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Abstract
Thiswork presents an approach for optimization of window coefficients for 5G user equipment
side sensing, using orthogonal frequency division multiplexing radar-based range and velocity
estimation, based on the sounding reference signal (SRS) from the 5G New Radio (NR) stan-
dard. The signal configuration and the corresponding waveform are generated in compliance
with the 3rd Generation Partnership Project (3GPP) standard for 5G. The limitations of con-
ventional signal processing for resources available for sensingwith the SRS are highlighted.The
proposed approach, which optimizes the window coefficients to improve the sensing capabili-
ties, is implemented through twomethods.The firstmethod employs a decoupled optimization
strategy for range and velocity, showing high computational efficiency.Our results demonstrate
that this method significantly improves the peak sidelobe level (PSL) of the velocity profile by
over 15 dB, although it does not address the issue of diagonally located sidelobes, which occur
due to non-uniform resource distribution.The secondmethod adopts a comprehensive full 2D
optimization technique.While it requiresmore computational resources and does not improve
the PSL beyond the first method’s achievements, it mitigates the diagonally located sidelobes
issue. The level of these have been improved by more than 3 dB.

Introduction

An earlier version of this paper was presented at the 2023 20th European Radar Conference and
was published in its Proceedings [1].

The concept of joint communication and sensing (JCAS) was introduced over two decades
ago [2]. The 5G New Radio (NR) standard, defined by the 3rd Generation Partnership Project
(3GPP), encompasses the frequency range 2 (FR2), spanning from 24.25 to 52.6GHz. This
higher frequency range facilitates greater bandwidths, generating significant interest in JCAS.
The upcoming 6G cellular standard, which actively explores sensing capabilities, further ampli-
fies the potential of this research area [3]. However, JCAS presents challenges, such as balancing
communication and sensing performance.

Current research predominantly focuses on vehicular or network-side JCAS [4] and studies
ranging from broad network-wide concepts [5] to detailed performance analyses within base
station (BS) [6].

Our research focuses on user equipment (UE)-side JCAS to estimate the range and velocity
of nearby objects using existing 5G infrastructure. This can provide data which are typically
obtained through camera or laser sensors. Laser sensors need extra hardware and power, while
cameras are not light-independent. Our JCAS method uses existing signals, requiring no extra
hardware or modification of the standard and uniquely providing direct Doppler information.

Weutilize the sounding reference signal (SRS) forUE-side JCAS. Initially introduced in Long
Term Evolution (LTE), SRS is periodically transmitted by UEs to help BSs estimate channel
characteristics. We will elaborate on this signal in the next section.

However, the 5G NR standard allows for various resource allocations for SRS within the
5G orthogonal frequency division multiplexing (OFDM) resource grid, leading to potentially
sparse and nonuniformly distributed resources for sensing.This can significantly reduce sensing
performance, resulting in a distorted range-velocitymapwith varying sidelobes. Sensing perfor-
mance often benefits from windowing, which suppresses sidelobes and enables the detection of
targets obscured by these sidelobes. Traditional window or filter coefficients may underperform
due to the properties of SRS.

To address this, we present a method to improve sensing performance using optimized
window coefficients tailored to sparse and unevenly distributed resources through a convex
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Figure 1. Resource grid allocation for the selected SRS signal configuration: (a) the entire grid; (b) a zoomed in view of some subcarriers along a OFDM symbol, shown by
the red arrow. The black segments represent allocated resource elements.

optimization approach. This study evaluates the impact of these
optimized coefficients. To our knowledge, convex optimization for
window functions is applied only in [7] for JCAS and in [8] for
SAR imaging. However, both works do not address 2D signals for
range and Doppler processing, and more importantly, they do not
consider nonuniform resource distributions.

The 5G resource grid and the SRS

The 5G resource grid

5G uses OFDM as transmission scheme both in downlink and
uplink (UL) with orthogonal frequency division multiple access
(OFDMA) as multiple access scheme.1 With OFDMA data to be
transmitted to or fromauser are allocated for transmission by spec-
ifying time (i.e. the respective OFDM symbol or time slot) and
frequency (i.e. the respective subcarriers of an OFDM symbol).
We thus have a two-dimensional resource grid in 5G in which we
can allocate resources (i.e. complex data symbols) in time and fre-
quency for communication and sensing [9]. The smallest resource
units we consider are so-called resource blocks. A resource block
is a group of NRB

sc = 12 consecutive subcarriers within one OFDM
symbol that are allocated to a user [10]. In this work, we consider
the time period of one radio subframe with a duration of 1ms.
In this time period, several resources blocks can be allocated. The
maximum number of resource blocks available within this period
is denoted byNRB.This number depends on the specific application
and the network requirements.

