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Abstract

In this article we consider exceptional sequences of invertible sheaves on smooth
complete rational surfaces. We show that to every such sequence one can associate
a smooth complete toric surface in a canonical way. We use this structural result to
prove various theorems on exceptional and strongly exceptional sequences of invertible
sheaves on rational surfaces. We construct full strongly exceptional sequences for a large
class of rational surfaces. For the case of toric surfaces we give a complete classification
of full strongly exceptional sequences of invertible sheaves.

1. Introduction

The study of derived categories of coherent sheaves on algebraic varieties has gained much
attention since the mid-90s, with some of the main motivations coming from Kontsevich’s
homological mirror symmetry conjecture [Kon95] and, evolving from this, the use of derived
categories for D-branes in superstring theory [Dou01]. The object one studies is the bounded
derived category Db(X) of coherent sheaves over a smooth algebraic variety X defined over some
algebraically closed field K. By definition, Db(X) is a categorial framework for the homological
algebra of coherent sheaves on X. It turns out that Db(X) carries a very rich structure and
encodes information which might not directly be visible from the geometry of X. For an
overview we refer to the book [Huy06] and the survey article [Bri06]. However, despite many
interesting and deep results, the theory seems far from being developed enough to make Db(X)
an easily accessible object in any sense. A particular open problem is the construction of suitable
generating sets, for which the framework of exceptional sequences has been developed by the
Seminaire Rudakov [Rud90].

Definition. A coherent sheaf E on X is called exceptional if HomOX (E , E) = K and
ExtiOX (E , E) = 0 for every i 6= 0. A sequence E1, . . . , En of exceptional sheaves is called an
exceptional sequence if ExtkOX (Ei, Ej) = 0 for all k and for all i > j. If an exceptional sequence
generates Db(X), then it is called full. A strongly exceptional sequence is an exceptional sequ-
ence such that ExtkOX (Ei, Ej) = 0 for all k > 0 and all i, j.

If a full exceptional sequence E1, . . . , En exists onX and 〈Ei〉 denotes the minimal triangulated
subcategory of Db(X) containing Ei, then 〈E1〉, . . . 〈En〉 forms a semi-orthogonal decomposition
of Db(X), i.e. we have 〈Ej〉 ⊂ 〈Ei〉⊥ for all i > j. Such decompositions naturally arise in
birational geometry (see [Kaw09, Orl93]) and for Fourier–Mukai transforms (see [Hv07]). Full
strongly exceptional sequences provide an even stronger characterization of Db(X) in terms of
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representation theory of algebras [Hap88]. By theorems of Baer [Bae88] and Bondal [Bon90] for
such a sequence there exists an equivalence of categories

RHom(T , · ) :Db(X)−→Db(End(T )−mod),

where T :=
⊕n

i=1 Ei, which is sometimes called a tilting sheaf. This way the algebra End(T ), at
least in the derived sense, represents a non-commutative coordinate system of X.

Strongly exceptional sequences have classically been known for the case of Pn (see [Bĕı78,
DL85]). However, exceptional or strongly exceptional sequences cannot exist in general, and
their existence is still an open problem. For instance, on Calabi–Yau varieties it follows from
Serre duality that there do not even exist exceptional sheaves. On the other hand, by now,
exceptional sequences have been constructed in many interesting cases, including certain types of
homogeneous spaces [Kap86, Kap88, Kuz08, Sam07], del Pezzo surfaces and almost-del Pezzo sur-
faces [Gor89, KN98, Kul97, KO95], and some higher-dimensional Fano varieties [Nog94, Sam05].

In this paper we consider exceptional sequences on smooth complete rational surfaces which
consist of invertible sheaves. This special setting is motivated by a conjecture of King [Kin97],
which states that on every smooth complete toric variety there exists a strongly exceptional
sequence of invertible sheaves. Invertible sheaves on toric varieties can be described in very
explicit combinatorial terms and a number of examples were well known when the conjecture
was stated. Also of interest here is the fact that toric varieties can nicely be represented as
moduli spaces of certain quiver representations and their universal sheaf is a good candidate for
a (partial) tilting sheaf. Examples of strongly exceptional sequences have been given from this
point of view in [AH99, Kin97] (see also [BP08, Bro06, CS08]). Other constructions have been
given in [CM04, CM05], and for toric stacks in [BH09]. Typically, general constructions are only
available for very special situations such as iterated projective bundles, or small Picard number.
It is known that strongly exceptional sequences of invertible sheaves exist on the toric 3-Fanos,
and computer experiments indicate that this is also true for 4-Fanos. However, general existence
theorems are only available for exceptional sequences which are not strongly exceptional. So it
has been shown in [Hil04] that exceptional sequences of invertible sheaves exist on smooth toric
surfaces. The existence of exceptional sequences which do not necessarily consist of invertible
sheaves has been shown for general smooth projective toric stacks by Kawamata [Kaw06]. Despite
a lot of positive evidence, the existence of strongly exceptional sequences still is an open problem
for toric varieties. In [HP06] an example was given of a toric surface which does not admit a
strongly exceptional sequence of invertible sheaves, the second Hirzebruch surface iteratively
blown up three times. This counterexample at that time seemed somewhat mysterious, in
particular because, having Picard number 5, it is surprisingly small. For general rational surfaces
there is no bound for the Picard number. This can be shown by well-known examples, such as
simultaneous blow-ups of P2 in several points, by which any Picard number can be realized
(see Theorem 5.9). In the toric case, explicit positive examples with higher Picard numbers were
known to the authors, including further blow-ups of the counterexample (see Example 8.4). Hence
the question is, what is the obstruction for the existence of a (strongly) exceptional sequence of
invertible sheaves on a toric or more general rational surface? It turns out that toric surfaces are
at the heart of the problem, even for the case of general rational surfaces. The most important
structural insight of this paper is the following remarkable observation.

Theorem 3.5. Let X be a smooth complete rational surface, let OX(E1), . . . ,OX(En) be a full
exceptional sequence of invertible sheaves on X, and set En+1 := E1 −KX . Then to this sequence
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there is associated in a canonical way a smooth complete toric surface with torus invariant prime
divisors D1, . . . , Dn such that D2

i + 2 = χ(OX(Ei+1 − Ei)) for all 1 6 i6 n.

Of course, this theorem deserves a more detailed explanation which will be given below. For
the convenience of the reader we want first to present the most important consequences derived
from this. Our first main result shows the existence of exceptional sequences in general.

Theorem 5.6. On every smooth complete rational surface there exists a full exceptional sequence
of invertible sheaves.

We point out that for rational surfaces this theorem is not a big surprise and can also be
derived from results of Orlov [Orl93]. However, as noted above, an analogous theorem does
not hold if we require the sequences to be strongly exceptional. A necessary condition for the
existence of a full strongly exceptional sequence seems to be that the surface is not too far away
from a minimal model. By the Enriques classification, every smooth complete rational surface is
a blow-up of the projective plane or some Hirzebruch surface. In fact, we can prove that such
sequences exist on a surface which comes from blowing up a Hirzebruch surface once or twice,
possibly in several points in every step.

Theorem 5.9. Any smooth complete rational surface which can be obtained by blowing up
a Hirzebruch surface two times (in possibly several points in each step) has a full strongly
exceptional sequence of invertible sheaves.

In the toric case, we can show that the converse is also true.

Theorem 8.2. Let P2 6=X be a smooth complete toric surface. Then there exists a full strongly
exceptional sequence of invertible sheaves onX if and only ifX can be obtained from a Hirzebruch
surface in at most two steps by blowing up torus fixed points.

Note that the blow-up of P2 at any point is isomorphic to the first Hirzebruch surface.
Hence there is no loss of generality if only blow-ups of Hirzebruch surfaces are considered. In
particular, Theorem 8.2 implies that the Picard number of a toric surface on which a full strongly
exceptional sequence of invertible sheaves exists is at most 14. On the other hand, the example
given in [HP06] is a minimal example which does not satisfy the condition of the theorem.

Another important aspect of exceptional sequences is their relation to helix theory as
developed in [Rud90].

Definition. An infinite sequence of sheaves . . . , Ei, Ei+1, . . . is called a cyclic (strongly)
exceptional sequence if there exists an n such that Ei+n ∼= Ei ⊗O(−KX) for every i ∈ Z and
if every winding (i.e. every subinterval Ei+1, . . . , Ei+n) forms a (strongly) exceptional sequence.
A cyclic exceptional sequence is full if every winding is a full exceptional sequence.

Our notion of cyclic strongly exceptional sequences is close to the geometric helices of [BP94],
but we want to point out that these notions do not coincide, as we do not require that our cyclic
exceptional sequences are generated by mutations. In fact, if we consider a winding Ei+1, . . . , Ei+n
as the foundation of a helix, then the nth right mutation of Ei coincides with Ei+n up to a shift in
the derived category. By results of [Bon90] a foundation of a helix generates the derived category
precisely if any foundation does. Hence a cyclic exceptional sequence is full if and only if it
has any winding which is a full exceptional sequence. By a result of Bondal and Polishchuk,
the maximal periodicity of a geometric helix on a surface is 3, which implies that P2 is the only

1232

https://doi.org/10.1112/S0010437X10005208 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005208


Exceptional sequences

rational surface which admits a full geometric helix. Our weaker notion admits a bigger class of
surfaces, but still imposes very strong conditions.

Theorem 5.13. Let X be a smooth complete rational surface on which a full cyclic strongly
exceptional sequence of invertible sheaves exists. Then rk Pic(X) 6 7.

Hence, not even every del Pezzo surface admits such a sequence. However, we have the
following theorem.

Theorem 5.14. Let X be a del Pezzo surface with rk Pic(X) 6 7, then there exists a full cyclic
strongly exceptional sequence of invertible sheaves on X.

The condition that −KX is ample can be weakened in general. In the toric case we obtain a
complete characterization for toric surfaces admitting cyclic strongly exceptional sequences.

Theorems 8.5 and 8.6. Let X be a smooth complete toric surface, then there exists a full cyclic
strongly exceptional sequence of invertible sheaves on X if and only if −KX is nef.

Note that cyclic strongly exceptional sequences have been considered before, most notably in
physics literature (see [Asp08, BP06, HHV06, HK06], but see also the recent article [BS10]), but
usually under different names. Theorems 8.5 and 8.6 have been conjectured in this context. The
particular interest here comes from the fact that the total space π : ωX →X of the canonical
bundle OX(KX) is a local Calabi–Yau manifold. It follows from results of Bridgeland [Bri05]
that a full strongly exceptional sequence E1, . . . , En on X can be extended to a cyclic strongly
exceptional sequence if and only if the pullbacks π∗E1, . . . , π∗En form a sequence on ωX which
is almost exceptional in the sense that the π∗Ei generate Db(ωX) and Extk(π∗Ei, π∗Ej) = 0 for
every i, j and all k > 0 (however, due to the fact that ωX is not complete, we cannot expect
that any Hom-groups among the π∗Ei vanish). Another interesting observation is that for the
toric singularities which arise from contracting the zero section and the (−2)-curves in ωX ,
the endomorphism algebras of

⊕n
i=1 π

∗Ei give examples for non-commutative crepant resolutions
in the sense of van den Bergh [van04a, van04b].

