results on the fluctuations are currently

unknown – except in the case m = 1 – where the limiting distribution has a non-normal behav-
ior as shown in [4]. Since the optimal strategy is rather hard to implement, a fact ultimately
due to its connection with permanents [2, 6], there has also been some interest in near-optimal
strategies that are easier to implement [7].

Finally, we mention some other variations of the game in a similar flavor. The problem of
minimizing the expected number of correct guesses was also addressed in [4], [5], and [10],
for both complete feedback and yes/no feedback. Another natural set of questions comes from
considering decks that have not been properly shuffled, such as the case of a deck which has
been riffle shuffled [12].

2. Proofs

In the remainder of the paper we will sometimes drop the dependence on the deck m and
on n. The implicit constants in the notation O, �, �,� will depend on m and ε only, unless
we specify otherwise. We will often identify mn

max and εn with their upper/lower bound m or
ε, unless there is ambiguity.

2.1. Main idea

It will be convenient to define the following random variables and set up some notation.

• Tj = max{t ∈ {0, 1, . . . , |m|} : no card among the last t appears more than j times}.
Here 0 ≤ j ≤ m, with the convention T0 = 0 and Tm = |m|.
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• Wj,t = ∑
t≤t Yt. Here t = (t1, . . . , tj+1) is a (j + 1)-tuple of strictly increasing posi-

tive integers, and the notation t ≤ t means tj+1 ≤ t (implying that t� ≤ t for each � =
1, 2, . . . , j + 1). The binary random variable Yt is one if and only if the cards at posi-
tions t are equal (here, positions are considered from the bottom of the deck). Notice that
Tj > t if and only if Wj,t = 0. Here, 1 ≤ t ≤ |m| and 0 ≤ j ≤ m.

• W̃j = Wj−1,Tj denotes the number of cards that appear j times before some card appears
j + 1 times. Again, this is done from the bottom of the deck. Here, 1 ≤ j ≤ m.

Example 2.1. Consider a deck m = (3, 3, 2), and assume that the sequence of cards extracted,
listed from the last to the first, is

(1, 2, 2, 1, 3, 1, 2, 3).

In this case, T0 = 0, T1 = 2, T2 = 5, T3 = 8. Correspondingly, we have W̃1 = W0,2 = 2, W̃2 =
W1,5 = 2, W̃3 = W2,8 = 2. For instance, W̃2 = 2 reflects the fact that there are two pairs of
identical cards among the last five and no triple of identical cards (those labeled one and two),
while among the last six cards there is a triple of identical cards (those labeled one).

Remark 2.1. Notice that W̃m is equal to the number of types that appear with multiplicity m,
which is at least εn under the assumption of Theorem 1.2.

Remark 2.2. Since Wj,t is a sum of indicators, Wj,t ≤ Wj,|m| ≤
(nm

j

)
is at most polynomial in n

under the assumption of Theorem 1.2.

The random variables Wj,t are important tools for understanding the asymptotic behavior of
the total score. In fact, He and Ottolini’s main ingredient in [10] is an asymptotic result for the
Wt,j, which behave like Poisson random variables with suitable parameters. This should come
as no surprise, since the Yt are indicators of rare events, most of which are weakly dependent.
They obtained the following result.

Theorem 2.1. (Theorem 1.8 of [10].) Let 1 ≤ j < m. Then there exists

λ = �

(
tj+1

nj

)

such that

dtv
(
Wj,t, Poi(λ)

)
� t

n
�

(
λ

n

)1/(j+1)

.

Here, Poi(λ) represents a Poisson random variable with mean λ, and dtv represents the total
variation distance between probability measures (where we identify a random variable with its
law). Moreover, the implicit constants in the error term and the definition of λ can be chosen
to depend only on j and ε, the fraction of types that appear with multiplicity m.

Remark 2.3. In the case mi ≡ m, we have

λ = tj+1

nj

( m
j+1

)
mj+1

.

Notice that for fixed j, the second term converges to 1/(j + 1)! as m → +∞.
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Remark 2.4. Theorem 2.1 can be thought of as a variant of the classical birthday problem.
In fact, for j = 1 and mi ≡ mn

max → +∞, we obtain the best possible approximation for the
classical birthday problem.

In this section we state and prove some lemmas that will be useful in the proof of
Theorem 1.2. We begin with a discussion of the idea of the proof. The total score Sm can
be written as the sum of |m| (the total size of the deck) binary random variables, namely, the
indicators that at a given time the player obtains a correct guess. If these random variables were
independent, the CLT for the total score would follow at once.