The 5G standard enables highly dynamic resource allocation,
allowing for real-time adaptation to changing network conditions,
radio channel, and user requirements. This dynamic allocation
enables efficient sharing of resources between different users and
applications, improving the overall system performance, but can
lead to various different resource allocations for one UE from
almost full, down to sparse resources available for range and veloc-
ity estimation. In the latter case, reduced sensing performance
might result in scenarioswhere a target is obscured by the sidelobes
of, e.g., the TX/RX leakage present in every radar system.

This work is based on release 17 of the 5G 3GPP standard [10].
Key values for the resource grid, such as the subcarrier spacing and
the number of symbols per subframe are defined by the so-called
numerology parameter 𝜇. For this work 𝜇 = 3 is chosen, which is
a typical FR2 configuration. This leads to a subcarrier spacing of
Δf = 2𝜇 ⋅ 15 kHz = 120 kHz.

The number of OFDM symbols per subframe therefore is
N sub

symb = 112. The number of available resource blocks NRB for
allocation is selected in accordance with the available computa-
tional resource to NRB = 24.

Figure 1(a) shows an exemplary allocated resource grid for
NRB = 24 and N sub

symb = 112. The black rectangles represent
resources allocated for the SRS. White areas represent resources
not allocated to the SRS. This exemplary SRS allocation shows
that the resources are allocated non-uniformly across time and
frequency. In addition, the zoomed in view on the subcarrier allo-
cation in Fig. 1(b) shows that, depending on the combnumberKTC,
which will be discussed in the next subsection, only every KTCth
subcarrier is used for the SRS in areas of the resource grid allocated
for the SRS.

The sounding reference signal

The SRS is used for channel estimation and is sent in the UL.
Therefore, it is sent periodically also in situationswhennouser data
is sent. It is based on a low peak-to-average power ratio (PAPR)
sequence. Depending on the length of the sequence it is either
a Zadoff–Chu sequence or a numerically derived sequence with
properties which fulfill the requirements of the standard similarly
as the Zadoff–Chu sequence does [9]. Therefore, the SRS sequence
is a constant-amplitude zero-autocorrelation sequence. The PAPR
characteristic is also beneficial for the transmit signal, as the PAPR
of the resulting waveform is limited, and thus the requirements on
the transceiver are lower, compared to an OFDM transmit signal
carrying a random bit stream.

The sequence is allocated in the resource grid according to the
comb number KTC ∈ {2, 4, 8}, along the axis of the frequency
resources [9]. This number defines that every KTCth subcarrier is
used for SRS sequence allocation. Figure 1 shows a SRS sequence,
with KTC = 2. The detailed allocation pattern resulting from this
comb number can be seen in Fig. 1(b). This also means that even if
the subcarrier spacing isΔf = 120 kHz, the smallest frequency dif-
ference for a single SRS sequence is min(KTC)Δf = 240 kHz. The
sequence can allocate resources in NSRS

symb ∈ {1, 2, 4, 8, 10, 12, 14}
consecutive OFDM symbols per slot [9]. Figure 1 shows an SRS
sequence configuration, for NSRS

symb = 4.
The number of resource blocks which are allocated,Nallo, can be

calcuated with the number of OFDM symbolsN symb
allo , in which any

resource blocks are allcoated and the number of allocated resource
blocks within oneOFDMsymbolNRB

allo with [9]Nallo = N symb
allo ⋅NRB

allo.
Figure 1 shows a resource grid with N symb

allo = 32 and NRB
allo = 4.

The SRS is also used in the so-called beam mobility procedure.
As beamforming is part of 5G NR, selecting the best beam for
transmission is of high interest for both link partners. Within this
UL procedure, the BS performs power measurements, while the
UE is transmitting the SRS on one or more beams [11]. Thus, the
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SRS could be used in a similar manner for UE-side sensing, while
exploiting the behavior that the signal is intended to be used in
the 3GPP 5G standard. This makes it a promising candidate for
UE-side JCAS.

OFDM-based sensing, windowing, and convex optimization

OFDM-based sensing

The concept of OFDM-based sensing is well-known [12]. The
individual resource allocation is one challenge for embedding sens-
ing into an existing communication standard based on OFDM.
Processing an entire subframe at once, e.g. the one in Fig. 1, result
in significantly different range-velocity maps, as the data which
is Fourier transformed is distributed non-uniformly and shows
gaps within the data. This requires individual signal processing
measures, for each grid.