Now we give some more technical explanations concerning Theorem 3.5 and its consequences.
The key idea is astoundingly simple. Let X be a smooth complete rational surface and E1, . . . , En
Cartier divisors on X such that OX(E1), . . . ,OX(En) form an exceptional sequence of
invertible sheaves. For these sheaves, there are natural isomorphisms ExtkOX (OX(Ei), OX(Ej))∼=
Hk(X,OX(Ej − Ei)) and therefore it is convenient to bring this exceptional sequence into a
normal form by passing to differences. We set Ai := Ei+1 − Ei for 1 6 i < n and An :=−KX −∑n−1

i=1 Ai, whereKX denotes the canonical divisor. The reason for adding An will become clear be-
low. The fact that the Ei form an exceptional sequence then implies Hk(X,OX(−

∑
i∈I Ai)) = 0

for every interval I ⊂ [1, . . . , n− 1] and every k > 0. It is an easy consequence of the Riemann–
Roch theorem that moreover the Ai have the following properties:

(i) Ai ·Ai+1 = 1 for 1 6 i < n and A1 ·An = 1;

(ii) Ai ·Aj = 0 for i 6= j, {i, j} 6= {1, n}, and {i, j} 6= {k, k + 1} for any 1 6 k < n;

(iii)
∑n

i=1 Ai =−KX .

Definition. We call a set of divisors on X which satisfy the conditions (i), (ii), (iii) above a
toric system.
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With respect to a toric system we consider the short exact sequence

0−→ Pic(X) A−→ Zn −→ Z2 −→ 0,

where A maps a divisor class D to the tuple (A1 ·D, . . . , An ·D). The images l1, . . . , ln of the
standard basis of Zn in Z2 are the Gale duals of A=A1, . . . , An. It is now an exercise in linear
algebra (see Proposition 2.7) to show that the li generate the fan of a smooth complete toric
surface which we denote Y (A). This means, by passing from E1, . . . , En via its toric system
to the vectors l1, . . . , ln, we have a canonical way of associating a toric surface to a strongly
exceptional sequence of invertible sheaves on any rational surface. This correspondence is even
stronger; as Gale duality is indeed a duality, we can as well consider the Ai as Gale duals of the li.
However, by a standard fact of toric geometry, the Gale duals of the li can be interpreted as the
classes of the torus invariant prime divisors D1, . . . , Dn on Y (A). Hence, we can identify Pic(X)
and Pic(Y (A)) and the respective intersection products in a natural way, such that A2

i =D2
i for

all i. In particular, note that the set of invariant irreducible divisors forms a toric system for any
smooth complete toric surface.

We want to point out that toric systems have some resemblance to certain systems of
divisors which show up in the classical analysis of del Pezzo surfaces (see [Man86] or [Dem80]).

Consider X a t-fold blow-up of P2, i.e. X =Xt
bt−−→Xt−1

bt−1−−−−→ · · · b2−−→X1
b1−−→ P2. Then we

get a nice basis H, R1, . . . , Rt of Pic(X), where H is the pullback of the class of a line on P2,
and Ri is the pullback of the exceptional divisor of the blow-up bi. This basis diagonalizes the
intersection product of Pic(X), i.e. H2 = 1, R2

i =−1 and H ·Ri = 0 for all i, and Ri ·Rj = 0
for all i 6= j. For simplicity, let us assume that t > 5. Then we construct a graph as follows.
For the vertices, we set A0 :=H −R1 −R2 −R3 and Ai :=Ri −Ri+1 for i= 1, . . . , t− 1 and
we draw an edge between Ai and Aj whenever Ai ·Aj 6= 0. This way we obtain a graph of
type Et which is indefinite for t > 8. For t6 8 it is shown in [Man86] that the set of divisors
{D ∈ Pic(X) | χ(−D) =−KX ·D = 0} forms a root system which is generated by the Ai. In
case of t= 6 this root system represents the symmetries of the famous 27 lines on the cubic
surface. The system of divisors A0, . . . , At−1 is almost a toric system. We can turn it into a
proper toric system by removing A0 and adding At :=Rt, At+1 :=H −

∑t
i=1 Ri, At+2 :=H, and

At+3 :=H −R1. This toric system always represents an exceptional sequence which is of the
form OX ,OX(Rt), . . . ,OX(R1),OX(H),OX(2H). In case that the bi commute, this sequence is
even strongly exceptional. Note that there always are ambiguities concerning the enumeration of
the Ai; we always can change it cyclically or even choose the reverse enumeration (see also the
remarks at the end of § 3; the toric system associated to above exceptional sequence actually is
At, At−1, . . . , A1, At+3, At+2, At+1).

This sequence gives an example of an exceptional sequence which is an augmentation of the
standard sequence on P2. On P2 there exists a unique toric system, which is of the form H,
H, H. After blowing up once, we can augment this toric system by inserting R1 in any place
and subtracting Ri in the two neighbouring positions, i.e., up to symmetries, we obtain a toric
system H −R1, R1, H −R1, H on X1. Continuing with this, we essentially get two possibilities
on X2, namely:

H −R1 −R2, R2, R1 −R2, H −R1, H;
H −R1, R1, H −R1 −R2, R2, H −R2.

It is easy to see that all of these examples lead to strongly exceptional sequences for almost
all enumerations which keep the cyclic order. The only exception being the first one in the
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case where b2 is a blow-up of an infinitesimal point. Here, we necessarily have to choose the
enumeration of the Ai such that An =R1 −R2.

Similarly, on any Hirzebruch surface Fa there exist, in fact infinitely many, toric systems
of the form P, sP +Q, P,−(a+ s)P +Q with s>−1, which correspond to strongly exceptional
sequences. Here, P and Q are the two generators of the nef cone in Pic(Fa), where P is the class of
a fiber of the P1-fibration Fa→ P1 and Q is the generator with Q2 = a. We can extend these toric
systems along blow-ups in an analogous fashion. We call toric systems obtained this way standard
augmentations (see Definition 5.4). It turns out that Theorem 8.2 is a consequence of the following
characterization of strongly exceptional sequences arising from standard augmentations.

Theorem 5.11. Let P2 6=X be a smooth complete rational surface which admits a full strongly
exceptional sequence whose associated toric system is a standard augmentation. Then X can be
obtained by blowing up a Hirzebruch surface two times (in possibly several points in each step).

Standard augmentations provide a straightforward procedure which allows us to produce
strongly exceptional sequences of invertible sheaves on a large class of rational surfaces. It is
natural to ask whether it is actually possible to get all such sequences this way. The answer so
far is: probably yes. Indeed, Theorem 8.2 is a corollary of Theorem 5.11 and the following result.

Theorem 8.1. Let X be a smooth complete toric surface, then every full strongly exceptional
sequence of invertible sheaves comes from a toric system which is a standard augmentation.

Conjecturally, this theorem should generalize to general rational surfaces. However, our result
is based on a rather detailed analysis of cohomology vanishing on toric surfaces which we cannot
easily extend to the general case. Moreover, a standard augmentation does not necessarily look
like a standard augmentation at the first glance. In the phrase ‘comes from’ in above theorem
is hidden a normalization process which must be performed and, as such, is almost obvious
(see the end of § 5 for details), but whose necessity significantly increases the difficulty of the
classification. It turns out that in the toric case all ‘difficult’ strongly exceptional sequences are
related to cyclic exceptional sequences. These in turn are easier to understand, but in no case
is it a priori clear whether a given strongly exceptional sequence is cyclic. We hope to obtain a
more geometric understanding for this in future work.

1.1 Overview
In § 2, after surveying some standard facts on the geometry of smooth complete toric surfaces,
we introduce toric systems and explain their relation to toric surfaces. In § 3 we derive some
elementary properties from cohomology vanishing and show that to every exceptional sequence
on a smooth complete rational surface there is associated a toric system. Section 4 contains some
general results for cohomology vanishing on rational surfaces. Based on this, we prove in § 5 our
results for exceptional sequences on general rational surfaces, except for Theorem 5.11, which is
proved in § 6. Sections 7 to 10 are entirely devoted to the case of toric surfaces. In § 7 we give
a detailed description of cohomology vanishing of divisors on smooth complete toric surfaces.
Section 8 contains the main results on strongly exceptional sequences on toric surfaces. In §§ 9
and 10 we give a proof of Theorem 8.1.

1.2 Notation and general conventions
For some positive integer l, we denote [l] := {1, . . . , l}. If we use the letter n (or n− 1, n+ 1,
n+ k, etc.), we will usually assume that the elements of [n] are in cyclic order in the sense
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that we consider [n] as a system of representatives of Z/nZ. In particular, for some i ∈ [n]
and some j ∈ Z, we identify i+ j with the corresponding class in [n]. If we use some different
letter, say t, then we will usually consider the standard total order on the set [t]. Depending on
context, we may also consider other partial orders on the set [t]. An interval I ( [n] is a subset
I = {i, i+ 1, . . . , i+ k}, where i ∈ [n], i+ k 6 n and 0 6 k < n− 1. A cyclic interval I ( [n] is
either an interval or the union I = I1 ∪ I2 of two intervals such that 1 ∈ I1 and n ∈ I2. For any Z-
module K, we will denote KQ :=K ⊗Z Q. For some divisor D on a variety X, we will usually omit
the subscript X for the corresponding invertible sheaf OX(D) if there is no ambiguity for X.
We denote hi(D) := hi(O(D)) := dimH i(X,OX(D)). We will frequently make use of the fact
that for any Cartier divisor D on an algebraic surface X and any blow-up b :X ′→X there are
isomorphisms H i(X ′, b∗OX(D))∼=H i(X,OX(D)) for every i ∈ Z.

2. The birational geometry of toric surfaces

For general reference on toric varieties, we refer to [Ful93, Oda88]. The specifics for toric surfaces
are taken from [MO78, Oda88]. For Gale transformation, we refer to [GKZ94, OP91]. Let X be
a smooth complete toric surface defined over some algebraically closed field K. That is, there
exists a two-dimensional torus T ∼= (K∗)2 acting on X such that T itself is embedded as maximal
open and dense orbit in X on which the action restricts to the group multiplication of T . It is
clear that every such X is rational.