However, even in the case m = 2, n = 2, it is clear that if the second guess is correct, then
the remaining two cards are distinct (hence the third guess will be correct with probability
1/2), while if the second guess is wrong, then the remaining two cards are the same. Hence
the third guess will be correct with probability 1. Intuitively, the dependence becomes weak
for large n, and it should be related to the concentration properties of the random variables
introduced above. Indeed, the strategy will change depending on how many cards appear with
a given multiplicity at a given time. The first crucial step towards the proof of the CLT will
be the observation that, conditioned on W̃j, the score can be written as a sum of independent
random variables (see Lemma 2.1). This allows us to prove a CLT for the conditional score
with a uniform Berry–Essen bound (Lemma 2.2).

The final issue is to understand the behavior of the W̃j and show that they enjoy suitable con-
centration. The main difficulty is that Theorem 2.1 requires a fixed time, rather than the random
time Tj appearing in the definition of the W̃j. Moreover, the random variables Tj and Wj−1,t

are dependent, meaning that we cannot expect a straightforward limiting result expressed in
terms of compound Poisson random variables. It is worth noticing that while in [10] there is
a multivariate version of Theorem 2.1, it does not suffice for our purposes. To circumvent the
problem, we will use a suitable monotonicity and concentration argument that allows us to
prove the main Lemma 2.3.

2.2. A CLT for the conditional score

We start by showing a useful representation of the optimal score.

Lemma 2.1. For any deck m, the optimal score Sm can be written as

Sm =
m∑

j=1

W̃j∑
s=1

Xj,s,

where the Xj,s are conditionally independent – given the W̃j – Bernoulli random variables with
P
(
Xj,s = 1

) = 1/s.

Proof. Let τj,s be the time at which the maximum multiplicity of a symbol left in the deck
is equal to j; there are exactly s symbols with this multiplicity, and the symbol of the card on
top of the deck is precisely one of those s symbols. Notice that a correct guess can only occur
at the times τj,s. If Xj,s denotes the indicator that the guess at time τj,s is correct, then

P
(
Xj,s = 1

) = 1

s
.

To see this, notice that at time τj,s, the symbol appearing on the card is one of the s symbols
that appear with the maximum multiplicity, and each of them appears with the same likelihood
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since the deck is uniformly shuffled. It is worth remarking that while the optimal strategy is
not unique (the player is free to choose any of the s symbols that appear with the maximum
multiplicity: he/she may always guess, for example, the symbol they like most among those s,
or a uniformly random choice), the distribution of the Xj,s remains uniform. Moreover, these
random variables are conditionally independent, given the times τs,j. Finally, observe that for
each j, the number of relevant τj,s is 1 ≤ j ≤ m and 1 ≤ s ≤ W̃j, so that we obtain conditional
independence given the W̃j. �

Remark 2.5. Following Remark 2.1, our assumption on ε guarantees that the expected number
of correct guesses is lower-bounded by ln n + O(1). This can be seen by looking at W̃m (i.e.
guesses early on in the game).

Remark 2.6. Since W̃j ≥ 1 for all j, we have the deterministic bound Sm ≥ m. These cor-
respond to the correct guesses when there is only one card appearing with the maximum
multiplicity, which will eventually result in a correct guess with certainty.

For convenience, we let S′
m denote the total score conditioned on the random variables W̃j

for 1 ≤ j ≤ m. Lemma 2.1 says that S′
m is a sum of independent Bernoulli random variables.

We can leverage this to obtain the following result.

Lemma 2.2. Consider a deck as in the assumption of Theorem 1.2. Let S′
m denote the total

score conditioned on the W̃j, and let μ′
n and σ ′

n denote the conditional mean and standard
deviation. Then

μ′
n =

m∑
j=1

ln W̃j + O(1), σ ′2
n = μ′

n + O(1).

Moreover, uniformly over the W̃j, we have

∣∣∣∣P
(

S′
m − μ′

n

σ ′
n

≤ x

)
− �(x)

∣∣∣∣� 1

(ln n)3/2
,

where �(x) denotes the cumulative distribution function of a standard normal random variable.

Proof. By means of Lemma 2.1 and linearity of expectation, we can write

μ′
n =

m∑
j=1

(
1 + 1

2
+ · · · + 1

W̃j

)
,

σ ′
n

2 =
m∑

j=1

[(
1 + 1

2
+ · · · + 1

W̃j

)
−

(
1 + 1

22
+ · · · + 1

W̃2
j

)]
.

