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1. Introduction. The a-width eA(a) of a (0, 1)-matrix A is the minimal 
number of columns that can be selected from A in such a way that all row 
sums of the resulting submatrix of A are at least a. This notion was introduced 
in (2) and further studied in (3). In these papers the major emphasis was on 
the minimal a-width sequence for the class 21 of (0, 1)-matrices generated 
from an arbitrary A by interchanges: 

(1.1) i(a) = min cA(a). 
A e 2t 

The 21 in (1.1) can also be viewed as the class of all (0, l)-matrices having 
the same row and column sums as A. A formula for e(a), in terms of the 
given row and column sums that characterize 21, was obtained in (2). It was 
further shown in (3) that there is a single, easily constructed matrix Â in 
21 that has minimal a-width for all a. 

The present paper continues the study of a-width, but with a shift in 
emphasis. Here we shall be mainly concerned with obtaining further informa­
tion regarding the width sequence €fl(a) for a fixed matrix B of size b by v, 
having k l 's per row and r-Vs per column, whose class parameters by v, k, r 
satisfy the inequality 

(1.2) (b - r)(v - * - 1) <i> - 1. 

Insofar as possible, we relate this information to the maximal width sequence 

(1.3) «(a) = max eB(a) 
Be® 

for the class 33 generated by B. A class 33 with parameters satisfying (1.2) 
has special combinatorial interest. For example, taking 

b = v — n2 + n + 1, k = r = n2, 

gives such a 93; it contains complements of finite projective planes of order n, 
when these exist. For another example, take 

v = 1, 3 (mod 6), b = Jv(r - 1), k = v - 3, r = J(v - l)(v - 3), 

to obtain a class 93 that contains complements of Steiner triple systems on 
v elements. 
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The determination of the maximal width sequence (1.3) for such a class 23 
involves deep issues. For instance, in the first example mentioned, i(l) = 2 
or 3 according as a finite projective plane of order n does not or does exist (6). 
Specifically, the complement of a finite plane has 1-width 3, whereas other 
matrices in the class have 1-width 2. This state of affairs is of course decidedly 
in contrast with the situation for the minimal width sequence (1.1) for 23. 
Indeed, 

(1.4) i(a) = min eB(a) = (ab/r). 
B Ç 23 

Here (x) denotes the smallest integer > x. The formula (1.4) uses only the 
fact that matrices in 33 have constant row and column sums (2). 

Our main result concerning the width sequence for an arbitrary B in 23 is 
presented in § 3 (Theorem 3.2). We call it the 2-jump theorem. It asserts 
that 

eB(a + 1) - eB(a) = 1 or 2. 

This narrows the problem of determining the width sequence for B to that 
of determining €B(1) and the location of the 2-jumps. The 2-jump theorem 
also holds for the maximal width sequence i(a) for 23 (Corollary 3.3), although, 
in contrast with i(a), it is not true that a single matrix always produces the 
sequence i(a). 

In § 4 we investigate the manner in which an interchange applied to B 
may affect its width sequence. If B has a 1-jump at a + 1, then an inter­
change may increase the (a + 1)-width by 1, whereupon the new matrix has 
a 2-jump at a + 1; if, on the other hand, B has a 2-jump at a + 1, an inter­
change may decrease the (a + 1)-width by 1, whereupon the new matrix 
has a 1-jump at a + 1. No other changes are possible at a + 1 (Theorem 4.1). 
The proofs of both the 2-jump theorem and the interchange theorem rely 
ultimately on the impossibility of certain configurations in the class 23. 

In § 5 the interchange theorem of § 4 is applied to establish the existence 
in 23 of a matrix with a- and (a + 1)-widths satisfying the necessary conditions 

(i) *{*) < e(a) < ë(a), 

(ii) e{a + 1 ) < e(a + 1 ) < l{a + 1), 

(iii) 1 < e(a + 1) - e(a) < 2. 

In other words, if integers e(a) and e(a + 1) are specified satisfying these 
three conditions, there is a B in 23 with a- and (a + l)-widths e(a) and 
e(a + 1), respectively. Examples show this to be a best-possible result. 

Some facts concerning widths and complementation are recorded in § 6. 
The width sequence for a matrix A having constant row sums determines the 
width sequence for its complement A'. Indeed, the sequences eA(a) — a and 
CA'O*') — «' are conjugate partitions (Theorem 6.1), and so are the class 
sequences l<^{a) — a, e<^> (a') —a', and ëgj(a) — a, ê<^>(af) — a! (Theorem 
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6.2.). This section is also the natural place to point out the close connection 
between a certain width problem and the existence of ovals in a finite pro­
jective plane. Finding the second 2-jump in the width sequence for the com­
plement of a plane is tantamount to determining the maximal number of 
points in the plane having the property that no three are collinear. 

The width sequence for the complement of a Steiner triple system is studied 
in § 7. Going back to the triples, this problem becomes simply that of deter­
mining the 1-width of a Steiner triple system. It is shown that a lower bound 
for the 1-width of a triple system on v elements is %(v — 1), and conditions 
are determined under which this bound is achieved (Theorem 7.1). For instance, 
if v = 15 there is a triple system having 1-width %{v — 1) = 7 . But there is 
also a triple system on 15 elements that has the surprisingly large 1-width 9. 

The concluding section collects some miscellaneous examples and remarks. 
We mention one. Examples are constructed of classes S3 having the property 
that all 2-jumps in the maximal width sequence occur before the first 2-jump 
in the minimal width sequence. Thus the difference between e(a) and e(a) 
for classes under consideration can be as large as possible on trivial grounds. 

2. The class S3. Let S3 denote the class of all b by v (0, l)-matrices having 
exactly k l 's in each row and r l 's in each column. Here k and r are positive 
integers and 

(2.1) bk = vr. 

We further assume throughout the body of the paper that the parameters b, 
v, k, r satisfy the inequality 

(2.2) (b - r)(v - k - 1) <v - 1. 