We denote M = Hom(T,K∗)∼= Z2 and N = Hom(K∗, T )∼= Z2 the character and cocharacter
groups of T , respectively. The toric surface X is completely determined by a collection of elements
l1, . . . , ln ∈N with the following properties. We assume that the li are circularly ordered and
indexed by elements in [n]. Then for every i ∈ [n] the pair li, li+1 forms a positively oriented
basis of N . Moreover, for every such pair there exists no other lk such that lk = αili + αi+1li+1

for some non-negative integers αi, αi+1. Every pair li, li+1 generates a two-dimensional rational
polyhedral cone in the vector space NQ, and the collection of faces of all these cones is the
fan ∆ associated to X. There is a one-to-one correspondence of one-dimensional T -orbits in X
and the rays in ∆, i.e. the one-dimensional cones, which have the li as primitive vectors. The
corresponding orbit closures we denote by Di. Every Di is isomorphic to P1, and for every i,
the divisors Di and Di+1 intersect transversely in the torus fixed point associated to the cone
generated by li and li+1, thus Di ·Di+1 = 1. This way, the Di form a cycle of rational curves in
X of arithmetic genus 1. Moreover, for every i ∈ [n] there exists the unique relation

li−1 + aili + li+1 = 0,

where ai =D2
i ∈ Z is the self-intersection number of Di.

Clearly, if just the integers ai are known, we can reconstruct the li from the ai up to
an automorphism of N . However, an arbitrary sequence of ai does not necessarily lead
to a well-defined smooth toric surface. An admissible sequence a1, . . . , an is determined by the
minimal model program for toric surfaces. Whenever ai =−1 for some i, we can equivariantly
blow down the corresponding Di and obtain another smooth toric surface X ′ on which T
acts. This surface is specified by a sequence a′1, . . . , a

′
i−1, a

′
i+1, . . . a

′
n (where, up to a cyclic

change of enumeration, we can assume that 1< i < n) such that a′i−1 = ai−1 + 1, a′i+1 = ai+1 + 1,
and a′k = ak for k 6= i− 1, i, i+ 1. Conversely, an equivariant blow-up at some point Di ∩Di+1 is
described by changing a1, . . . , ai, ai+1, . . . an to a1, . . . , ai−1, ai − 1,−1, ai+1 − 1, ai+2, . . . , an.
This way, we arrive at the same class of minimal models as in the case of general rational surfaces.
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Theorem 2.1. Every toric surface can be obtained by a finite sequence of equivariant blow-ups
of P2 or some Hirzebruch surface Fa.

In particular, the sequences of self-intersection numbers associated to P2 and the Fa are 1, 1, 1
for P2 and 0, a, 0,−a for Fa. Every other admissible sequence a1, . . . , an can be obtained by
successive augmentation of one of these sequences by the aforementioned process. In particular,
this implies the following proposition.

Proposition 2.2. Let X be a smooth complete toric surface determined by self-intersection
numbers a1, . . . , an. Then

∑n
i=1 ai = 12− 3n.

There is also a local version of above theorem.

Proposition 2.3 [MO78]. Let i < k such that li, lk form a positively oriented basis. Then there
exists a sequence of blow-downs from X to a smooth complete toric surface X ′ whose associated
primitive vectors are l1, . . . , li, lk, . . . , ln.

The Picard group of X is generated by the T -invariant divisors D1, . . . , Dn. More precisely,
we have a short exact sequence

0−→M
L−→ Zn −→ Pic(X)−→ 0, (1)

where L= (l1, . . . , ln), i.e. the li are considered as linear forms on M . The ith element of the
standard basis of Zn maps to the rational equivalence class of the divisor Di. There is no canonical
choice of coordinates for Pic(X), but there is a very natural and convenient representation for
toric divisors if considered as elements in the group of numerical equivalence classes of curves
N1(X). Consider the natural pairing on X:

N1(X)⊗ Pic(X)−→ Z, (C, D) 7→ C ·D,

which is a non-degenerate bilinear form. The pairing is completely specified by the intersection
products of the Di among each other, which are given by

Di ·Dj =


ai if i= j,

1 if j ∈ {i− 1, i+ 1},
0 else.

Denote D := (Di ·Dj)i,j=1,...,n the corresponding matrix. Then we have a linear map Zn D−−→ Zn
whose kernel is M , the group of numerically trivial T -invariant divisors. Given a T -invariant
divisor D :=

∑
i∈[n] ciDi, its image D(D) is a tuple of the form (d1, . . . , dn), where di := di(D) :=

ci−1 + aici + ci+1 =D ·Di. If we dualize sequence (1), we get

0−→ Pic(X)∗ −→ Zn LT−→N −→ 0, (2)

where LT denotes the transpose of L. The kernel of LT coincides with the image of D, so
that we can identify Pic(X)∗ with N1(X) in a natural way as subgroups of Zn. Hence, if
considered as a curve, the tuple (d1, . . . , dn) is a natural representation of D which does not
depend on the choice of a T -invariant representative. Moreover, by sequence (2) we have for any
tuple (d1, . . . , dn) ∈N1(X) that ∑

i∈[n]

dili = 0.
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Table 1. The 16 complete smooth toric surfaces whose anti-canonical divisor is nef.

Name Self-intersection numbers a1, . . . , an

P2 1, 1, 1
P1 × P1 0, 0, 0, 0
F1 0, 1, 0, −1
F2 0, 2, 0, −2
5a 0, 0, −1, −1, −1
5b 0, −2, −1, −1, 1
6a −1, −1, −1, −1, −1, −1
6b −1, −1, −2, −1, −1, 0
6c 0, 0, −2, −1, −2, −1
6d 0, 1, −2, −1, −2, −2
7a −1, −1, −2, −1, −2, −1, −1
7b −1, −1, 0, −2, −1, −2, −2
8a −1, −2, −1, −2, −1, −2, −1, −2
8b −1, −2, −2, −1, −2, −1, −1, −2
8c −1, −2, −2, −2, −1, −2, 0, −2
9 −1, −2, −2, −1, −2, −2, −1, −2, −2

By this we can identify N1(X) with the set of closed polygonal lines in NQ whose segments are
given by some multiple of every li. We will make use of this and give some more detail in § 7.
Note that to determine whether some D is nef, it suffices to test this on the T -invariant divisors.
We have the following proposition.

Proposition 2.4. Let D be a T -invariant divisor on X. Then the following hold.

(i) For every i ∈ [n] we have di = degO(D)|Di .
(ii) D is nef if and only if di > 0 for every i ∈ [n].

In particular, we have the following proposition.

Proposition 2.5. Denote KX =−
∑n

i=1 Di the canonical divisor on X. Then di(KX) =−ai − 2
for all i. Then −KX is nef if and only if ai >−2 for all i and −KX is ample if and only if ai >−1
for i.

Note that on a smooth toric surface an invertible sheaf is ample if and only if it is very
ample. There are precisely 16 smooth complete toric surface whose anti-canonical divisor is nef
(including the five del Pezzo surfaces which admit a toric structure). These are shown in Table 1
in terms of the self-intersection numbers ai. In this table, the first four surfaces are given their
standard names, the other labels just reflect the length of the sequence a1, . . . , an.

The short exact sequence (1) is an example for a Gale transform. By general properties of
Gale transforms, for any subset I of {1, . . . , n}, the set LI := {li | i ∈ I} forms a basis of N
if and only if the complementary set {Di | i /∈ I} forms a basis of Pic(X), and LI is a minimal
linearly dependent set if and only if the complementary set is a maximal subset of the Di which is
contained in a hyperplane in Pic(X). Moreover, we can invert any Gale transform by considering
the dual short exact sequence. Hence by the sequence (2) we get back the li from the Di.
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Definition 2.6. Let P be a free Z-module of rank n− 2 together with a integral symmetric
bilinear form 〈 , 〉. A sequence of elements A1, . . . , An in P is called an abstract toric system if
and only if it satisfies the following conditions:

(i) 〈Ai, Ai+1〉= 1 for i ∈ [n];

(ii) 〈Ai, Aj〉= 0 for i 6= j and {i, j} 6= {k, k + 1} for all k ∈ [n];

(iii)
∑n

i=1〈Ai, Ai〉= 12− 3n.

Clearly, for any given smooth complete toric surface X, the divisors D1, . . . , Dn form an
abstract toric system in Pic(X) with respect to the intersection form. We show that the data
specifying an abstract toric system is equivalent to defining a toric surface.

Proposition 2.7. Let P , 〈 , 〉 be as in Definition 2.6, A1, . . . , An an abstract toric system and
consider the Gale duals l1, . . . , ln in N := Zn/P of the Ai. Then N ∼= Z2 and the l1, . . . , ln
generate the fan of a smooth complete toric surface X with T -invariant irreducible divisors
D1, . . . , Dn such that D2

i = 〈Ai, Ai〉 for every 1 6 i6 n. In particular, we can identify P with
Pic(X) and 〈 , 〉 with the intersection form on Pic(X).

Proof. For n < 3 there is nothing to prove and for n= 3 the statement is easy to see. Hence we
assume without loss of generality that n> 4. We first show that {Aj | j 6= i, i+ 1} forms a basis of
Pic(X) for every i ∈ [n]. This implies that N ∼= Z2 and, by Gale duality, that the complementary
pairs of li are bases of N . Up to cyclic renumbering, it suffices to show that A1, . . . , An−2 is a
basis of Pic(X). We have 〈A1, A2〉= 1, 〈An, A1〉= 1 and 〈An, A2〉= 0. As 〈 , 〉 is integral, this
implies that A1, A2 generate a subgroup of rank two of P . This subgroup is saturated, i.e. every
element in P which can be represented by a rational linear combination of A1 and A2, can also be
represented by an integral linear combination of A1 and A2. We proceed by induction. Assume
that i < n− 2 and that A1, . . . , Ai are linearly independent and span a saturated subgroup
of rank i of P . For any linear combination B :=

∑i
j=1 αjAj , we have 〈B, Ai+2〉= 0. However,

〈Ai+1, Ai+2〉= 1 and therefore Ai+1 cannot be such a linear combination and thus is linearly
independent of A1, . . . , Ai. From integrality of the bilinear form it follows that A1, . . . , Ai+1

forms a saturated subgroup of P . Hence by induction A1, . . . , An−2 is a basis of P .

By Gale duality, we thus obtain a sequence of integral vectors l1, . . . , ln in N ∼= Z2, where
every pair li, li+1 with i ∈ [n] forms a basis of N . Consider the quotient P/A⊥i ∼= Z for any i. By
choosing an appropriate generator of P/A⊥i , we can identify the images of Ai−1 and Ai+1 with 1
and the image of Ai with ai. If we consider these elements as the Gale duals of li−1, li, li+1 alone,
we see that for every i we have a unique relation li−1 + aili + li+1 = 0 for ai = 〈Ai, Ai〉 ∈ Z.

It only remains to show that for every lk there do not exist li, li+1 and αi, αi+1 > 0 such that
lk = αili + αi+1li+1. As the li, li+1 form bases of N for every i, we see that the ordering (clockwise
or counterclockwise) of the li might result in several ‘windings’ until closing up with the final
pair ln, l1. Assume that we partition the li according to such windings, i.e. we group them to
W1 = {l1, . . . , lk1}, W2 = {lk1+1, . . . , lk2}, . . . , Wr = {lkr−1+1, . . . , lkr}, where kr = n. For every
two windings Wj , Wj+1, we get that there exist αj , αj+1 such that l1 = αjlkj + αj+1lkj+1

. We
now add additional rays: first, we add lj1 = l1 for every Wj ; second we add rays between lkj and
lj1 and between lj1 and lkj+1

such that any two neighbouring rays are lattice bases of N . This way,
we obtain a stack of r fans in N , each of which corresponds to a smooth toric surface. We denote
n′ the total number of rays after performing this process and a′i the new intersection numbers;
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then we get, by Propositions 2.2 and 2.3,∑
i

a′i =
∑
k

ak − 3(n′ − n) = 12r − 3n′⇒
∑
i

ai = 12r − 3n= 12− 3n,

so r = 1. 2

Hence we give the following definition.