Using the well-known facts

1 + 1

2
+ · · · + 1

k
= ln k + O(1),

+∞∑
n=1

1

k2
= π2

6
< ∞,

we deduce that

μ′
n =

m∑
j=1

ln W̃j + O(1), σ ′2
n = μ′

n + O(1). (2.1)
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Moreover, using the fact that W̃m ≥ εn (see Remark 2.1), we deduce that

σ ′
n

2 ≥ ln n + O(1) (2.2)

uniformly over all realizations of the W̃j. Since the second and third moments of a Bernoulli
random variable are the same, a standard Berry–Esseen bound for non-identically distributed
random variables (see e.g. [16]) gives∣∣∣∣P

(
S′

m − μ′
n

σ ′
n

≤ x

)
− �(x)

∣∣∣∣� 1

σ ′3
n

� 1

(ln n)3/2
. �

Remark 2.7. Notice that the proof already shows that the limiting fluctuations for the score
Smn are distributed as mixtures of normal random variables. In order to prove Theorem 1.2, it
will suffice to show suitable concentration for the conditional mean and variance.

2.3. Removing the conditioning

As pointed out in Remark 2.7, the conditional CLT for S′
m shown in Lemma 2.2 will suffice

for our purposes if we can show a suitable concentration for the conditional means and variance
μ′

n and σ ′
n. Towards this, the main ingredient will be the following.

Lemma 2.3. Consider a deck m satisfying the assumptions of Theorem 1.2. Let μ′
n be the

conditional mean of the total score Sm given the random variables W̃j. Then

Var[μ′
n] = O

(
(ln ln n)2).

Proof. First, we claim that it suffices to show

E

[(
ln W̃j − cj

)2
]
= O

(
(ln ln n)2), (2.3)

where

cj = cj(n) = ln n

j + 1
,

and 1 ≤ j ≤ m − 1 (the case j = m is obvious since W̃m is deterministic). Here, the implicit
constant in O

(
(ln ln n)2

)
depends on the maximum multiplicity of the deck mmax, which is

bounded by some constant m. Therefore, assuming (2.3), the desired conclusion follows, using
the first bound in (2.1) together with the triangle inequality and the well-known fact that the
variance minimizes the square discrepancy from any constant.

The goal now is to reduce concentration properties of W̃j to those of Wj−1,t and Tj, for which
we can exploit Theorem 2.1. To this end, consider two sequences fn = ln n and gn = 1/ln n.
Recall that Tj > t if and only if Wj,t = 0. In particular, Theorem 2.1 allows us to approximate
probabilities of the form Tj ∈ [a, b], with an explicit error term. More precisely, we have∣∣∣∣P

(
Tj

Cnj/(j+1)

∈ [gn, fn]

)
− (

e−fn + 1 − e−gn
)∣∣∣∣� fn

n1/(j+1)
� ln n

n1/(j+1)
. (2.4)

Let t− := Cnj/(j+1)gn and let t+ := Cnj/(j+1)fn. Using the fact that 1 ≤ W̃j ≤ n, as well as the
definition of cj, we have ln W̃j, cj ≤ ln n. Therefore, on the event Tj 
∈ [t−, t+], we obtain

E

[(
ln W̃j − cj

)2 1{Tj 
∈[t−,t+]}
]
= O

(
(ln ln n)2).

https://doi.org/10.1017/jpr.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.64


662 A. OTTOLINI AND R. TRIPATHI

We can thus restrict our attention to the event Tj ∈ [t−, t+]. Since Wj−1,t is weakly increasing
in t, in the regime Tj ∈ [t−, t+], we have

Wj−1,t− ≤ W̃j ≤ Wj−1,t+ .

The key gain is that we overcome the complicated dependence mechanism behind the def-
inition of the W̃j; recall that Tj and Wj−1,t are not independent. Using Theorem 2.1, we
know

dtv
(
Wj−1,t− , Poi(λ−)

)
� t−

n
� gn

n1/(j+1)
, dtv

(
Wj−1,t+ , Poi(λ+)

)
� t+

n
� fn

n1/(j+1)
,

where λ+ and λ− satisfy

λ+ = �
(
n1/(j+1)fn

)
, λ− = �

(
n1/(j+1)gn

)
. (2.5)

In particular, since gn = 1/ln n we obtain that

P
(
Wj−1,t− = 0

)
� e−λ− + gn

n1/(j+1)
� 1

n1/(j+1)
.