Superficially, the inequality (2.2) indicates that matrices in S3 have a high 
density of l 's. More precisely, (2.2) asserts that if one passes to the com­
plementary class S3' by replacing l 's by 0's and 0's by l's, and computes the 
average value X for inner products of distinct columns of a matrix Bf in S3', 
then 

(2.3) s „(»- ' ) (» - * - D < L 
v — 1 

The main significance of the class S3, or its complement S3', derives from 
the consideration of certain combinatorial configurations. A balanced incom­
plete block design is an arrangement of v elements into b sets in such a way 
that: 

D{1) Each set contains exactly k distinct elements. 

Z)(2) Each element occurs in exactly r sets. 

D(S) Each pair of distinct elements occurs in exactly X sets 

(0 < X < r < b). 
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The parameters b, v, k, r, X must then satisfy 

(2.4) bk = vr, 

(2.5) r(k - 1) = \(» - 1), 

(2.6) ft > v (Fisher inequality).1 

A block design may, of course, be represented by a ft by v incidence matrix 

(2.7) B = (ft,,), 

where 6^ = 1 if the j th element is in the ith set and btj = 0 otherwise. Hence­
forth, when we speak of designs, we have this representation in mind. 

The complement of a block design with parameters 

(2.8) ft, v, k, r, X 

is a block design with parameters2 

(2.9) ft, v, k' = v - k, rf = b- r, X' = X + ft - 2r. 

If equality holds in (2.3), the class 93' contains block designs with X' = 1, 
provided these exist for the specified parameter values of 93', and if this is 
the case the class 93 contains designs with3 X = 1 — (ft — 2r). 

For b = vy k — r, the design is symmetric (or a r, k, X configuration). Finite 
projective planes are symmetric designs with parameters 

(2.10) v = n* + n + 1, V = » + 1, X' = 1 (» > 2), 

and complementary parameters 

(2.11) v = n1 + n + 1, fe = n2, X = n2 - ». 

Steiner triple systems are designs with parameters4 

(2.12) 6 = kv(v-l), v s 1,3 (mod 6), A' = 3, r' = *(t>-l) , X' = 1 (»>7), 

and complementary parameters 

(2.13) ft, r, * = w - 3, r = i(t> - l)(w - 3), X = i(v - 3)(t> - 4). 

Both (2.11) and (2.13) satisfy (2.2) with equality. For the parameters (2.12), 
Steiner triple systems always exist. The precise range of n in (2.10) for which 
planes exist is an open question, but the Bruck-Ryser non-existence theorem 
excludes infinitely many values of n (1). 

^rhis inequality need not hold for a class satisfying (2.2). Indeed, if b > v, then (2.2) implies 
that (v — k)(b — r — 1) < 6 — 1, and hence the transposed class also satisfies our basic 
assumption. 

2The trivial designs with k = v — 1 are exceptional in the sense that complementation 
gives k' = 1 and X' = 0. 

'The only exceptional case is b •= v « 3 and r' = k' — 2, for which 33 has X = 0. 
4The case v *= 3 is included for Steiner triples and excluded for designs. This discrepancy 

is in all events trivial. 
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There is a close connection between the existence of a design in S3' (or in 
S3) and the maximal 1-width of the class 53. We state this as follows. 

THEOREM 2.1. The class S3' contains a block design if and only if the maximal 
1-width of S3 is 3. 

The proof is almost immediate. Let B' in S3' be a design. Then every pair 
of columns of Bf has inner product 1, so that every pair of columns of the 
complementary design B has a row composed of 0's. It follows that eB(l) = 3. 
On the other hand, if B' is not a design, then B' has a pair of columns with 
inner product 0, by virtue of (2.3), and hence B has a pair of columns containing 
at least one 1 per row. Thus e s( l ) < 2. 

Although this connection between designs and widths is close to the sur­
face, Theorem 2.1 provides motivation for studying widths in the class S3. 
There are other connections, and other motivations, also. 

As the proof of Theorem 2.1 shows, the complement of a finite plane has 
maximal 1-width. The plane itself, however, has minimal 1-width for its 
class. 

THEOREM 2.2. A v, k, X configuration has (minimal) \-width k. 

Proof. In a v, k, X configuration, the inner product of each pair of rows is 
also equal to X. Thus, singling out those columns corresponding to the l's in 
some row, we see that the design has X-width at most k. On the other hand, 
the formula (1.4) shows that the minimal X-width for the class is given by 

e(x) = \ T / - \ i („- i ) / *• 
It should perhaps be pointed out here that a statement about widths for 

a matrix B in S3 can be translated to one involving widths of B' in S3'. This 
will be made clear in § 6. But notice, for example, that the content of Theorem 
2.1 might also be phrased as follows: The (k' — l)-width of a design in S3' 
is v — 1, whereas the (&' — 1)-width of other matrices in S3' is at most v — 2. 

We have chosen, perhaps somewhat arbitrarily, to focus primary attention 
on widths in S3 rather than S3'. 

3. The 2 - jump theorem. Excluding from consideration the trivial class 
S3 for which b = r, v = k, so that S3 would consist of the single matrix / having 
all its entries 1, we have seen that for any B in S3, 

(3.1) «2,(1) = 2 or 3. 

In this section we obtain certain information on higher a-widths for matrices 
in S3. 

We first state and prove a theorem concerning the 1-width of a general 
(0, l)-matrix A. This theorem provides a crude upper bound on 1-width that 
is sufficient for our purposes in this and the following section. 
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THEOREM 3.1. Let A be an m by n (0, 1)-matrix having l-width at least e, 
and let <r denote the number of zeros in an arbitrary column of A. Let A be extended 
to an m by t (0, 1)-matrix A*, all of whose row sums equal fi. Then 

te')->(::;)• 
Proof. By permutations of the rows and the first n columns of A*, we may 

take A* in the form 

0 

• w X 

0 

1 

• * * 

1 

Here the first column of A* has o- zeros in the initial positions and m — a 
ones in the remaining positions. The submatrix W is of size a by n — 1. Now 

\ e - 2 ) ' 

counts the sequences of e — 2 zeros formed from the rows of the matrix 
[W, X], This number is greater than or equal to the number of such sequences 
formed from W. But A has l-width at least e. Hence e — 1 columns of A 
must contain a row of e — 1 zeros. This implies that the number of sequences 
of € — 2 zeros in the rows of W is greater than or equal to 

THEOREM 3.2. For any B in S3, 

(3.3) eB(a + 1) - eB(a) = 1 or 2, a = 1, 2, . . . , k - 1. 