Definition 2.8. Let A=A1, . . . , An be an abstract toric system, then we write Y (A) for the
associated toric surface.

As we have seen, toric systems provide an alternative way to describe toric surfaces. Assume
X is a toric surface, specified by lattice vectors l1, . . . , ln in N and D1, . . . , Dn the associated
torus invariant divisors, which form a toric system. Then an equivariant blow-down X →X ′ is
described by removing some li with li = li−1 + li+1. This induces an embedding of Pic(X ′) in
Pic(X) as a hyperplane such that Di ·D = 0 for all D ∈ Pic(X ′). This corresponds to removing
Di and projecting D1, . . . , D̂i, . . . Dn to Pic(X ′). More explicitly, for abstract toric systems this
can be formulated as follows.

Lemma 2.9. Let A1, . . . , An be an abstract toric system in P and i such that 〈Ai, Ai〉=
−1. Then A1, . . . , Ai−2, Ai−1 +Ai, Ai+1 +Ai, Ai+2, . . . An is a toric system as well which is
contained in the hyperplane A⊥i with intersection product 〈 , 〉|A⊥i .

Proof. Denote L := (l1, . . . , ln) the matrix whose columns are the li, L′ := (l1, . . . , l̂i, . . . , ln),
and consider A := (A1, . . . , An) as n-tuple of linear forms on P ∗. Then the statement is equivalent
to describing the map A′ with respect to in the following diagram,

0 // (P ′)∗
� _

��

A′ // Zn−1
� _

��

L′ // Z2 // 0

0 // P ∗
A // Zn L // Z2 // 0

which is a straightforward computation. 2

Hence we denote the following.

Definition 2.10. Let A1, . . . , An be an abstract toric system and i such that 〈Ai, Ai〉=−1.
Then we call A1, . . . , Ai−2, Ai−1 +Ai, Ai+1 +Ai, Ai+2, . . . , An its blow-down.

For a given abstract toric system A, the sum
∑

i Ai corresponds to the anti-canonical divisor
of Y = Y (A). A small computation shows that the Euler characteristics of the −Ai vanishes, as
expressed in the following lemma.

Lemma 2.11. Let A= {A1, . . . , An} be an abstract toric system, then for all i:

χY (A)(−Ai) = 1 +
1
2

(
〈Ai, Ai〉 −

〈∑
j

Aj , Ai

〉)
= 0.

Proof. We just note that 〈
∑

j Aj , Ai〉= 〈Ai−1, Ai〉+ 〈Ai, Ai〉+ 〈Ai+1, Ai〉= 2 + 〈Ai, Ai〉. 2

Note that in general for two given toric systems A and A′ the sums
∑n

i=1 Ai and
∑n

i=1 A
′
i do

not coincide. This can most trivially be seen in the case where A′ =−A. Any integral orthogonal
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transformation maps toric systems to toric systems and in general such transformations do not
leave

∑n
i=1 Ai invariant, as we show in the following example.

Example 2.12. As in the introduction, considerX to be a t-fold blow-up of P2 withH, R1, . . . , Rt
a basis of Pic(X). Denote

Ri = {E ∈ Pic(X) | χ(−E) = 0 and−KX · E = i}

for every i ∈ Z. It follows from the Riemann–Roch formula that E2 = i− 2 for every E ∈Ri

(compare Lemma 3.3 below). Now, for any i, s ∈ Z with (i− 2)s=−2, and any E ∈Ri we can
define a reflection rE on Pic(X) by setting

rE(D) = s(E ·D)E +D

for any D ∈ Pic(X). Such a reflection clearly respects the intersection product. However, by
definition, such a reflection preserves the anti-canonical divisor if and only if E ∈R0. If we take
the abstract toric system

R1 −R2, R2 −R3, . . . , Rt−1 −Rt, Rt, H −
t∑
i=1

Ri, H, H −R1

from the introduction and apply, say, rR1 to it, where R1 ∈R1, then we obtain

−R1 −R2, R2 −R3, . . . , Rt−1 −Rt, Rt, H +R1 −
t∑
i=2

Ri, H, H +R1.

These divisors add up to rR1(−KX) = 3H +R1 −
∑t

i=2 Ri =−KX + 2R1.

For constructing and analyzing abstract toric systems, we will need a weaker version.

Definition 2.13. Let P be a free Z-module of rank n− 2 together with a integral symmetric
bilinear form 〈 , 〉. A sequence of elements A1, . . . , Ar with r < n in P is called a short toric
system if it satisfies the following conditions:

(i) 〈Ai, Ai+1〉= 1 for 1 6 i < r and 〈A1, Ar〉= 1;

(ii) 〈Ai, Aj〉= 0 for i 6= j, {i, j} 6= {1, r}, and {i, j} 6= {k, k + 1} for all k ∈ [r − 1].

There are two natural ways for constructing short toric systems from abstract toric systems,
as shown in the following examples.

Example 2.14. Let A1, . . . , An be an abstract toric system, t > 1 and I1, . . . , It ⊂ [n] a partition
of [n] into cyclic intervals such that Ij ∪ Ij+1 (I1 ∪ It, respectively) form a cyclic interval for
every j. Let A′j =

∑
k∈Ij Ak, then A′1, . . . , A

′
t is a short toric system.

Example 2.15. Let X be a smooth complete rational surface and b :X ′→X a blow-up. If
A1, . . . , An is an abstract toric system in Pic(X) with respect to the intersection form, then
b∗A1, . . . , b

∗An is a short toric system in Pic(X ′).

3. Rational surfaces and toric systems

Let X be a smooth complete rational surface. From now on we fix n := rk Pic(X) + 2. Recall that
on a rational surface every invertible sheaf is exceptional. For any two divisors D, E on X, we
have natural isomorphisms ExtiOX (O(D),O(E))∼=H i(X,O(E −D)). Let E1, . . . , En ∈ Pic(X)
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such that O(E1), . . . ,O(En) form an exceptional sequence, then Hk(X,O(Ei − Ej)) = 0 for all
i > j and every k > 0. If, moreover, the sequence is strongly exceptional, we additionally get
Hk(X,O(Ei − Ej)) = 0 for all i, j and all k > 0. This leads to the following definition.

Definition 3.1. Let D ∈ Pic(X), then D is called:

(i) numerically left-orthogonal to OX if χ(−D) = 0;

(ii) left-orthogonal to OX if hi(−D) = 0 for all i; and

(iii) strongly left-orthogonal to OX if it is left-orthogonal to OX and hi(D) = 0 for all i > 0.

We will usually omit the reference to OX and simply say that D is, for example, left-
orthogonal. The strength of the above conditions is completely determined by h1-vanishing.

Lemma 3.2. Let D ∈ Pic(X) be numerically left-orthogonal. Then D is left-orthogonal if and
only if h1(−D) = 0. If −KX is effective, then D is strongly left-orthogonal if and only if
h1(−D) = h1(D) = 0.

Proof. By assumption χ(−D) = 0. Then clearly h1(−D) = 0 if and only if h0(−D) = h2(−D) = 0
if and only if D is left-orthogonal. It remains to show the ‘strongly’ part for h1(D) = 0. For this we
have to show that h2(D) = 0. By Serre duality, we have h2(D) = h0(KX −D). If h0(KX −D) 6= 0,
we get an inclusion h0(−KX)⊂ h0(−D), but this is impossible, because h0(−D) = 0 and −KX

is effective. 2

By Riemann–Roch we have χ(D) = 1 + 1
2(D2 −KX ·D) for any divisor D, by which we get

by symmetrization and anti-symmetrization:

χ(D) + χ(−D) = 2 +D2 and
χ(D)− χ(−D) =−KX ·D.

By numerical left-orthogonality we have χ(−D) = 1 + 1
2(D2 +KX ·D) = 0 (compare this also to

Lemma 2.11), which directly implies the following lemma.

Lemma 3.3. Let D, E ∈ Pic(X) be numerically left-orthogonal. Then we have the following.

(i) χ(D) =−KX ·D.

(ii) D2 = χ(D)− 2; in particular, if D is strongly left-orthogonal, then D2 = h0(D)− 2.

(iii) D + E is numerically left-orthogonal if and only if E ·D = 1 if and only if χ(D) + χ(E) =
χ(D + E). In particular, if D, E, E +D are strongly left-orthogonal, then h0(D + E) =
h0(D) + h0(E).

(iv) E −D is numerically left-orthogonal if and only if D · E = χ(D)− 1; in particular, if
D, E, E −D are strongly left-orthogonal, then h0(D) 6 h0(E) and D · E = h0(D)− 1.

Clearly, ifO(E1), . . .O(En) is a full exceptional sequence, then n= rkK0(X) = rk Pic(X) + 2
and all the differences Ej − Ei for i > j are left-orthogonal and in particular numerically
left-orthogonal. We set Ai := Ei+1 − Ei for 1 6 i < n and An :=−KX −

∑n−1
i=1 Ai. Then by

Lemma 3.3 we get:

(i) Ai ·Ai+1 = 1 for i ∈ [n];

(ii) Ai ·Aj = 0 for i 6= j and {i, j} 6= {k, k + 1} for some k ∈ [n];

(iii)
∑n

i=1 Ai =−KX .
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Therefore we get an abstract toric system from an exceptional sequence. Note that in general not
every abstract toric system can be of this form, as

∑n
i=1 Ai =−KX implies

∑n
i=1 A

2
i = 12− 3n,

but not vice versa, as Example 2.12 shows. However, with this stronger condition, we pass from
abstract toric systems to actual toric systems.

Definition 3.4. Let X a smooth complete rational surface. Then a toric system (on X) is an
abstract toric system A1, . . . , An ∈ Pic(X) such that

∑n
i=1 Ai =−KX .

Note that after passing from the E1, . . . , En to A=A1, . . . , An, the construction of the
toric surface Y (A) is entirely canonical. In particular, we conclude the following remarkable
observation.

Theorem 3.5. Let X be a smooth complete rational surface. Then to any full exceptional
sequence of invertible sheaves on X with associated toric systemA we can associate in a canonical
way a smooth complete toric surface Y (A) with torus invariant prime divisors D1, . . . , Dn such
that D2

i =A2
i for every i ∈ [n].

A toric system generates an infinite sequence of invertible sheaves

. . . ,O(−An),OX ,O(A1),O(A1 +A2), . . . ,O
(n−1∑
i=1

Ai

)
,O(−KX),O(−KX +A1), . . . .