Using the fact that 1 ≤ W̃j ≤ n, as well as the definition of cj, we have ln W̃j, cj ≤ ln n. This
allows us to bound

E

[∣∣ln W̃j − cj
∣∣21{Wj−1,t−=0}

]
≤ (ln n)2

P
(
Wj−1,t− = 0

)
� (ln n)2

n1/(j+1)
.

Therefore we can restrict our attention to the event {Tj ∈ [t−, t+]]} ∩ {Wj−1,t− > 0}. On this
event we have∣∣ln W̃j − cj

∣∣2 ≤ ∣∣ln Wj−1,t− − cj
∣∣21{Wj−1,t−>0} + ∣∣ln Wj−1,t+ − cj

∣∣21{
Wj−1,t+>0

}. (2.6)

Using the fact that

cj = 1

j + 1
ln n

and Remark 2.2, we have
∣∣ln Wj−1,t± − cj

∣∣� ln n. In particular, we can replace Wj−1,t± with
Poi(λ±) in (2.6) up to an error of order

ln n

(
e−fn + 1 − e−gn + fn

n1/(j+1)
+ gn

n1/(j+1)

)
.

Recall that fn = ln n, gn = 1/ln n. Therefore, using 1 − e−x ≤ x, the above expression is O(1).
We are thus left to show that

E
[
(ln (Poi(λ+)) − cj)

21Poi(λ+)>0
] +E

[
(ln (Poi(λ−)) − cj)

21Poi(λ−)>0
] = O

(
(ln ln n)2).

Thanks to (2.5), we can replace cj with ln (λ±) up to an error. That is,

∣∣cj − ln (λ−)
∣∣2 � (ln gn)2 = (ln ln n)2, |cj − ln (λ+)|2 � (ln fn)2 = (ln ln n)2.
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The result thus follows by showing

E
[
(ln (Poi(λ+)) − ln λ+)21Poi(λ+)>0

] +E
[
(ln (Poi(λ−)) − ln λ−)21Poi(λ−)>0

]
� (ln ln n)2.

In fact we can do better than this (notice that, because of (2.5) and our choices of fn and gn, we
know that λ± > 1 for all n sufficiently large). We claim the following.

Claim 2.2. Let X = Poi(λ)/λ for λ > 1. Then

E
[
(ln X)21X>0

] ≤ C

for some absolute constant C.

Proof of Claim 2.2. Let A = {|X − 1| ≥ 1/2, X 
= 0}. Then we have

E
[
(ln X)21X>0

] ≤ (ln 2)2 +E
[
(ln X)21A

]
.

Notice that if X > 1, we can bound (ln X)2 ≤ X. On the other hand, if 1/λ ≤ X < 1 then
(ln X)2 ≤ (ln λ)2. Thus, on the event A, we have (ln X)2 ≤ (ln λ)2 + X. Therefore, combining
with the Cauchy–Schwarz inequality,

E
[
(ln X)21A

] ≤E[X1A] + (ln λ)2
P(A) ≤ (

E
[
X21A

])1/2(P(A))1/2 + (ln λ)2
P(A).

For the first term, we note that

E
[
X2] = λ2 + λ

λ2
≤ 2.

On the other hand, the Chernoff bound for Poisson random variables gives

P(A) ≤ P

(
|Poi(λ) − λ| ≥ λ

2

)
≤ 2e−λ/12

from which the claim follows at once. �

This completes the proof. �

We are now ready to prove the main result, which will be an easy consequence of the
lemmas we have proved so far.

Proof of Theorem 1.2. We start with the first part. The asymptotic result for the mean is the
main result in [10]. As for the variance σ 2

n , we can use the law of total variance to write in
terms of the conditional mean and variance (see Lemma 2.2) as

σ 2
n = Var[μ′

n] +E
[
σ ′

n
2].

Therefore the asymptotic result follows by using (2.1), which shows that the second term is
asymptotically the same as μn, together with Lemma 2.3, which shows that the first term is
negligible.

We now move to the second part, namely the proof of the CLT. Let us define a random
variable

y = yn(x) = σ

σ ′ x + μ − μ′

σ ′ .
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Now observe that∣∣∣∣P
(

Smn − μn

σn
≤ x

)
− �(x)

∣∣∣∣ =
∣∣∣∣E

[
P

(
S′

mn − μn

σn
≤ x

∣∣∣∣ W̃1, . . . , W̃m

)
− �(x)

]∣∣∣∣
=

∣∣∣∣E
[
P

(
S′

mn − μ′
n

σ ′
n

≤ y

∣∣∣∣ W̃1, . . . , W̃m

)
− �(x)

]∣∣∣∣
≤ ‖F̃ − �‖∞ + |E[�(y) − �(x)]|, (2.7)

where

F̃(z) := P

(
S′

m − μ′

σ ′ ≤ z

)
.