Proof. For any (0, l)-matrix A, one has eA(a + 1) — eA(a) > 1. Hence to 
prove (3.3) for matrices in S3, we assume a B in S3 with 

(3.4) €*(<* + 1) - eB(a) > 3 

for some a, and obtain a contradiction. 
We may take B in the form 
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(3.5) B = 
r w X 1 

L Y z J 
Here W is of size e by t = eB(a) and has row sums at least a + 1. The matrix 
F, termed a critical a-submatrix of 5 in (2), is of size e' — b — e by / and has 
row sums equal to a. Note that e1 > 0, by the minimal property of a-width. 
The matrix Z is of size e' by /' = v — t and has row sums equal to a! = k — a. 
The 1-width of Z is greater than or equal to 3, for otherwise (3.4) would be 
violated. Let z denote the number of Ts in some column of Z. Then by Theorem 
3.1 we have 

{t! - 1 -a'W - z) >t' - 1, 
or 

* ' - 1 
r — z^r — e' + l=T (3.6) 

Next we assert that 

(3.7) j±f^ >b-, 

This is equivalent to 

(3.8) /' - 1 > ( 6 - r)(t - 1 - a ' ) -

To prove (3.8), we first note that the configuration (3.5) implies that 

(a + l)e + aef < r/, 

whence 

and 

But bk = vr> so that 

ab + e < rt 

(k - a')b + e < (v - / > • 

Hence to prove (3.8) it suffices to prove the sharper inequality 

(3.9) b{t' - l) > (J - r)(f(b - r) - J). 

This reduces to 

b(b - r - 1) > / '((* - r ) 2 - b), 

and thus to 
wr(6 - r - 1) > &'((& - r)2 - J). 

We know that tf < v. Hence to prove (3.9) it suffices to prove that 

r(b- r - 1) > * ( ( J - r ) 2 - 6). 

This reduces to 
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bk-r>(b- r)(k(b -r)-r) 

or 

vr — r > (b — r)(vr — kr — r). 

But this gives 

(3.10) t > - 1 >.(& - r ) ( u - £ - 1), 

which is our assumption (2.2) on the parameters of SB. Hence (3.7) is valid. 
But now (3.6) implies that 

r — z > r — e' + b — r. 

Hence 

(3.11) r - z > e + 1. 

But r — z is the number of l 's in a column of X in the configuration (3.5), 
and thus (3.11) is a contradiction. This proves Theorem 3.2. 

Let B be an arbitrary matrix in S3. We say that B has a l~jump at a + 1 if 

(3.12) e*(a + 1) - «*(«) = 1, a = 1, 2, . . . , * - 1, 

and a 2-jurnp at a + 1 if 

(3.13) e*(a + 1) - eB(a) = 2 , a = 1, 2, . . . , k - 1. 

I t is a convenient technicality to extend this terminology by saying that B 
has a 1-jump at 1 if eB(l) = 2 and a 2-jump at 1 if eB(l) = 3 (even though 
this is inconsistent with the natural definition eA(fl) = 0). With this con­
vention, an «-width sequence for B, namely 

(3 .14) € f l ( l ) , € * ( 2 ) , . . . , € * ( * ) , 

contains precisely v — k — 1 = k' — 1 2-jumps. The problem of determining 
(3.14) is that of finding the location of these 2-jumps. 

It is easy to see from Theorem 3.2 that both the minimal width sequence 
c(a) and the maximal width sequence ï(a) for S3 have jumps at most 2. Of 
course we know this directly for e(a), since there is always a single matrix 
Â in an arbitrary class 21 having all its a-widths minimal (3), but there is 
no need to invoke this fact. 

COROLLARY 3.3. For the class S3, 

(3.15) l(a + 1) - €(<*) = 1 or 2, a = 1, 2, . . . , k - 1, 

(3.16) i(a + 1) - €"(«) = 1 or 2, a = 1, 2, . . . , k - 1. 

We give a proof for (3.16). It suffices to contradict i(a + 1) — i(a) > 3. 
Thus, suppose 

ê(a) = ^ ( a ) = /, 

i(a + l) = €B2(« + 1 ) > / + 3, 
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for matrices Blf B2 in 93 and for some a. By Theorem 3.2, we must have 

eBi(cc) >*+h 

contradicting the maximality of i{a) — t. 

In view of Corollary 3.3, we may apply the 1-jump, 2-jump terminology 
to both class sequences 

(3.17) e(l), e(2), . . . , i(i) f 

(3.18) i ( l ) , i ( 2 ) , . . . , i ( f e ) . 

Each of these has v — k — 1 2-jumps, and we say that the class 93 has 
v — k — 1 2-jumps. The 2-jumps of (3.17) can be determined from the for­
mula 

(3.19) ~e(a) = (ab/r). 

Roughly speaking, they are evenly spaced. But determining the 2-jumps in 
(3.18) involves intricate combinatorial properties of the class, as is apparent 
from Theorem 2.1. 

We conclude this section with an example of a class 93 and the width 
sequences for certain matrices in 93. Let 

b = v= 13(= 32 + 3 + 1), k = r = 9 ( = 32), 

so that 93' contains the plane B\ of order 3. Table I shows the width sequences 
for the matrices By BXy and 

1 1 0 0 0 0 
1 1 0 0 0 0 
0 0 1 1 0 0 
0 0 1 1 0 0 J 
0 0 0 0 1 1 
0 0 0 0 1 1 

1 1 1 0 0 0 0 
1 0 0 1 1 0 0 
1 0 0 0 0 1 1 

J 0 1 0 1 0 1 0 
0 1 0 0 1 0 1 
0 0 1 1 0 0 1 
0 0 1 0 1 1 0 

The matrix B2 was constructed by O. Gross to show that successive 2-jumps 
are possible. Note that B2 has a plane of order 2 in the lower right-hand 
corner. This helps in the calculation of the width sequence for B2. 
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TABLE I 

WIDTH SEQUENCES FOR THE MATRICES E, 3\, AND x>2 

a 1 2 3 4 5 6 7 8 9 

ê 2 3 ® 6 ® 9 @ 1 2 13 

€*i (D 4 ® 7 8 9 @ 12 13 
€*, 2 0 5 6 ® © 11 12 13 

It is clear from Table I that the maximal width sequence for this class 
cannot be produced by a single matrix. This is not exceptional, but is rather 
the typical situation. 