If some subsequence of length n of this sequence is a strongly exceptional sequence, we will follow
the convention that the toric system is enumerated such that this sequence can be written as
OX , O(A1), O(A1 +A2), . . . , O(

∑n−1
i=1 Ai). In particular,

∑
i∈I Ai is strongly left-orthogonal for

every interval I ⊂ [n− 1]. In general we will assume nothing about the strong left-orthogonality
of An. If the toric system gives rise to a cyclic strongly exceptional sequence, then

∑
i∈I Ai is

strongly left-orthogonal for every cyclic interval I ⊂ [n].

Definition 3.6. We say that a toric system A1, . . . , An is (cyclic, strongly) exceptional if
the associated sequence of invertible sheaves OX , O(A1), . . . ,O(

∑n−1
i=1 Ai) generates a (cyclic,

strongly) exceptional sequence.

Note that a priori a toric system and the conditions on cohomology vanishing do not
completely determine the ordering of the Ai. In particular, if A1, . . . , An is a cyclic (strongly)
exceptional toric system, then so is An, . . . , A1. If A1, . . . , An is a (strongly) exceptional toric
system, then so is An−1, . . . , A1, An.

4. Left-orthogonal divisors on rational surfaces

Any smooth complete rational surface X can be obtained by a sequence of blow-ups X =Xt
bt−→

Xt−1
bt−1−→Xt−2

bt−2−→ · · · b1−→X0, where X0 is either P2 or some Hirzebruch surface Fa. If we fix
the sequence of morphisms bt, . . . , b1, we obtain a natural basis of Pic(X) with respect to this
sequence as follows. If X0 = P2, we denote as before H the hyperplane class of P2, and for
every bi, we denote Ri the class of the associated exceptional divisor in Pic(Xi). For simplicity,
we identify H and the Ri with their pullbacks in Pic(X). Every blow-up increases the rank of
the Picard group by one and the pullback yields an inclusion of Pic(Xi−1) into Pic(Xi) as a
hyperplane. Then Ri is an additional generator, which is orthogonal to Pic(Xi−1) with respect
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to the intersection product. We have the following relations:

H2 = 1, R2
i =−1, H ·Ri = 0 for all i, and Ri ·Rj = 0 for all i 6= j.

In particular, we have t= rk Pic(X)− 1. Hence, in the case where X is a blow-up of P2, we easily
get a basis of Pic(X) which diagonalizes the intersection product. In the case where X0 = Fa for
some a> 0, we start with a basis P, Q of Pic(Fa) as before, and by the same process, we obtain a
basis P, Q, R1, . . . , Rt of Pic(X), where t= rk Pic(X)− 2. Here, the most convenient choice for
our purpose is P, Q to be the integral generators of the nef cone in Pic(Fa)Q such that P 2 = 0
and Q2 = a. Hence we get

P 2 = 0, Q2 = a, P ·Q= 1, R2
i =−1,

P ·Ri =Q ·Ri = 0 for all i, and Ri ·Rj = 0 for all i 6= j.

Often our arguments below do not depend on the choice of X0, and for simplicity we will often
leave this choice implicit and assume that t= n− 3 or t= n− 4 as it fits.

Definition 4.1. Let D ∈ Pic(X), then we denote the projection of D to Pic(Xi) by (D)i.

The projection (D)i just is ‘forgetting’ the coordinates Rt, Rt−1, . . . , Ri+1, i.e. if D = αP +
βQ+

∑t
j=1 γjRj or D = βH +

∑t
j=1 γjRj , respectively, then (D)i = αP + βQ+

∑i
j=1 γjRj or

(D)i = βH +
∑i

j=1 γjRj , respectively.

By Lemma 3.2, left-orthogonality is determined by numerical left-orthogonality and h1-
vanishing. Our strategy to understand (strongly) left-orthogonal divisors will be to start with
h1-vanishing and then to establish numerical left-orthogonality. For this, we first need a couple
of lemmas related to h0- and h1-vanishing.

Lemma 4.2. Let E be an irreducible (−1)-divisor and X ′ the surface obtained from blowing
down E. If D is the pullback to X of some divisor on X ′, then for every k ∈ Z, we have
degO(D + kE)|E =−k.

Proof. For k ∈ Z consider the short exact sequence

0−→O(D + (k − 1)E)−→O(D + kE)−→OE(D + kE)−→ 0.

Then, for the Euler characteristics, we get χ(OE(D + kE)) = χ(D + kE)− χ(D + (k − 1)E) =
1− k, where the latter equality follows from Riemann–Roch andD · E = 0. HenceOE(D + kE)∼=
OE(−k) and the assertion follows. 2

We use this to investigate h0- and h1-vanishing. If a divisor has non-zero h1, then so has its
pullback under blow-up. For h0 and h2, we have the opposite picture.

Lemma 4.3. Let D and E be as in Lemma 4.2.

(i) If h0(D) = 0, then h0(D + kE) = 0 for all k ∈ Z.

(ii) If h1(D) 6= 0, then h1(D + kE) 6= 0 for all k ∈ Z.

(iii) If h2(D) = 0, then h2(D + kE) = 0 for all k ∈ Z.

Proof. For k = 0 there is nothing to prove. If k > 0, we do induction on k. Consider the short
exact sequence

0−→O(D + (k − 1)E)−→O(D + kE)−→OE(D + kE)−→ 0.
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By Lemma 4.2, we have degO(D + kE)|E =−k and therefore h0(O(D + kE)) = 0. Hence by the
long exact cohomology sequence we get h0(D + (k − 1)E) = h0(D + kE), h1(D + (k − 1)E) 6

h1(D + kE), and h2(D + (k − 1)E) > h2(D + kE). For property (i), we have by induction
assumption h0(D + (k − 1)E) = 0 and so h0(D + kE) = 0. For property (ii), we have by induc-
tion assumption h1(D + (k − 1)E)> 0 and so h1(D + kE)> 0. For property (iii), we have by
induction assumption h2(D + (k − 1)E) = 0 and so h2(D + kE) = 0.

For k < 0, we do induction from k + 1 to k. In this case, we consider the short exact sequence

0−→O(D + kE)−→O(D + (k + 1)E)−→OE(D + (k + 1)E)−→ 0.

Hence degO(D + (k + 1)E)|E =−k − 1 > 0 and therefore h1(O(D + (k + 1)E)) = 0. Then by
the long exact cohomology sequence, we get h0(D + kE) 6 h0(D + (k + 1)E), h1(D + kE) >
h1(D + (k + 1)E), and h2(D + kE) = h2(D + (k + 1)E). For property (i), we have by induction
assumption h0(D + (k + 1)E) = 0 and so h0(D + kE) = 0. For property (ii), we have by induc-
tion assumption h1(D + (k + 1)E)> 0 and so h1(D + kE)> 0. For property (iii), we have by
induction assumption h2(D + (k + 1)E) = 0 and so h2(D + kE) = 0. 2

Definition 4.4. Let D ∈ Pic(X) with (D)0 6= 0. Then we call D ∈ Pic(X) pre-left-orthogonal
with respect to X0 if and only if h0((−D)0) = h1(−D) = 0, and strongly pre-left-orthogonal if it
is pre-left-orthogonal and h1(D) = 0.

Note the little twist that for pre-left-orthogonality we do not just require h0-vanishing,
but instead have conditions on X0. This makes the following an immediate consequence of
Lemma 4.3.

Corollary 4.5. If D is pre-left-orthogonal, then so is (D)i for i= 1, . . . , t.

If D is a pre-left-orthogonal divisor on Xt−1, then in general D + γtRt will only be pre-
left-orthogonal for a few possible values of γt. The following lemma gives some sufficient
conditions.

Lemma 4.6. Let D ∈ Pic(X) and k > l > 0. If D − kRt is pre-left-orthogonal, then D − lRt is
also pre-left-orthogonal. If D − kRt is strongly pre-left-orthogonal, then so is D − lRt.

Proof. We do both cases by induction on l, starting with l = k. For l = k, there is nothing to show.
Also (D − kRt)0 = (D − lRt)0, so there is nothing to show for h0. Assume now that k > l > 0
and D − lRt is pre-left-orthogonal. We consider the short exact sequence

0−→O(−D + (l − 1)Rt)−→O(−D + lRt)−→ORt(−D + lRt)−→ 0.

By Lemma 4.2 we have degOE(−D + lRt) =−l < 0, and thus h0(ORt(−D + lRt)) = 0. Then
by the long exact cohomology sequence h1(−D + (l − 1)Rt) 6 h1(−D + lRt) = 0 and the first
assertion follows by induction. If D − lE is strongly pre-left-orthogonal, we consider the following
short exact sequence

0−→O(D − lRt)−→O(D − (l − 1)Rt)−→ORt(D − (l − 1)Rt)−→ 0.

Again, by Lemma 4.2 he have degORt(D − (l − 1)Rt) = l − 1 > 0 and therefore h1(ORt(D −
(l − 1)Rt)) = 0. Then by the long exact cohomology sequence, we have 0 = h1(D − lRt) >
h1(D − (l − 1)Rt) > 0 and the second assertion follows by induction. 2
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Now we classify (strongly) pre-left-orthogonal divisors on P2 and on the Fa. Denote H the
class of a line on P2. As the condition of h1-vanishing is vacuous for invertible sheaves on P2, we
trivially observe the following proposition.

Proposition 4.7. A divisor on P2 is (pre-)left-orthogonal if and only if it is strongly (pre-)
left-orthogonal. The pre-left-orthogonal divisors are given by kH, where k > 0, and the left-
orthogonal divisors are H, 2H.

For the case of a Hirzebruch surface Fa, we choose P, Q as before and the following statements
can be seen rather straightforwardly, for instance by using toric methods as in [HP06, Per07].

Proposition 4.8. The pre-left-orthogonal divisors on a Hirzebruch surface are:

(i) on F0: P + kQ, kP +Q for k ∈ Z, kP + lQ for k, l > 2;

(ii) on Fa, with a > 0: P , kP +Q for k ∈ Z, kP + lQ for k > 1− a and l > 2.

A pre-left-orthogonal divisor is strongly pre-left-orthogonal if and only if it is not of the type
P + kQ or kP +Q for k <−1 or of type kP + lQ for l > 2 and k <max{−1, 1− a}.

Proposition 4.9. Let Fa be a Hirzebruch surface.

(i) If a= 0, then the left-orthogonal divisors are given by P + kQ, kP +Q for k ∈ Z.

(ii) If a > 0, then the left-orthogonal divisors are given by P , kP +Q for k ∈ Z, and
(1− a)P + 2Q.

(iii) Left-orthogonal divisors of type kP +Q or P + kQ are strongly left-orthogonal if
and only if k >−1. Divisors of type (1− a)P + 2Q are strongly left-orthogonal if and only
if a6 2.

In coordinates chosen with respect to a minimal model X0, the anti-canonical divisor on X
can be written as

−KX = 3H −
t∑
i=1

Ri or

−KX = (2− a)P + 2Q−
t∑
i=1

Ri, respectively.