Communication in FR2 is based on time division duplex, but
for radar the UE needs to transmit and receive at the same time.
Furthermore, different to a TRXdesigned only for communication,
the radar TX and RX chains need to be synchronized both in time
and frequency.

To realize range and velocity estimation, the received signal is
first demodulated to the received symbols. Those are then divided
element wise by the TX symbols to remove the communication
related phase information, which results in the symbol matrix
Ych
RX. Ych

RX only contains the channel related phase information.
Performing an inverse Fourier transform along the columns and
a Fourier transform along the rows leads to the range-velocity map
which can be calculated, e.g., by [13]

D = [Fd (F𝜏Ych
RX)T]

T
= F𝜏Ych

RXFdT, (1)

whereD is the range-velocitymap,F𝜏 is the inverse discrete Fourier
transform (IDFT) matrix for the IDFT along the subcarriers, and
Fd is the discrete Fourier transform (DFT) matrix for the DFT
along the OFDM symbols.

In some sensing scenarios, e.g. a multi-target scenario, the
sidelobe level (SLL) of the target peaks is crucial. The sidelobes
of one peak might cover other peaks of interest, especially with
nonuniformly distributed resources, which can introduces diag-
onally located special sidelobes as it can be seen in Fig. 4(a).
Windowing can help here to reduce the SLL of each peak and
therefore help to correctly identify all targets.

Conventional window coefficients

Conventional two-dimensional window coefficients can be multi-
plied with a Hadamard product toYch

RX before the Fourier transfor-
mation, to reduce the SLL and achieve improved target detection
in the range-velocity map. This can be described with

D = F𝜏 (Wg ∘ Ych
RX) FdT, (2)

where Wg is a matrix containing the window coefficients, and ∘ is
the Hadamard product.

For the IDFT along the subcarriers, a conventional windowing
approach could be directly feasible, as the frequency resources are
allocated in a homogeneous pattern (KTC = 2), but for the DFT
along the OFDM symbols such an approach is not directly feasible,
because the resources are allocated inhomogeneously. However,
also for the velocity dimension optimized window coefficients,
which are tailored to the respective resource allocation, will result

in a reduced SLL. We thus intend to find an efficient method to
compute optimized coefficients also for the velocity dimension.
Furthermore, we intend to find fully 2D optimized coefficients and
compare their SLL performance.

Row-wise optimization of window coefficients

We want to find window coefficients which are optimized for
velocity estimation using the SRS transmitted and received by the
UE. For that we consider a specific resource grid allocation and
optimize the window coefficients for it.

We have exemplary selected the SRS allocation shown in Fig. 1,
because on one hand all possible frequency resources are allocated.
But on the other hand for eachOFDMsymbol only a fraction of the
frequency resources is allocated.

As it can be seen the optimization problem turns out to be
convex, such that we can make use of the Python-based CVXPY
package [14]. The linearity of the Fourier transform allows to per-
form the optimization for a one target scenario, e.g. one target peak
position in the range and velocity profiles, and still the optimized
window coefficients are then applicable to all target positions and
velocities.Therefore, the trivial case of a target with range r = 0 and
velocity v= 0 is chosen here. All allocated elements of Ych

RX then
become ones. The size of Ych

RX is (NRB
sc ⋅ NRB) ×N sub

symb = 288× 112,
which is a total of 32, 256 resource elements. Without any addi-
tional measures, this would be computationally very demanding
for a conventional optimization. Furthermore, in the case of the
resource grid of Fig. 1, the number of allocated resource elements
is only Nallo ⋅ NRB

sc /KTC = 768. All other elements are zero,
leaving only 2.4% non-zero elements inWg. To reduce the compu-
tational effort we used a simplified approach, where independent
one-dimensional window coefficients are used for the rows. For
the optimization of this coefficients along the OFDM symbols
first

D𝜏 = F𝜏Ych
RX (3)

is computed. In the context of OFDM, the analysis of range pro-
files across the rows for each symbol is simplified by computing
the absolute value of each element of D𝜏, which focuses on iden-
tifying if there was subcarrier allocation present or absent in the
resource grid, disregarding phase variations.