4. The effect of an interchange on widths. An interchange is a trans­
formation of the elements of a (0, l)-matrix that changes a minor of type (a) 
below into one of type (b), or vice versa, and leaves all other elements fixed: 

« [ $ ? ] • »>[?;]• 
Given two matrices Ax and A2 in the class 21 of all (0, 1)-matrices having 

specified row and column sums, one can pass from A x to A2 by a finite sequence 
of interchanges (5). In other words, a matrix A in 21 generates the entire 
class by interchanges. We also recall that an interchange can alter the a-width 
of a matrix by at most 1 (2). 

Theorem 4.1, below, outlines the possible effects of a single interchange on 
the width sequence for a matrix in 23. The theorem says, in short, that it 
may be possible to lower a 2-jump to a 1-jump, or, inversely, to raise a 1-jump 
to a 2-jump, but that it is impossible to raise a 2-jump or to lower a 1-jump. 
More precisely: 

THEOREM 4.1. Let B be a matrix in 3}, and suppose that B has a 1-jump at 
a + 1. If an interchange applied to B increases its (a + 1)-width by 1, then the 
transformed matrix has a 2-jump at a + 1. Suppose that B has a 2-jump at 
a + 1. / / an interchange applied to B decreases its (a + 1)-width by 1, then the 
transformed matrix has a 1-jump at a + 1. These are the only ways that an 
interchange can change widths at a + 1. 

Proof, Let B have a 1-jump at a + 1. Suppose that an interchange applied 
to B yields a matrix J3* having (a + l)-width 

eB*(a + 1) = eB(a + 1) + 1 = eB(a) + 2. 

By the 2-jump theorem, we then have either 

eB*(a) = eB(a) or eB*(a) = eB(a) + 1. 
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But if the latter alternative holds, we should have 

eB*(a) = eB(a + 1), 

and this contradicts the minimal property of a-width for the matrix B*. To 
see this, note that the matrix B can be written in the form 

w * 

Y * 

where F is a critical (a + l)-submatrix. That is, F has eB(a + 1) columns 
and has row sums equal to a + 1. The matrix W, if present, has row sums 
>a + 1. If the interchange raises the (a + l)-width of B, it is essential 
that a 1 in some column of F be replaced by a 0 in the interchange. If, after 
the interchange, this column of the matrix 

m 
is ignored, the remaining columns have row sums > a . Thus eB*(a) < eB(a + 1), 
and hence B* has a 2-jump at a + 1. 

Let B have a 1-jump at a + 1. One interchange applied to B cannot yield 
a matrix B* having (a + 1)-width €S(a + 1) — 1. Indeed, if this were the 
case, we would have eB*(a) = eB(a) — 1, and the inverse interchange con­
tradicts the previous assertion. 

Let B have a 2-jump at a + 1. We now prove that one interchange applied 
to B cannot yield a transformed matrix B* having (a + l)-width eB(a + 1) + 1. 
If it could, then by the 2-jump theorem, the matrix B* has a-width eB(a) + 1. 
Now the matrix B can be written in the form 

(4.2) B = 

where Fi is a critical a-submatrix. Thus Fi has row sums a and has eB(a) = t 
columns, and W\, if present, has row sums >a. If, after the interchange, the 
a-width of B has been raised to / + 1, it is essential that the interchange 
replace a 1 in Fi with a 0. Then B* can be written as 

w X * 

Y z z* 
Here F has size e' by t, and each row of F has sum a, except the last, which 
has sum a — 1. W is of size e = b — e' by t, with all row sums at least a + 1. 
Note that e > 0, so that W is present. Let a + OL = k. Z is of size e' by a + 1. 
The last row of Z consists entirely of l's and the 1-width of Z is > 3 , since 
the (a + l)-width of B* is t + 3. Let s be a column sum of Z and let 

wx * 

Y1 
* 
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t + t' = v. Then by an application of Theorem 3.1 to the first er — 1 rows 
of the matrix [Z,Z*], we obtain 

(4.4) ( * ' - 1 - « ' ) ( * ' - * ) > « ' . 

Hence 

(4.5) r - 2 > r - e' + 7 7̂  7. 

We assert that 

(4.6) ? j - 7 > & - r - lf 

or, equivalently, 

(4.7) a' > ( 4 - r - l ) ( f - 1 - a ' ) . 

Since the configuration (4.3) implies a' > r/'/4, to prove (4.7) it suffices 
to establish the sharper inequality 

(4.8) rt > (b - r - l)(t'(b - r) - b). 

This reduces to 

(4.9) b(b - r - 1) > *'((6 - r)2 - b), 

an inequality that was shown to be valid in the proof of Theorem 3.2. Hence 
(4.6) holds, and (4.5) then implies that 

(4.10) r - z > r - e ' + b - r - l = e - l . 

Thus 

(4.11) r - z > e. 

But then, in the configuration (4.3), X must be a matrix of l 's. Thus, looking 
at a row sum of [W, X], we have 

(4.12) a + 1 + a' + 1 < k, 

and this is a contradiction. 
Finally, let B have a 2-jump at a + 1, and suppose that one interchange 

applied to B yields a transformed matrix B* with 

eB*(a + 1) = €*(« + 1) - 1 = eufa) + 1. 

Then either 

eB*(a) = €#(«) or eB*(a) = €fi(«) — 1. 

We now know, however, that the latter alternative is impossible since the 
inverse interchange would contradict what we have just proved. Thus B* 
has a 1-jump at a + 1. 

This completes the proof of Theorem 4.1. 
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It should perhaps be remarked that both of the possibilities outlined in 
Theorem 4.1 can actually occur, in view of the fact that one can pass through 
a class by interchanges. Note also that our 1-jump, 2-jump terminology for 
a + 1 = 1 is consistent with Theorem 4.1. 

In the next section we give an application of Theorem 4.1. 