For X0 = P2 and some divisor D = βH +
∑t

i=1 γiRi, we get by Riemann–Roch the following
formulas for the Euler characteristics of D:

χ(D) =
(
β + 2

2

)
−
∑
i

(
γi
2

)
, (3)

χ(−D) =
(
β − 1

2

)
−
∑
i

(
γi + 1

2

)
, (4)

where we write
(
x
2

)
= 1

2x(x− 1) for any x ∈ Z. For X0 = Fa and D = αP + βQ+
∑t

i=1 γiRi, we
get

χ(D) = (α+ 1)(β + 1) + a

(
β + 1

2

)
−
∑
i

(
γi
2

)
, (5)

χ(−D) = (α− 1)(β − 1) + a

(
β

2

)
−
∑
i

(
γi + 1

2

)
. (6)
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If χ(−D) = 0, we obtain linear equations for χ(D) =−KXD in either coordinates:

χ(D) = 3β +
∑
i

γi,

χ(D) = 2α+ (2 + a)β +
∑
i

γi.

We now look at the case where (D)0 = 0. In this case, we have to take into account the
relative configuration of Ri and Rj .

Definition 4.10. Assume i, j > 0 and denote by xj and xi the points on Xj−1 and Xi−1,
respectively, which are blown up by the maps bj and bi. We define a partial order > on the set
{R1, . . . , Rt} by setting Ri >Ri for every i and Rj >Ri if j > i and bi ◦ · · · ◦ bj−1(xj) = xi.

Now we get the following proposition.

Proposition 4.11. Let D ∈ Pic(X) such that (D)0 = 0. Then D is left-orthogonal if there exists
i ∈ [t] and S ⊂ [t]\{i} such that D =Ri −

∑
j∈S Rj and Ri 6>Rj for all j ∈ S. Moreover, D is

strongly left-orthogonal if and only if it is of the form Ri for some i ∈ [t] or of the form Ri −Rj
such that Ri and Rj are incomparable with respect to the partial order >.

Proof. Note that for (D)0 = 0, by Lemma 4.3(iii), we can always assume that h2(D) = h2(−D) =
0. Let D =

∑
i γiRi, then χ(−D) = 0 by formula (4) or (6) yields∑

j

(
γj + 1

2

)
= 1.

However, then there is precisely one i ∈ [t] with γi ∈ {1,−2} and γj ∈ {0,−1} for all other j. If
γi =−2, we consider Ri as irreducible divisor on Xi and we consider the following part of a long
exact cohomology sequence:

H1

(
Xi,OXi

(∑
j∈S

Rj

))
−→ H1

(
Xi,OXi

(
2Ri +

∑
j∈S

Rj

))

−→ H1

(
Xi,O2Ri

(
2Ri +

∑
j∈S

Rj

))
−→ 0

for some S ⊂ [i]. As χ(
∑

j∈S Rj) = 1 = h0(
∑

j∈S Rj), we get h1(OXi(
∑

j∈S Rj)) = 0 and thus
h1(OXi(2Ri +

∑
j∈S Rj)) = h1(O2Ri(2Ri +

∑
j∈S Rj)). By Lemma 4.3 we can assume without

loss of generality that i> j for all j ∈ S. Then we get O2Ri(2Ri +
∑

j∈S Rj)∼=O2Ri(2Ri) and
we compute χ(O2Ri(2Ri)) = χ(O(2Ri))− 1 =−1 and thus h1(OX0(2Ri +

∑
j∈S Rj)) 6= 0.

Hence we are left with divisors of the form Ri −
∑

j∈S Rj for some S ⊂ [t].
By Serre duality, we have h2(−Ri +

∑
j∈S Rj) = h0(KX +Ri −

∑
j∈S Rj) 6 h0((KX +Ri −∑

j∈S Rj)0) = h0((KX)0) = 0. If there exists k ∈ S such that Ri >Rk, then Rk −Ri is effective,
and −Ri +

∑
j∈S Rj is a sum of effective divisors and therefore h0(−Ri +

∑
j∈S Rj) 6= 0. If

there exists k ∈ S such that Ri and Rk are incomparable, then we may assume that this k
is minimal with respect to >. Then h0(Rk −Ri) = 0, and by Lemma 4.3 we can conclude that
h0(−Ri +

∑
j∈S Rj) = 0. The remaining possibility is that Rj >Ri for all j ∈ S. In that case,

denote Ei the strict transform on X of the exceptional divisor of the blow-up bi. Then there
exists Ti ⊂ [t] such that Ei is rationally equivalent to Ri −

∑
j∈Ti Rj . Then −Ri +

∑
j∈S Rj

is rationally equivalent to
∑

j∈S\Ti Rj −
∑

j∈Ti\S Rj − Ei. If any of S\Ti or Ti\S are empty,
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we have h0(−Ri +
∑

j∈S Rj) = 0. Otherwise, if any Rk, Rl with k ∈ S\Ti and l ∈ Ti\S are
incomparable, then h0(Rk −Rl) = h0(−Ri +

∑
j∈S Rj) = 0. If not, we choose k ∈ Ti\S. Then

there exists Tk ⊂ [t] such that Ek =Rk −
∑

l∈Tk Rl and we iterate our previous argument until
we get the difference of two incomparable Rj or we can write −Ri +

∑
j∈S Rj as the inverse of

an effective divisor.
Hence, unless there exists j ∈ S with Ri >Rj , we can now conclude together with χ(−Ri +∑
j∈S Rj) = 0 that hi(−Ri +

∑
j∈S Rj) = 0 for all i. This shows the first assertion. For strong

left-orthogonality, we necessarily need χ(Ri −
∑

j∈S Rj) > 0, which is the case if and only if S
is empty or S = {j} for some j 6= i. A divisor Ri always is strongly left-orthogonal. For Ri −Rj
we have χ(Ri −Rj) = 0, and h1(Ri −Rj) = 0 is equivalent to h0(Ri −Rj) = 0. However, this is
in turn is equivalent to incomparability of Ri and Rj . 2

For (D)0 6= 0, we have the following statement.

Proposition 4.12. If D = (D)0 +
∑

i γiRi is left-orthogonal and (D)0 is pre-left-orthogonal,
then γi 6 0 for all i.

Proof. Assume χ(−D) = 0 and γk > 0 for some k, then χ(−D + γkRk) =
(
γk+1

2

)
> 0. As

h0((−D)0) = 0, we also have h0(−D + γkRk) = 0. Therefore we have χ(−D + γkRk) = h2(−D +
γkRk)− h1(−D + γkRk)> 0, hence h2(−D + γkRk)> 0. However, by Serre duality, h2(−D) =
h0(KX +D) > h0(KX +D − γkRk) = h2(−D + γkRk)> 0, which is a contradiction to the left-
orthogonality of D, and the assertion follows. 2

Remark 4.13. Note that in the case where D is strongly left-orthogonal but (D)0 is not strongly
pre-left-orthogonal, this implies that h0((D)0) = 0 and therefore h0(D) = 0. However, then −D
is left-orthogonal, too, and (−D)0 is strongly pre-left-orthogonal.

We now consider some special cases concerning Proposition 4.12.

Lemma 4.14. Let X be a smooth complete rational surface, D a very ample and strongly
left-orthogonal divisor on X. Consider a blow-up b : X̃ →X in four points x1, x2, x3, x4, where
x1 and x2 are on X and x3 and x4 are infinitesimal points lying over x1 and x2, respectively.
Denote R1, . . . , R4 the pullbacks of the exceptional divisors of b to Pic(X̃), then the divisors
D −Ri and D −Ri −Rj with i 6= j are strongly left-orthogonal on X̃.

Proof. It follows directly from our previous discussions that the divisors D −Ri and D −
Ri −Rj are left-orthogonal. It remains to show that h1(D −Ri) = h1(D −Ri −Rj) = 0. By
Lemma 3.3(iii) we know χ(D −Ri) = χ(D)− 1 and χ(D −Ri −Rj) = χ(D)− 2. Hence it suffices
to show that h0(D −Ri −Rj)< h0(D −Ri)< h0(D) for any i 6= j. However, this is an immediate
consequence of [Har77, V.4, Remark 4.0.2] and preceding remarks. 2

5. Exceptional sequences of invertible sheaves on rational surfaces

We first show that cyclicity for exceptional sequences of sheaves is no additional condition.

Proposition 5.1. Let X be a d-dimensional smooth complete variety. Then every exceptional
sequence of sheaves on X is cyclic.

Proof. Let E1, . . . , En be an exceptional sequences of sheaves on X, i.e. the Ei are exceptional
and ExtkOX (Ei, Ej) = 0 for all i > j. Because Extk(F ⊗ L, G ⊗ L)∼= Extk(F , G) for every k, any
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two coherent sheaves F , G, and any invertible sheaf L, it suffices to check that Extk(Ei ⊗
O(−KX), Ej) = 0 for every i < j and every k. However, this follows form Serre duality, as
Extk(Ei ⊗O(−KX), Ej)∼= Extd−k(Ej , Ei)∗ = 0 for every k and every i < j. 2

On P2, there is a unique toric system which gives rise to a cyclic strongly exceptional sequence,
but, as we will see for the case of Hirzebruch surfaces, Proposition 5.1 does not hold for strongly
exceptional sequences in general. Recall that P, Q are generators of the nef cone of the Hirzebruch
surface Fa, where P 2 = 0, Q2 = a, and P ·Q= 1.

Proposition 5.2. On a Hirzebruch surface Fa there are the following toric systems:

(i) P, sP +Q, P,−(a+ s)P +Q for s ∈ Z for any a;

(ii) −(a/2)P +Q, P + s(−(a/2)P +Q),−(a/2)P +Q, P − s(−(a/2)P +Q) for s ∈ Z and a
even.

Toric systems of type (i) are always exceptional. They are strongly exceptional for s>−1, where
A4 =−(a+ s)P +Q. They are cyclic strongly exceptional if and only if s>−1 and a+ s6 1.

Toric systems of type (ii) are almost never exceptional. The exceptions are for a= 0, where
type (ii) is symmetric to type (i) by exchanging P and Q, and for a= 2 and s= 0, which then
coincides with a toric system of type (i) and is cyclic strongly exceptional.

Proof. Any toric system must represent a Hirzebruch surface. Therefore, for any toric system
A1, A2, A3, A4 we can assume that A2

1 =A2
3 = 0 and A2

2 =−A2
4 =−b for some b ∈ Z. Hence for a

general element αP + βQ with α, β ∈ Z, the equations (αP + βQ)2 = 0 and χ(−αP − βQ) = 0
have always the solution α= 1, β = 0. If a is even, we get a second solution, α=−(a/2) and β = 1.
The condition A1 ·A3 = 0 can only be fulfilled if A1 =A3 = P , or if A1 =A3 =−(a/2)P +Q.

In the first case, using A1 ·A2 =A1 ·A4 = 1 and A2 ·A4 = 0, we get that A2 = sP +Q and
A4 =−(a+ s)P +Q for some s ∈ Z which indeed form a toric system for every s ∈ Z.