Each row of |D𝜏| features the same number of non-zero ele-
ments at the same indices, with the same absolute value. For this
optimization method, only a single representative row is needed.
Selecting the row which represents the zero delay profile peak
serves best to ensure that the scaling of the optimized coefficients
is in accordance with preserving the target peak height through-
out the optimization. The selected row d is windowed according
to wd ∘ d, which serves as input for the optimization of the win-
dow coefficient vector wd, to minimize the SLL of the velocity
profile.

The velocity profile is derived using Fd(wd ∘ d). To enhance
computational efficiency, entries in d that are zero, and conse-
quently the corresponding entries in wd and the related columns
of Fd, can be disregarded, as they do not contribute to the opti-
mization outcome. d′, w′

d, and F′
d are the vectors and the matrix

without zero entries. Notably, d′ consists only of the values NRB
allo ⋅

NRB
sc /KTC = 24 and can be completely excluded from the opti-

mization process, as it merely multiplies a constant factor to
the optimized coefficients. Consequently, the convex optimization
problem to find the optimal values wopt can be formulated as [15]
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wopt = argmin
w′
d

max( ̃F′
dw′

d)

subject to ∑w′
d

= Nallo ⋅ NRB
sc

abs(w′
d[i + 1] − w′

d[i]) ≤ 𝜀
∀i ∈ {1, 2, … , L − 1}.

(4)

The notation ̃(⋅) signifies that Fd has been selectively masked to
nullify all rows except those within the velocity range targeted for
optimization. The boundary of this mask should be at least set at
21m s−1 (approximately 75 km h−1), matching the unambiguous
region of the velocity profile, but not come too close to an alias
peak. Consequently, the rows of ̃F′

d representing velocities outside
this limit are excluded from the optimization process, as are the
rows corresponding to the main lobe. This further simplifies the
optimization.

The initial constraint in (4) ensures the exclusion of trivial
solutions and maintaining the peak position throughout the opti-
mization process. Furthermore, this constraint ensures that the
windowed profiles have the same mainlobe gain as a rectangu-
lar window. This constraint also implicitly addresses the removal
of d′.The second constraint guarantees that the absolute difference
between two successive coefficients, of all L elements in d′ does not
exceed a predefined threshold 𝜀.This is crucial for preventing solu-
tions that oscillate around zero, which, while adhering to the first
constraint, would not preserve the integrity of the target peak dur-
ing optimization, as they shift the peak away from its unwindowed
position.

The calculated window coefficients obtained from the opti-
mization have to be mapped to the allocated resource element
positions of the according SRS configuration to get the two-
dimensional row-wise optimized coefficients Wopt, with Wopt =
Ych
RX ⋅ diag(wopt). The optimized range-velocity Dw map can then

be calculated according to
Dw = F𝜏 (Wopt ∘ Ych

RX) FdT. (5)

Full 2D optimization of window coefficients

While the proposed row-wise optimization significantly reduces
computational effort and can be expected to achieve decent side-
lobe suppression along the velocity profile of a target, it unfortu-
nately does not possess the capability to optimize a full 2D range-
velocity map in its entirety. Given the sparse nature of the resource
grid, special sidelobe peaks appear in the map. Additionally, due
to the resources being distributed in a diagonal-like pattern, these
special sidelobe peaks tend to be located along diagonal lines
through the target peak and not only along its range and veloc-
ity dimensions. Unfortunately, the proposed row-wise method
does not successfully minimize these diagonally located peaks.
The motivation behind proposing this method was primarily its
computability advantages.

To effectively tackle full 2D optimization, significant prepro-
cessing steps are required to minimize the computational effort to
a level at which it becomes feasible.2

Handling the computational challenges associated with (5),
it is necessary to adapt the problem formulation into a more
optimization-friendly structure. As only 2.4% of the elements in
Ych
RX are non-zero, we need a method that leverages this sparse

nature.
As noted in [16], for a matrix equation represented by

AXB = C, there exists an equivalent relation formulated as:

BT ⊗ A ⋅ vec(X) = vec(C). (6)

In this formulation, ⊗ denotes the Kronecker product, and
vec(⋅) represents the vectorization of a two-dimensional matrix.
Vectorization rearranges the matrix by stacking its columns to
form a single column vector, transforming an original matrix of
dimensionM ×N into a vector of lengthMN. This approach effec-
tively reduces the size of the problem, making it more tractable for
optimization by utilizing the sparseness of Ych

RX.
The original matrix Ych

RX is vectorized with 𝚽ch
RX = vec (Ych

RX).
This step is also applied to the window coefficient matrix Wopt,
denoted by 𝚿opt = vec(Wopt), and to the range-velocity map,
expressed as 𝚫w = vec(Dw). Consequently, (5) can be reformu-
lated in a vectorized form as:

𝚫w = Fd ⊗ F𝜏 (𝚿opt ∘ 𝚽RXch) . (7)

From 𝚫w, the range-velocity map Dw can be calculated through
Dw = vec−1(𝚫w), where vec−1(⋅) is the inverse operation of
vec(⋅), transforming the vectorized form back into the original
two-dimensional matrix.