5. An existence theorem. It was observed in (2) that for an arbitrary 
class 21, if e(a) is an integer in the interval l{a) < e(a) < e(a), then there is 
an A in 21 having a-width e(a). This follows from the facts: (i) an interchange 
can change an a-width by at most 1, (ii) one can pass through the class 21 by 
interchanges. For the class 93, the interchange theorem of §4 yields a stronger 
result : 

THEOREM 5.1. For the class 93, let e(a) and e(a + 1) be integers satisfying 

(5.1) e{a) < e{a) < «(a), 

(5.2) l{a + 1 ) < e(a + 1 ) < l(a + 1), 

(5.3) 1 < e(a + 1) - e(a) < 2, 

for some a = 1, 2, . . . , & — 1. Then there is a B in S3 having a-width e(a) and 
(a + l)-width e(a + 1). 

Proof. We first prove the theorem with (5.2) replaced by 

(5.4) e(a + 1) < e(a + 1) < i(a + 1). 

Suppose that 

(5.5) € ( a + l ) = e(a) + 1 

for all B in $8 of (a + 1)-width e(a + 1). Then by Theorem 4.1, B is not 
transformable by interchanges into a matrix of (a + 1)-width i(a + 1), a 
contradiction. 

Suppose that 

(5.6) e(a + 1) = e(a) + 2 

for all B in 33 of (a + 1)-width e(a + 1). Again by Theorem 4.1, B is not 
transformable by interchanges into a matrix of (a + l)-width i(a + 1), a 
contradiction. 

This proves the theorem with (5.2) replaced by (5.4). 
Four cases remain: 

(5.7) e(a + 1) = Ha + 1), ~e(a + 1) = l{a) + 1, 

(5.8) e(a + 1) = ~e(a + 1), l(a + 1) = l{a) + 2, 

(5.9) e(a + 1) = i(a + 1), i(a + 1) = c(a) + 1, 

(5.10) €(« + 1) = c(a + 1), f(a + 1) = «(a) + 2. 
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If (5.7) holds, we must show the existence of a B in S3 with (a + l)-width 
e(a + 1) and a-width 1(a). In this case, every B of (a + 1)-width e(a + 1) 
has a-width 1(a). 

If (5.8) holds, we must show the existence of a B in S3 of (a + l)-width 
e(a + 1) and a-width e(a), and, in case e(a) < «(a), of a B in S3 of (a + 1)-
width e(a + l) and a-width e(a) + 1. The first of these is immediate, since 
every matrix of a-width e(a) has (a + l)-width e(a + 1) if (5.8) holds. For 
the second, consider a 5 of a-width i(a) + 1. If B has (a + 1)-width e(a -f- 1), 
we are done. Suppose, then, that all such B have (a + 1)-width e(a + 1) + 1, 
and consequently have 2-jumps at a + 1. But by Theorem 4.1 and the re­
marks preceding the theorem, there is an interchange transforming some such 
B into a matrix of (a + 1)-width e(a + 1), whereupon the transformed matrix 
has a 1-jump at a + 1. Hence there is a B of a-width e(a) + 1 and (a + 1)-
width i(a + 1). 

If (5.9) holds, we must show the existence of a B in S3 of (a + 1)-width 
i(a + 1) and a-width i(a), and in case 1(a) < i(a), of a 5 in S3 of (a + 1)-
width i(a + 1) and a-width e(a) — 1. The first of these is immediate because 
in this case every matrix of a-width i(a) has (a + l)-width i(a + 1). Consider 
a B of a-width ë(a) - 1. If this B has (a + l)-width ê(a + 1), then the 
theorem holds for (5.9). Suppose, then, that every B of a-width «(a) — 1 
has (a + 1)-width i(a + 1) — 1. Now there exists an interchange that trans­
forms some B of (a + 1)-width l(a + 1) — 1 into a ^ of (a + 1)-width 
e(a + 1)- Then, by Theorem 4.1, there exists a B of (a + 1)-width c(a + 1) 
and a-width ê(a) — 1. 

If (5.10) holds, we must show that there is a B in S3 of (a + l)-width 
ë(a + 1) = ê(a) + 2 and a-width e(a). In this case, every B of (a + l)-width 
i(a + 1) has a-width i(a). 

This completes the proof of Theorem 5.1. 

It can be shown by examples that Theorem 5.1 is a best-possible result in 
the sense that there are classes S3 for which one can specify three integers 
e(a), e(a + 1), e(a + 2) satisfying the obvious necessary conditions, but there 
is no matrix in the class having these as its a-, (a + 1)-, and (a + 2)-widths, 
respectively. For instance, the complement of the (unique) plane of order 3 
has 1-width 3, 2-width 4, 3-width 6, while i ( l ) = 2, i(2) = 3, i(3) = 5 for 
its class. But there is no matrix in this class having 1-width 3, 2-width 4, 
and 3-width 5. 

6. Widths and complements . Let A be an arbitrary b by v (0, 1)-
matrix, and, for the moment, designate its largest row sum by k. Define 

(6.1) MA 03), 0 = 0 , 1 , . . . , * , 

to be the maximal number of columns that can be selected from A in such 
a way that the resulting submatrix has row sums at most /3. It was shown 
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in (3) that the sequence (6.1) and the width sequence for the complement 
A' of A, 

(6.2) eA.(a), a = 0, 1, . . . , v - *, 

determine each other in the following way. Let a be fixed in its interval and 
let p be the least integer in its interval for which 

(6.3) /*A(0) - 0 > a . 

Then, denoting this least P by /5(a), we have 

(6.4) eA*(a) = a + 0(a). 

On the other hand, starting with the sequence (6.2) and fixing 0, let a = a(P) 
be the largest integer in its interval for which 

(6.5) eA,(a) - a < p. 

Then 

(6.6) nA(P) = « ( 0 ) + | 8 . 

Here we take eA'(0) = 0 and, if A has no zero columns, MA(0) = 0. 
If the matrix A has constant row sums fe, it is clear that 

(6.7) v-vA{p) = eA(k-p). 

Hence, for constant row sums, the width sequence for a matrix A determines 
the width sequence for A'. We summarize the relationship between these 
sequences as follows: 

THEOREM 6.1. Let A be a b by v (0, 1)-matrix having constant row sums k> 
let A' be its complement with row sums kr = v — ky and let eA(a) be the width 
sequence for A. Let a! be a fixed integer in the interval 0 < a' < k'y and let 
a{a) be the largest integer a in the interval 0 < a < k satisfying 

(6.8) eA(a) - a < *' -a'. 