In the second case with a even, we similarly compute that A2 = P + s(−a/2P +Q) and
A4 = P − s(−(a/2)P +Q) for some s ∈ Z.

The classification of exceptional sequences (cyclic or strong) among these follows by inspection
of the classification of (strongly) left-orthogonal divisors of Proposition 4.9. 2

Remark 5.3. From Proposition 5.2 follows that for a toric system A on a Hirzebruch surface Fa,
the associated Hirzebruch surface Y (A) is isomorphic to some Fb such that b− a is even.

As in the previous section, we assume that a sequence of blowups X =Xt −→ · · · −→X0

is fixed, where X0 is P2 or some Fa, together with a corresponding basis of Pic(X), either
H, R1, . . . , Rt if X0

∼= P2, or P, Q, R1, . . . , Rt if X0
∼= Fa. Any toric system A=A1, . . . , An−t+i

on some Xi pulls back to a short toric system on X in the sense of Definition 2.13 (see
Example 2.15). Such a short toric system can easily be extended to a toric system by using
the Ri+1, . . . , Rt as follows. For any i+ 1 6 j1 6 t we denote A1 the sequence

A1, . . . , As−1, As −Rj1 , Rj1 , As+1 −Rj1 , As+2, . . . , An−t+i,

which augments A at some position s. Note that this augmentation is understood in the cyclic
sense, i.e. we do not exclude s= n− t+ i. If i= t− 1, then this sequence is a toric system on X;
otherwise, it is again a short toric system. Inductively, for 1< k < t− i we can in the same way
augment Ak−1 to a short toric system Ak by some Rjk for jk ∈ {i+ 1, . . . , t}\{jl | 1 6 l < k} and
finally we arrive at a toric system At−i. Of course, At−i also depends on the positions at which
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the Ak have been augmented. A toric system obtained this way in general cannot be interpreted
as successive augmentation via pullbacks from the Xj with i < j < t as we have not imposed any
condition on the ordering of the jk. We will see below that the interesting augmentations which
are obtained this way are precisely those which are augmentations via pullbacks.

Definition 5.4. (i) Let X =Xt −→ · · · −→X0 be a sequence of blow-ups and A=
A1, . . . , An−t+i the pullback of a toric system on some Xi to X as in the preceding discussion.
We call a toric system At−i =A′1, . . . , A

′
n on X an augmentation of A1, . . . , An−t+i if it can be

obtained by successively inserting Ri+1, . . . , Rt in the way as described above.

(ii) We call an exceptional toric system on P2 or Fa a standard toric system.

(iii) For a general smooth complete rational surface X, we call a toric system which is the
augmentation of a standard toric system a standard augmentation.

(iv) A standard augmentation is admissible if it contains no element of the form Ri −
∑

j∈S Rj
such that Rj 6Ri for some j ∈ S.

Note that the condition of admissibility is precisely the condition of Proposition 4.11 on
left-orthogonality of divisors of the form Ri −

∑
j∈S Rj . This condition implies that a standard

augmentation is admissible if and only if there exists a bijection j : [t]→ [t], k 7→ jk such that
Rk >Rl if and only if Rjk >Rjl . Then we can rearrange the ordering of the blow-ups accordingly
such that X =Xjt → · · · →Xj1 →X0 and the augmentation then can be considered as an
successive augmentation along these blow-ups. The following proposition shows that this way we
get many exceptional sequences in the form of standard augmentations.

Proposition 5.5. Every standard augmentation yields a full exceptional sequence on X if and
only if it is admissible.

Proof. Let A=A1, . . . , An be the augmented sequence. If X0 = P2, we can renumber this
sequence such that An is of the form H −

∑
i∈S Ri for some subset S of [t]. We claim

that A=A1, . . . , An−1 yield an exceptional sequence if and only if it is admissible. That is,
every AI :=

∑
i∈I Ai for some non-cyclic interval I ⊂ [n− 1] is left-orthogonal if and only if

A is admissible. Clearly, every such AI is numerically left-orthogonal. We have two cases.
First, lH −

∑
i∈T Ri with T ⊂ [t] and l ∈ {1, 2}. By Serre duality we get h2(−lH +

∑
i∈T Ri) =

h0(−(3− l)H +
∑

i/∈T Ri) = 0 and thus lH −
∑

i∈T Ri is left-orthogonal (without any condition
on admissibility). Second, we have AI =Ri −

∑
i∈T Ri with T ⊂ [t], which is left-orthogonal by

Proposition 4.11 if and only if Rj 66Ri for all j ∈ T . In particular, all AI are of this form if and
only if A is admissible.

If X0 = Fa, we can renumber the sequence such that An is of the form Q− (a+ n)P −∑
i∈S Ri for some subset S of [t]. Then for AI we have three cases. First, P −

∑
i∈T Ri with

T ⊂ [T ]. By Serre duality we get h2(−P +
∑

i∈T Ri) = h0(−2Q− (1− a)P −
∑

i/∈T Ri) = 0 and
so P −

∑
i∈T Ri is left-orthogonal. Second, we have Q+ nP −

∑
i∈T Ri with T ⊂ [T ] and n ∈ Z.

Again, by Serre duality, we get h2(−Q− nP +
∑

i∈T Ri) = h0(−Q− (2− n− a)P −
∑

i/∈T Ri) =
0 and thus Q+ nP −

∑
i∈T Ri is left-orthogonal. Third, we have AI =Ri −

∑
i∈T Ri with T ⊂ [t],

which is left-orthogonal by Proposition 4.11 if and only if Rj 66Ri for all j ∈ T . In particular, all
AI are of this form if and only if A is admissible.

We have seen now that a standard augmentation is admissible if and only if all AI are
left-orthogonal. It follows directly from the results of [Orl93] that standard augmentations are
full. 2
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Hence, by observing that we can lift any standard sequence on some X0 to an admissible
standard augmentation on X, the following is an immediate consequence of Proposition 5.5.

Theorem 5.6. Every smooth complete rational surface has a full exceptional sequence of
invertible sheaves.

Let us denote bi :Xi −→Xi−1 the ith blow-up in the sequence X =Xt→ · · · →X0. We
assume that bi can be partitioned into two sets S1 := {b1, . . . , bs} and S2 := {bs+1, . . . bt} for
1< s6 t such that the bi within Sl for l ∈ {1, 2} commute. In other words, we assume that X
can be obtained from P2 or Fa by two times simultaneously blowing up (possibly) several points.

Theorem 5.7. With above assumptions on X and X0 = P2, the following is a full strongly
exceptional toric system.

Rs, Rs−1 −Rs, . . . , R1 −R2, H −R1, H −Rs+1, Rs+1 −Rs+2, . . . , Rt−1 −Rt, Rt, H −
t∑
i=1

Ri.

Proof. We have to check that
∑

i∈I Ai is strongly left-orthogonal for every interval I ⊂ [n− 1].
Here we have A1 =Rs and An =H −

∑t
i=1 Ri. There are precisely four types of divisors which

can be represented in this way, namely Ri, Ri −Rj for Ri, Rj incomparable, H, 2H, H −Ri
and 2H −Ri −Rj for i 6= j. The divisors H, 2H are clearly strongly left-orthogonal. The
left-orthogonality of Ri and Ri −Rj follows from Proposition 4.11, the left-orthogonality of
H −Ri and 2H −Ri −Rj from Lemma 4.14. The toric system clearly is an admissible standard
augmentation and so from Proposition 5.5 it follows that the resulting exceptional sequence is
full. 2

Analogously, we get the following.

Theorem 5.8. With above assumptions on X and X0 = Fa for some a> 0 and n>−1, the
following is a full strongly exceptional toric system:

Rs, Rs−1 −Rs, . . . , R1 −R2, P −R1, nP +Q, P −Rs+1, Rs+1 −Rs+2, . . . ,

Rt−1 −Rt, Rt,−(a+ n)P +Q−
t∑
i=1

Ri.

Proof. Here,
∑

i∈I Ai is of the form Ri, Ri −Rj for Ri, Rj incomparable, P , nP +Q with n>−1,
P −Ri, nP +Q−Ri for n> 0, and nP +Q−Ri −Rj for n> 1. The divisors P , nP +Q clearly
are strongly left-orthogonal (see Proposition 4.9). The left-orthogonality of Ri and Ri −Rj
follows from Proposition 4.11, the left-orthogonality of nP +Q−Ri and nP +Q−Ri −Rj
from Lemma 4.14. The cases P −Ri and Q−Ri are clear because P and Q are globally
generated. Also, the toric system is an admissible augmentation of a standard sequence and
so from Proposition 5.5 it follows that the resulting exceptional sequence is full. 2

The following theorem is an immediate consequence of Theorem 5.8.

Theorem 5.9. Any smooth complete rational surface which can be obtained by blowing up
a Hirzebruch surface two times (in possibly several points in each step) has a full strongly
exceptional sequence of invertible sheaves.

Remark 5.10. Note that for the existence of strongly exceptional sequences it suffices to consider
X0 = Fa for some a> 0, as every blow-up of P2 factorizes through a blow-up of F1. Nevertheless,
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as we will see later on, for cyclic strongly exceptional sequences it will be advantageous also to
consider augmentations coming from P2.

The converse of Theorem 5.9 is true for strongly exceptional sequences coming from standard
augmentations.

Theorem 5.11. Let P2 6=X be a smooth complete rational surface which admits a full strongly
exceptional standard augmentation then X can be obtained by blowing up a Hirzebruch surface
two times (in possibly several points in each step).

We prove this theorem in § 6.

Remark 5.12. We will see in Theorem 8.1 that in the toric case every full strongly exceptional
sequence of invertible sheaves is equivalent to a strongly exceptional standard augmentation
which implies (Theorem 8.2) that a toric surface different from P2 admits such a sequence if and
only if it can be obtained by blowing up a Hirzebruch surface at most two times. Hence, in a
sense, the existence of a full strongly exceptional sequence of invertible sheaves can be considered
as a geometric characterization of a surface. Presumably, Theorem 8.1 should generalize to all
rational surfaces, but at present it is not clear to us whether the procedure of §§ 7 to 10 can be
generalized in an effective way.

The following theorem gives a strong constraint on the existence of cyclic strongly exceptional
sequences of invertible sheaves on rational surfaces in general.

Theorem 5.13. Let X be a smooth complete rational surface on which a full cyclic strongly
exceptional sequence of invertible sheaves exists. Then rk Pic(X) 6 7.

Proof. LetA=A1, . . . , An be the associated toric system. As every Ai is strongly left-orthogonal,
it follows that χ(Ai) > 0 for every i. Therefore by Proposition 2.5 the anti-canonical bundle of
the associated toric surface Y (A) must be nef. From the classification of such toric surfaces (see
Table 1) it follows that rk Pic(X) = rk Pic(Y (A)) 6 7. 2

In particular, Theorem 5.13 implies that not even every del Pezzo surface has a cyclic strongly
exceptional sequence of invertible sheaves. However, if rk Pic(X) 6 7, we have the following
positive result.