To target relevant portions of the range-velocity map during
the optimization, Fd and F𝜏 must be masked. Unlike the row-wise
optimization approach, where masking can be directly applied to
individual matrices (as demonstrated with ̃Fd), the masking in this
context requires an element-wise multiplication. This is achieved
using a mask matrix 𝛀, which is applied from the left side with the
Hadamard product to (5), or a matrix 𝛀kron, where each column is
a copy of the vectorized mask vec(𝛀) for (7), resulting in:

𝚪 = 𝛀kron ∘ (Fd ⊗ F𝜏). (8)

This ensures that only designated areas of the range-velocity
map undergo optimization, focusing computational resources on
regions of interest and thereby enhancing the efficiency and effec-
tiveness of the optimization.

An example configuration of the mask 𝛀 is illustrated in Fig. 2,
where it is overlaid on an example range-velocity map. The areas
of 𝛀 set to ones, i.e. the areas which should be optimized, are
represented in violet, while areas set to zero, i.e. the areas which
should not be optimized, are transparent. This mask is constructed
from two rectangular regions: an outer rectangle defines the over-
all area subject to optimization, and an inner rectangle excludes the
vicinity around the target peak from the optimization. Figure 2(a)
displays the full extent of themap, and Fig. 2(b) focuses on the area
surrounding the target peak.

Given that KTC = 2, an alias along the range axis can be seen
at the map’s boundary, indicating that the unambiguity range cov-
ers half the map’s extent. Thus, the mask must at least cover this
unambiguity range. However, to avoid oscillatory solutions from
the optimization, we need to extend the mask further, as can be
seen in Fig. 2(a).

The mask’s size along the velocity axis is the same size used in
the row-wise optimizationmethod, which is approximately 21m/s.

Also, the dimensions of the inner rectangle are similarly aligned
with those employed in the row-wise optimization method.

Furthermore, any zero-valued elements within 𝚿 ∘ 𝚽RXch and
the respective columns in 𝚪 again do not have an impact on the
optimization process and can be excluded. This exclusion is again
marked with (⋅)′.

Additionally, within 𝚪, rows resulting in zeros due to the
application of the mask can also be disregarded. This process
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Figure 2. Entire optimization mask (a) and a zoomed in version around the target peak area (b). The shape of the mask is illustrated overlaying a range-velocity map for
orientation purpose. The areas of the mask set to ones, i.e. the areas which should be optimized, are represented in violet, while areas set to zero, i.e. the areas which
should not be optimized, are transparent.

Figure 3. Normalized range profiles (a), velocity profiles (b), and diagonal profiles (c). Blue: unwindowed profiles. Red: profiles with row-wise optimization. Violet: profiles
with full 2D optimization. Yellow: profiles with normalized 2D Hann window. The diagonal profiles pass exactly through the two diagonally located special sidelobes at
≈(5 m, 17m s−1), with the highest SLL. These locations are highlight with the green dashed arrow in Fig. 4.

of elimination is symbolized with (⋅)†. Similar to the row-wise
optimization approach, 𝚽′

RXch, now essentially a vector of ones,
can be completely omitted. This combination of simplifications

not only reduces computational complexity but also ensures that
the optimization focuses on reducing the SLL within the masked
area.
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Figure 4. Heatmaps of the range-velocity maps, calculated without window (a), with a normalized conventional Hann window (b), with the row-wise optimized window (c),
and with the full 2D optimized window (d). Both green solid and dashed arrows highlight diagonally located sidelobes caused by non-uniform resource allocation, with the
dashed arrows specifically showing where the profiles in Fig. 3(c) intersects.

Finally the optimization problem can be written as

𝚿′
opt = argmin

𝚿′
max(𝚪† ⋅ 𝚿′)

subject to ∑𝚿′
opt

= Nallo ⋅ NRB
sc .

(9)

The constraint is designed to avoid trivial solutions and result in a
mainlobe gain which is the same as for a rectangular window. To
mitigate oscillating behaviors, the choice of an appropriate mask
has been identified as the sole viable strategy, given that applying
a similar constraint as used in the row-wise approach proved to be
unfeasible for this work.