Then 

(6.9) eA(a') - a' = k - a(a'). 

Hence the sequences eA(a) — a and €A'(a') — a' are conjugate partitions. 

Proof. By (6.4), eA'(a') — a' is the least integer (3 in the interval 0 < P < k 
such that 

By (6.7), this is the least integer p such that 

* - eA(k- P) - P>a'. 

Setting a = k — P establishes (6.9). 
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It follows that the non-decreasing sequences 

(6.10) (A(a)-a, a = 1,2 *, 

(6.11) ^ ( a ' ) - a ' , «' = 1 ,2 , . . . , * ' , 

are conjugate partitions of the integer 
k k' 

£ M«) - a) = E (̂ («O - «')• 
a=l a'=l 

To see this, construct a & by k' (0, l)-array in which row a contains eA(a) — a 
ones occupying the last eA(a) — a positions: 

1 2 3 4 5 = *' 

0 0 0 0 1 
0 0 0 1 1 
0 0 0 1 1 
0 0 0 1 1 
0 1 1 1 1 
0 1 1 1 1 
0 1 1 1 1 

Then column a! of this array contains eA>(<x') — a ones; that is, the sequences 
(6.10) and (6.11) are conjugate. 

Notice also that row a of the array contains MA(* — a) — (k — a) zeros, 
while column a' contains nA>(k' — a) — (kr — a') zeros, and thus the non-
decreasing sequences 

(6.12) iLA{p) - / ? , j8 = 0 f l , . . . f * - 1, 

(6.13) uLA^fi') - 0', ? = 0, 1, . . . , k' - 1, 

are conjugate partitions of the integer 

E ( ^ ( i 8 ) - 0 ) = LONGS') -/»')• 
0=0 0=0 

Now let 21 be the class of b by v (0, 1)-matrices having constant row sums 
* and specified column sums. Since there is a single matrix A in 21 having 
minimal width l{a) for all a, it follows from Theorem 6.1 that the comple­
mentary matrix A' yields the minimal width sequence for 2T, the sequences 
e(a) —a for 21 and e{a) — af for 21' being conjugate. The same connection 
also holds between the maximal width sequences for the two complementary 
classes. 

THEOREM 6.2. Let 2Ï be the class of all b by v (0, 1)-matrices having constant 
row sums k and specified column sums, and let 21' be the complementary class 
with row sums k' = v — k. Then the sequences 
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(6.14) ëgf (a) - a, a = 1, 2, . . . , k, 

(6.15) i r ( a ' ) - a ' , «' = 1 , 2 , . . . , * ' , 

are conjugate. 

Proof. Suppose (6.14) is given, and let a' be fixed but arbitrary in its inter­
val. Determine the largest integer a such that 

cjj(a) — a < k' — a'. 

Hence for this a, we have 

(6.16) eg (a) - a < É' - a' < ig(a + 1) - (a + 1). 

Select a matrix 4̂ in 31 having maximal (a + 1)-width. Then (6.16) implies 
that 

(6.17) eA(a) - a < V - a1 < eA(cc + 1) - (a + 1), 

and hence, by Theorem 6.1, 

(6.18) €A/(a') - « ' = * - « . 

Thus the conjugate of (6.14) is dominated by (6.15). 
Interchanging the roles of (6.14) and (6.15) in the argument shows that 

the conjugate of (6.15) is dominated by (6.14). But this implies that the 
conjugate of (6.14) dominates (6.15). Hence (6.14) and (6.15) are conjugate. 

Returning now to the class 33, we have, from the 2-jump theorem, 

(6.19) eB(a + 1) - (a + 1) - (eB(a) - a) = 0 or 1, 
a = 1,2, . . . , * - 1, 

for 5 in S . Using the conjugate relation between the sequences eB(a) — « 
and eB>{a') — «', it follows from (6.19) that 

« B V + 1) - («' + 1) - (**>(«') - «0 > 1, a' = 0, 1, . . . , * ' - 2 

and hence that 

(6.20) €B.(a' + 1) - eB'(a') > 2, a' = 0, 1, . . . , £ ' - 2. 

That is, the 2-jump theorem for 33 implies that jumps in the width sequence 
for a matrix in the complementary class are at least 2, except possibly for the 
last jump. The inequality (6.20) is valid for a = k' — 1 unless B' is a design, 
in which case the left-hand side of (6.20) is 1. 

The connection between the width sequence for the complement of a 
projective plane and the existence of ovals in the plane should be mentioned. 
Let B' be a plane of order n. A set of n + 1 points of B' is an oval if no three 
are collinear. In the notation (6.1), B1 has an oval if and only if5 

M*'(2) > n + 1. 

6For a projective plane B' of order w, it is easy to verify the inequality fiB' (|8) < (/3 — 1)« + /3. 
If the plane has an oval, then AIB'(2) = n -f- 1 or n + 2, according as « is odd or even. 
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The width sequence for B has n 2-jumps, the first occurring at a = 1 (that 
is, €#(1) = 3). The location of the second 2-jump spots the existence or non­
existence of an oval, since, by (6.6), if the second 2-jump occurs at a, then 

M*'(2) = 2 + a - l = a + l . 

We know of no counterexample to the assertion that every matrix in a class 
S3 with parameters 

b = v = n2 + n + 1, r = k = n2, 

has its second 2-jump occurring at or beyond a = n. One may speculate 
that the existence of ''ovals'' could be established for all matrices in the 
class S3', and hence for planes. Our efforts in this direction have met with 
no success. 

Observe that the value a — n is the location of the first 2-jump in the 
minimal width sequence for S3. We remark that it is not true, for a general 
class S3 with parameters satisfying (2.2), that all matrices in S3 have their 
second 2-jump occurring at or beyond the first 2-jump in the minimal width 
sequence. Indeed, this assertion is false for classes containing complements 
of Steiner triples, as will be shown by an example in § 8. 

7. The 1-widths of Steiner triple systems. In this section, we specialize 
the class S3 to have parameters 

(7.1) b = \v{v - 1), v = 1, 3 (mod 6), k = v - 3, r = J(» - 1)(» - 3). 