We know that

‖F − �‖∞ � 1

(ln n)3/2

from Lemma 2.2. Therefore it suffices to bound |E[�(y) − �(x)]|. Using (2.1) and (2.2), we
observe that

σn − σ ′
n = σ 2

n − σ ′
n

2

σn + σ ′
n

= o(|μn − μ′
n| + 1)

with probability one. Therefore

|y(x) − x| ≤ |σ ′
n − σn|
σ ′

n
|x| + |μn − μ′|

σ ′
n

� (1 + |x|) |μn − μ′
n| + 1√

ln n
(2.8)

with probability one.
If |x| ≤ 1, using |�(x) − �(y)| ≤ |x − y| and (2.8) we conclude that

|�(y) − �(x)|� |μn − μ′
n| + 1√

ln n
,

with a constant that does not depend on x. Therefore Lemma 2.3 allows us to conclude

E[|�(y) − �(x)|] � ln ln n√
ln n

.

If, instead, |x| ≥ 1, define the event (recall that y(x) is a random variable)

An = An(x) = {|y(x) − x| ≤ |x|/2}.
On the event An, x and y have the same sign, and hence we have the bound

|�(y) − �(x)| ≤ |x − y| max
z∈[ min (x,y),max (x,y)]

�′(z) � |x − y|e−( min (x2,y2))/2.

Therefore, with probability one and for all n sufficiently large, we have

|�(y) − �(x)|� (1 + |x|)e− min (x2,y2) |μn − μ′
n| + 1√

ln n
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On this event, the pre-factor depending on x is uniformly bounded from above, and thus

|�(y) − �(x)|1An �
|μn − μ′

n| + 1√
ln n

,

with the implicit constant in � independent of x. Using Lemma 2.3 together with Cauchy–
Schwarz, we conclude that

E[|�(y) − �(x)|1An ] � ln ln n√
ln n

.

For |x| ≥ 1 and on the complement of event An, we use the bound |�(x) − �(y)| ≤ 1 to
deduce

E[|�(y) − �(x)|1Ac
n
] ≤ P(Ac

n).

However, using (2.8), on the complement of An we have

|x|
2

≤ |y(x) − x|� (1 + |x|) |μn − μ′
n| + 1√

ln n
.

In particular, this entails that for some constant K > 0 (independent of x), we have

|μn − μ′
n| + 1√

ln n
≥ K.

Using Lemma 2.3 once more, together with Chebyshev’s inequality, we conclude that

P(Ac
n) ≤ P

( |μn − μ′
n| + 1√

ln n
≥ K

)
� ln ln n√

ln n
.

This completes the proof. �

3. Discussion

It is natural to ask whether the assumptions of our main Theorem 1.2 are needed. The very
first obstacle is given by the use of Theorem 2.1. One could keep track of the dependence of m
(resp. ε) in their error bounds, and thus extend our result by allowing some moderate growth
(resp. decay).

It is worth remarking that Lemma 2.1 holds for all decks, while the bound in Lemma 2.2
continues to hold as long as the conditional variance goes to infinity. In particular, under this
condition we are guaranteed to have convergence to a mixture of normal random variables.
Notice that the fact that m remains bounded plays no role in this part of the proof, while we
needed our condition on ε. While this may not be sharp, some care has to be taken if one type
of card has a much higher multiplicity than all the others: for instance, in the case of finite n,
this may be an obstacle to the convergence to a mixture of normal random variables (see [4]
for the case where n = 2).

As for the convergence to a normal random variable (i.e. a trivial mixture), our method
relies on m being finite, and it is an interesting problem to determine if this is a true limitation.
This is intimately related to the understanding of the concentration properties of W̃j, i.e. the
‘number of ties at the top’, when j grows. At least for some regimes of j, a closely related
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result is available in [14], where asymptotics for W̃j are shown if the hypergeometric process
is replaced by the multinomial process (i.e. if cards are reinserted into the deck).

It is worth pointing out that while there is hope for a CLT to hold even when m grows much
faster than n, the asymptotic of the expected value (first part of Theorem 1.2) eventually breaks
down, as shown in [15].
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