Results

Figure 3(a) illustrates the simulated normalized range profiles,
while Fig. 3(b) depicts the normalized velocity profiles and Fig. 3(c)
shows the normalized diagonal profiles, of the trivial target as
sensed via the resource grid presented in Fig. 1. In all figures, the
profiles derived from a range-velocity map utilizing unwindowed
signal processing are denoted by a blue line. The red lines repre-
sent the profiles resulting from a map with the proposed row-wise
optimization. The violet lines show the results of the proposed full
2D optimization and the yellow lines represent the results from
employing a normalized 2DHannwindow. In the range profile, the
typical first side lobe level of approx. −30 dB of a normalizedHann
window can be seen. Conversely, in the velocity profile, the nor-
malized Hann window achieves only a negligible reduction of the
peak sidelobe level (PSL).This can be attributed to substantial gaps
of the SRS resources in time, as well as the non-uniform resource
allocation. This motivated the row-wise optimization approach to
enhance the velocity profile. The optimization method, maintains
a virtually unchanged behavior in the range profile but achieves a
significant improvement in PSL of more than 15 dB in the velocity

profile, alongside a slight increase in the mainlobe width that still
remains marginally narrower than that of the normalized Hann
window.

On a first glance, the full 2D optimization demonstrates only
a marginal improvement in PSL relative to the unwindowed sce-
nario.Nonetheless, the essential performance attained through this
method becomes pronounced in the range-velocity map. Figure 4
shows the range-velocity map for each signal processing tech-
nique discussed: unwindowed (a), the normalized 2D Hann win-
dow (b), the row-wise optimization (c), and the full 2D optimiza-
tion (d). Figure 4(a) shows the original map, wherein, in addition
to the expected sidelobes in both dimensions, additional peaks are
marked with green arrows.The dashed arrows specifically showing
where the profiles in Fig. 3(c) intersects. These peaks, identified
as diagonally located sidelobes, emerge due to the non-uniform
resource allocation within the resource grid, making their atten-
uation non-trivial. In a worst-case scenario, a target close to one
of those regions (e.g. at 5m and −17m s−1) would interfere with
these sidelobes, leading to reduced estimation performance. Signal
processing using the normalized 2D Hann window fails to reduce
the level of these peaks. Similarly, the proposed row-wise method
proves ineffective in mitigating these peaks. Only the full 2D opti-
mization demonstrates the capacity to reduce the level of these
diagonally located sidelobes, with the peak values of these side-
lobes reduced bymore than 3 dB, as it can be seen while comparing
Fig. 4(a) and (d) and also in the diagonal profiles in Fig. 3(c).

Conclusion

For UE-side JCAS employing 5G NR compliant signals, we pro-
posed an optimization of windowing coefficients for the enhanced
estimation and detection of targets within the range-velocity
map. We made use of the SRS in conjunction with a sequential
column-wise IDFT and row-wise DFT for the map computation.
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Addressing this challenge is complex due to the 5G NR standard’s
non-uniform resource grid allocations. Our strategy involved
applying optimized window coefficients across the resource grid
to mitigate the SLL within the range-velocity map.

This work proposed two distinct optimization methods: first,
a row-wise window coefficient optimization, significantly sim-
plifying the computational complexity. This technique notably
enhanced the PSL of the velocity profile by over 15 dB, although
without addressing the reduction of diagonally located sidelobes.
Consequently, we introduced a second, more comprehensive 2D
optimization approach. Despite its higher computational complex-
ity, this method tackles the challenge posed by diagonally located
sidelobes. We used a combination of simplifications to render
this approach computationally viable. This optimization focuses
on damping unwanted peaks on a rectangular area in the range-
velocity map, instead of lines along the range and velocity profiles.
A peak reduction of more than 3 dB could be achieved.

In subsequent research, we aim to incorporate a non-linear sig-
nal processing step, employing apodization techniques to further
enhance the SLL performance achieved through the comprehen-
sive 2D optimization.
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Notes
1. For cell edge scenarios also single-carrier frequency division multiple access
(SC-FDMA) is used. In this paper, however, we only consider OFDMA.
2. The available computational resources are a Dell T7600 with two Intel Xeon
E5-2687Wprocessors and 256GBofmemory.Note, that the optimization of the
window coefficients can be performed offline.The resultingwindow coefficients
could then be stored in the UE.
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