Thus S3' has parameters 

(7.2) b, v, k' = 3, v' = %(v-l), 

and contains Steiner triples on v elements, that is, a collection of triples that 
covers each pair of the v elements just once. 

Each matrix in S3 has v — k — 1 = 2 2-jumps in its width sequence. If Br 

is a Steiner triple system, then B has its first 2-jump at a = 1, its width 
sequence having the form 

(7.3) eB(l) = 3, €B(2) = 4, . . . , eB(t - 2) = /, 

eB(t - 1) = t + 2, . . . , eB(v - 3) = v. 

From the conjugate relation between the sequences 

eB(où) — a, a = 1, 2, . . . , v — 3, and tB'(a') — ct\ a ' = 1, 2, 3, 

it follows that 

€B'(1) - 1 = (V - 3) - (/ - 2) = V - * ~ 1, 

and hence that the integer / in (7.3) satisfies 

(7.4) t = v - €B '(1). 
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Thus the location of the second 2-jump in (7.3) is determined by the 1-width 
of the triple system B\ 

THEOREM 7.1. The 1-width of a Steiner triple system Bf on v elements satisfies 

(7.5) eAl) > i(v - 1). 

Equality holds if and only if the triple system contains a triple subsystem with 
parameters 

(7.6) fo-l)(tF-3) 
24 v = 

v - 1 £ = 3, r — 

x3 0 

x2 Yi 

Xi Y2 

Before proving Theorem 7.1, we point out that (7.5) is a considerable 
improvement on the lower bound given by e(l) for 33', since 

2(1) = <*»>• 

Proof Let Bf have 1-width %(v + p), p an odd integer. Then we may take 
Bf in the form 

(7.7) 

i(v + P) i(*-p) 
Here X* contains three l 's in each row, X2 and F2 contain two l's in each 
row, Xi and Fi contain one 1 in each row, and 0 is a zero matrix. The matrices 
Xi have %(v + p) columns. Let Xt have xt rows, i = 1, 2, 3. Then 

Xi + x2 + x3 = \v(v - 1), 

(7.8) 2xi + x2 = h(v - 1 H ( » - P), 
4xi + x2 = i(2» - p - 3 H ( » - p), 

the last equation coming from the inner-product restriction on the last 
h(v ~~ P) columns of B'. The unique solution of this system is 

(v-p-2)(v-p) 
Xi = ô y 

(7.9) x2 = 

Xz = 

(p+ l)(v-p) 

v - 4v + 3j?2 

24 

Thus if /> < — 1, then x2 < 0 and hence we conclude that 

(7.10) P>-1, 

(7.11) € B ' ( 1 ) > * ( » - 1). 
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Suppose that equality holds in (7.11). Then in the configuration (7.7) with 
p = — 1, we have x2 = 0, and Xz is a triple system on ^(z/ - 1) elements. 
Conversely, suppose the given triple system has a subsystem with parameters 
(7.6). Let Xz represent the subconfiguration and write 

(7.12) 

Then X cannot contain a row with two l 's. Nor can X contain a row of 0's. 
For the column sums of X are \{v + 1) and 

r x3 0 1 
1 

X * 1 

5 + 
V + 1 V — 1 _ (v — l)(v 3) (v+l)(v- 1) _v(v- 1) 

~l" 8 6 
= b. 

4 2 24 

Hence for the matrix B' of (7.12), 

(7.13) eB,(l) = *(* - 1). 

This proves the theorem. 

We remark that, given a triple system on v > 3 elements, it is always 
possible to construct a triple system on v = 2v + 1 elements that contains 
the given one (4). A second remark concerns the configuration (7.7). The 
matrix F2 is the incidence matrix for all pairs on %(y — p) elements, and has 
constant column sums %(y — p — 2); each column sum of Yx is \{p + 1). 

Some examples of triple systems and their 1-widths are tabulated below: 

(a) v = 7. Unique system, e(l) = 3. 

(b) v = 9. Unique system 

1,2,3 
1,4,5 2 ,4 ,9 3 ,4 ,8 
1,6,8 2 ,5 ,6 3 ,5 ,7 4 , 6 , 7 
1,7,9 2 , 7 , 8 3 ,6 ,9 5 ,8 ,9 

with e(l) = 5. (The set {1, 2, 3, 4, 5} intersects every triple.) 

(c) v = 13. Two distinct systems. Each contains 

1,2,3 
1,4,5 2 ,4 ,6 
1,6,7 2 ,5 ,7 4 , 3 , 8 
1,8,9 2, 8, 10 4 , 7 , 9 7 ,3 ,11 
1, 10, 11 2 ,9 ,12 4,10,13 7 ,8 ,13 8 ,5 ,11 6 ,9 ,11 
1, 12, 13 2,11,13 4,11,12 7,10,12 8,6,12 3 ,5 ,12 

In addition, one system contains 3, 6, 10; 3, 9, 13; 5, 6, 13; 5, 9, 10; the other 
contains 3, 6, 13; 3, 9, 10; 5, 6, 10; 5, 9, 13. The set {1, 2, 3, 4, 5, 6, 7} inter­
sects every triple for both systems and hence c(l) = 7 for both. 
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(d) v = 15. Eighty distinct systems. One of these has 1-width 7, by Theorem 
7.1 and the remark following its proof. There is another that has 1-width 9. 
We describe it as follows. Let 

Z = 

0 0 110 
0 0 0 11 
10 0 0 1 
110 0 0 
0 110 0 
0 10 0 1 
10 10 0 
0 10 10 
0 0 10 1 
10 0 10 

and form the 35 by 15 matrix 

E = 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

z E 0 
0 Z E 
E 0 z 
I I I 

Here I is the 5 by 5 identity. It is easily checked that this is a triple system. 
We omit a proof that it has 1-width 9, except to say that the partitioned form 
we have used to describe it is advantageous in making a proof. It can also 
be shown that none of the eighty systems has 1-width 10 or more. 

It would be interesting to have more information concerning the variation 
in 1-width for Steiner triples. In this connection, we note that the triple 
system just described can be generalized. Take v = 3 (mod 6) and set v = 35, 
s an odd integer. Let Z be the incidence matrix of all pairs on 5 elements; it 
is not hard to show that Z may be arranged to appear as 

(7.14) Z = 
z2 

zh (s-1) 

where each Z% is the sum of two permutation matrices, and 

2_s Zt — j — / , 

where / is the matrix of all Ts. Let 
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I 
I 

(7.15) E = 

consist of %(s — 1) identity matrices of order 5. Then the matrix 

(7.16) 

Z E 0 
0 Z E 
E 0 Z 
I I I 

is a Steiner triple system on v = 3s elements. Does the system (7.16) have 
1-width 2s - 1 = %v - 1? 

8. Some miscellaneous examples. Perhaps the simplest non-trivial 
class S3 with parameters satisfying (2.2) is obtained by taking 

(8.1) b = v > 3, r = k = v - 2. 

This class has just one 2-jump, and its maximal width sequence can be deter­
mined explicitly. I t is 

(8.2) g(l) = 2, . . . , ë«^> - 1) = <fc>>, g«fc,» = <J»> + 2, . . . , i{v - 2) = v, 

the 2-jump occurring at (%v). To prove this, let the integer v > 3 be written 
in one of the three forms 
(8.3) v = 35, 

(8.4) v = 3s - 1, 

(8.5) v = 35 - 2, 

where 5 is an integer. By Theorem 6.2, it suffices to show, for the comple­
mentary class S3', that 

(8.6) i(l) = 2s,2s - 1,2s - 2, 

according as (8.3), (8.4), or (8.5) holds. 
Assume (8.3). We first single out a matrix in that has 1-width 2s. Let 

(8.7) 

and form 

D2 = 
0 i l 
1 0 l ; 

Li l 0_ 
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D2 

D2 

(8.8) 

D, 

with Di repeated s times. The matrix (8.8) is in 33' and has 1-width 2s. Suppose 
there were a matrix in 33' that had 1-width 2s + 1. Such a matrix must con­
tain an identity submatrix I of size 2s + 1, and hence can be written as 

(8.9) 

with / having 2s + 1 rows and columns. Then the matrix Y contains 2 5 + 1 
ones, whereas the matrices X and Y together contain 2(s — 1) = 25 — 2 
ones, a contradiction. 

Assume (8.4). Let Jt be the 2 by 2 matrix of l's. Then the matrix 

I * I X 1 
L I \ Y J 

(8.10) 

D, 
D, 

D, 
Jt 

with Z>2 repeated 5—1 times, is in 59' and has 1-width 25 — 1. An argument 
similar to the one given above shows that no matrix in 53' has 1-width 25. 

If (8.5) holds, the matrix 

(8.11) 

D, 
Dt 

D, 
Jx 

Jt 

with £>2 repeated 5 — 2 times, is in 33' and has 1-width 25 — 2. As above, no 
matrix in S3' has larger 1-width. 

A matrix in 33' can be viewed as the edge-vertex incidence matrix of a 
multigraph having degree two at each vertex. The 1-width of the matrix is 
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the minimum number of vertices that touch all the\edges. Roughly speaking, 
the proof given above says that to maximize this number over all such graphs 
on v vertices, it is necessary to form as many triangles (matrices D2) as possible. 

Our next example is the one mentioned at the end of § 6. It shows that 
classes corresponding to complements of Steiner triples contain matrices with 
both 2-jumps occurring before the first 2-jump in the minimal width sequence. 
Let the class 33' have parameters 

(8.12) b = Us2-3s+S)(s- l)(s 2), v = s2 - 3s + 3, *' = 3, 
/ = è ( 5 - l ) ( 5 - 2 ) , 

where 5 is an integer. Note that v = 1, 3 (mod 6) according as s = 1, 2, 4, 5 
(mod 6) or 5 = 0, 3 (mod 6), so that 33' contains Steiner triples on v elements. 
For the class 33, the first 2-jump in the minimal width sequence 1(a) occurs at 

(8.13) « i -[JH*]—^]-
brackets denoting the largest integer. 

Let Dl be the incidence matrix of all triples on s elements. Thus D*z is 
of size \s(s — l)(s — 2) by 5. Consider the following matrix in 33': 

(8.14) B' 

Dl 0 

Dl 
0 J 

Here Z>§ occurs 5 — 3 times and / is a matrix of l 's of size §(5 — 1)(5 — 2) 
by 3. The matrix B' has 

(8.15) Ms'(l) = 5 - 2 , M*'(2) = 2(5 - 2), MB'(3) = 52 - 35 + 3, 

whence it follows from (6.3), (6.4) that the width sequence for its complement 
B has its 2-jumps at 

(8.16) # 2 = 5 and a3 = 25 

Comparing (8.16) with (8.13) shows that, for s > 7, both of these occur 
before aY. 

Our final example is designed to answer the question: Can the difference 
i(a) — 1(a) for a class 33 be bounded above by anything interesting? It is 
of course clear that 

(8.17) l(a) - 1(a) < kf - 1 

for all a. The above example shows that equality can hold for k' = 3. We 
now show that equality can hold for kf > 3. 
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Let DU' be the incidence matrix of all è'-tuples of s elements, having ( , , 1 

rows and s columns, and consider the class 53' generated by the matrix 

(8.18) B' = 

DIS 
where D%> occurs / times. The class 33' has parameters 

(8.19) b-t(°), , - * *', r>=(;,-_\), 

and we can satisfy the class inequality for 33 by choosing / sufficiently large. 
The first 2-jump in the minimal width sequence for S3 occurs at 

(8.20) oci W=[f] 
We assume that k' divides s, so that brackets may be dropped in (8.20). 

The matrix (8.18) has 

(8.21) 

whence 

,.. (pt, if 0 < 0 < *' - 1, 
M * , 0 , ) = \st, if 0 = k', 

(8.22) «.<«)= f + V = V ' ««<<*- D('-l>. 
L + k', if « > (*' - \){t-1). 

For 5 > k'(k' — 1), we have 

ai — 1 = 
St 

1 > (k'-l)(t-l), 

and thus 

(8.23) €B(«i - 1) = oti - 1 + *'. 

Since a\ is the position of the first 2-jump in i(a), 

(8.24) i ( a i - 1) = « L 

Hence equality holds in (8.17) for a = ax — 1. 
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