Theorem 5.14. Let X be a del Pezzo surface with rk Pic(X) 6 7, then there exists a full cyclic
strongly exceptional sequence of invertible sheaves on X.

Proof. Recall that a del Pezzo surface is either P1 × P1 or a blow-up of P2 in at most eight
points (see [Dem80]). The case P1 × P1 is clear from Proposition 5.2. For the other cases, by our
assumptions it suffices to assume that X is a blow-up of P2 in at most six points x1, . . . , x6.
Moreover, it suffices to only consider the maximal case, i.e. rk Pic(X) = 7 and the cases of smaller
rank will follow immediately. We first give an example for a cyclic exceptional toric system
and then show that it is cyclic strongly exceptional. We fix a blow-down X → P2 and denote
R1, . . . , R6 the exceptional divisors and H the class of a line on P2. Then by Proposition 5.5 the
following is a full cyclic exceptional sequence:

H −R1 −R2 −R5, R2, R1 −R2, H −R1 −R3 −R4,

R4, R3 −R4, H −R3 −R5 −R6, R6, R5 −R6.
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To show that a toric system A1, . . . , A6 is cyclic strongly exceptional, we have to show that
for every cyclic interval I ⊂ [6] the sum AI :=

∑
i∈I Ai is strongly left-orthogonal. There are

several possible cases what AI can be. First, if AI =Ri for some i ∈ [6] or AI =Ri −Rj for
some i 6= j ∈ [6], strong left-orthogonality follows from Proposition 4.11. The next cases are of
the form H −Ri, H −Ri −Rj and H −Ri −Rj −Rk, respectively, where i, j, k are pairwise
distinct. Analogous to the arguments in the proof of 4.14, we have to discuss the existence of
base points. As H is very ample, its associated complete linear system does not have base points.
Hence h0(H −Ri)< h0(H), and we conclude as in the proof of 4.14 that H −Ri is strongly left-
orthogonal. For any two xi, xj , we can find a line on P2 which does pass through xi but not
through xj . Hence, the linear system |H −Ri| is base-point free and H −Ri −Rj is strongly
left-orthogonal for any i 6= j. The divisor H −Ri −Rj is not base-point free. Its base points lie
on the line connecting xi and xj . However, as X is del Pezzo, none of the other xk lie on this
line. Hence we have h0(H −Ri −Rj −Rk)< h0(H −Ri −Rj) and thus H −Ri −Rj −Rk is
strongly left-orthogonal. Similarly, using [Har77, V.4, Corollary 4.2], we see that 2H −

∑
i∈S Ri

is strongly left-orthogonal for any S ( [6]. The next cases are of the form 3H −
∑

i∈S Ri,
where S ⊆ [6] and |S|> 4. As |S|< 7, it follows from [Har77, V.4, Proposition 4.3], that these
are strongly left-orthogonal, too. The remaining cases are of the form 3H − 2Ri −

∑
k 6=i,j Rk

with i 6= j ∈ [6]. By [Har77, V.4, Proposition 4.3], 3H −
∑

k 6=j Rk has no base points, therefore
h0(3H − 2Ri −

∑
k 6=i,j Rk)< h0(3H −

∑
k 6=j Rk) and 3H − 2Ri −

∑
k 6=i,j Rk is strongly left-

orthogonal. 2

Remark 5.15. Note that for a del Pezzo surface X with rk Pic(X) 6 7 the toric system of the
type as given in the proof of Theorem 5.14 in general is not the only possibility. It is an exercise
to write down all possible admissible standard augmentations for X0 = P2 and to check the
conditions whether the resulting toric system is cyclic and strong. For example, for X del Pezzo,
the strongly exceptional toric systems as given in Theorem 5.7 are cyclic if and only if t6 3.
Moreover, it follows from the proof of Theorem 5.14 that the conditions on X can be weakened
in general. Though the toric system given in the proof does require that no three points are
collinear, it admits a configuration of six points lying on a conic and certain configurations of
infinitely near points. We will see in Theorems 8.5 and 8.6 that at least in the toric case the
existence of such sequences is equivalent to −KX nef.

We conclude this section with some more technical properties of strongly exceptional
sequences. As before, we assume that a sequence of blow-downs to a minimal surface X0 is
chosen. First we consider parts of a toric system which are ‘vertical’ with respect to X0.

Lemma 5.16. Let A1, . . . , Ak ∈ Pic(X) such that Ai ·Ai+1 = 1 for 1 6 i < k and Ai ·Aj = 0 else
such that AI :=

∑
i∈I Ai is strongly left-orthogonal and (AI)0 = 0 for every interval I ⊂ [k]. Then

this system is, up to reversing the order of the Ai, of one of the following shapes:

(i) A1 =Ri1 −Ri2 , A2 =Ri2 −Ri3 , . . . , Ak =Rik −Rik+1
;

(ii) A1 =Ri1 −Ri2 , A2 =Ri2 −Ri3 , . . . , Ak−1 =Rik−1
−Rik , Ak =Rik ,

where the Ril are pairwise incomparable.

Proof. By Proposition 4.11 every AI must be of the formRi orRi −Rj for some i, j ∈ [t] such that
Ri and Rj are incomparable. Moreover, (Rip −Riq) · (Ris −Rit) = 1 if and only if either q = s and
p 6= t or q 6= s and p= t. Moreover, (Rip −Riq) · (Ris −Rit) = 0 if and only if {p, q} ∩ {s, t}= ∅.
This readily implies that the sequence A1, . . . , Ak must be of one of the above forms. 2
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For the parts of a toric system which are not vertical to Pic(X0), we would like
to have a normal form. Let O(E1), . . . ,O(En) be a strongly exceptional sequence and
A1, . . . , An its associated toric system. One of the requirements is that Hom(O(Ei),O(Ej)) =
H0(X,O(−

∑i−1
k=j Ai)) = 0 for i > j. Hence, clearly, for any 1 6 i < n with χ(Ai) = 0, we can

exchange Ei and Ei+1 such that O(E1), . . . ,O(Ei+1), O(Ei), . . . , O(En) also forms a strongly
exceptional sequence. The toric system then becomes:

A1, . . . , Ai−2, Ai−1 +Ai,−Ai, Ai+1 +Ai, Ai+2, . . . , An.

We introduce the following notion with this operation in mind.

Definition 5.17. Let A=A1, . . . , An be a toric system. If A gives rise to a (cyclic) strongly
exceptional sequence, we say that A is in normal form with respect to X0 if (Ai)0 is either zero
or strongly pre-left-orthogonal for every 1 6 i < n (for every 1 6 i6 n, respectively).

Assume that A gives rise to a strongly exceptional sequence and is not in normal form,
i.e. there exists some Ai with 1 6 i < n such that (Ai)0 is non-trivial and not strongly pre-
left-orthogonal. This implies that χ(Ai) = h0(Ai) = 0 and there are no homomorphisms between
O(Di−1) and O(Di). In fact, there exists a maximal interval I ⊂ [n− 1] containing i such that
Hom(O(Dk),O(Dl)) = 0 for every k, l ∈ I. Clearly, any reordering of the Dk with k ∈ I is a
strongly exceptional sequence, too. We are going to show that every strongly exceptional sequence
comes, up to such reordering, from a toric system in normal form.

Proposition 5.18. Let X be a smooth complete rational surface and X0 a minimal model for
X. Then any (cyclic) strongly exceptional sequence of invertible sheaves on X can be reordered
such that the associated toric system is in normal form with respect to X0.

Proof. Let O(E1), . . . ,O(En) be a strongly exceptional sequence and A=A1, . . . , An its
associated toric system. As remarked above, for any interval [k, . . . , l + 1]⊂ [n] such that
χ(Ai) = 0 for every k 6 i6 l, we can exchange the positions of any two O(Ei), O(Ej) with
i, j ∈ I. In particular, if we want to move O(El+1) to the leftmost position, it is easy to see that
the toric system becomes

. . . , Ak−1,

l∑
i=k

Ai,−
l∑

i=k+1

Ai, Ak+1, . . . , Al−1, Al +Al+1, Al+2, . . . .

Let 1 6 l < n be minimal such that (Al)0 is non-trivial and not strongly pre-left-orthogonal. Then
exchanging O(El+1) with O(El) changes the toric system to . . . , Ai−2, Ai−1 +Ai,−Ai, Ai+1 +
Ai, Ai+2, . . . such that (−Al)0 is strongly pre-left-orthogonal. Now possibly (Ai−1 +Ai)0 is no
longer strongly pre-left-orthogonal. In this case we iterate moving O(El+1) to the left. This
process eventually stops, because of one of two reasons. First, O(El+1) ends up at the most
left position and we are getting −

∑l
i=1 Ai, A1, . . . , Al−1, Al +Al+1, Al+2, . . . , An +

∑l
i=1 Ai.

Second, O(El+1) is at (k + 1)th position, but (
∑l

i=k Ai)0 is strongly pre-left-orthogonal.
Consequently, after movingO(El+1), the smallest 1 6 l′ < n such that (Al′)0 is non-trivial and not
strongly pre-left-orthogonal is strictly bigger than l. Hence, by iterating this exchange process,
we end up with a toric system in normal form.

If O(E1), . . . ,O(En) is a cyclic strongly exceptional sequence, we are free to cyclically change
the enumeration of the Ai. In particular, from the general classification of toric surfaces, it follows
that there cannot be a cyclic interval I ⊂ [n] of length bigger than n− 3 such that h0(Ai) = 0
for every i ∈ I. Moreover, if A is not in normal form, we can choose the enumeration of the Ai
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the way that, if (Al)0 is non-trivial and not strongly pre-left-orthogonal, then h0(A1)> 0 and we
choose l < k < n minimal such that h0(Ak)> 0. This implies that (

∑p
i=1 Ai)0 and (

∑k
i=q Ai)0 are

strongly pre-left-orthogonal for every 1 6 p < k and every 1< q 6 k. Hence the part A1, . . . , Ak
is in normal form. We iterate this and eventually all of A will be in normal form. 2

6. Proof of Theorem 5.11

Assume first that X0 = P2 and A0 =H, H, H. If we blow up X1→X0, then there is, up to cyclic
change of enumeration, only one possible augmentation A1 =H −R1, R1, H −R1, H. However,
X1 is isomorphic to F1 and if we choose the usual generators P , Q of the nef cone of X1 as a
basis of Pic(X1), we get P =H −R1, Q=H. In these coordinates we have A1 = P, Q− P, P, Q,
which is the unique cyclic strongly exceptional standard toric system on F1. Hence, to prove
the theorem it suffices to consider standard toric systems coming from Hirzebruch surfaces
according to the classification of Proposition 5.2. We assume that X is obtained by a sequence
of blow-ups X =Xt→ · · · →X0 of a Hirzebruch surface X0

∼= Fa and denote P, Q, R1, . . . , Rt
the corresponding basis of Pic(X).

For any divisor D we denote bs(D) the base locus of the complete linear system |D|. Note
that for any effective divisor D the condition χ(−D) = 0 is equivalent to the arithmetic genus
of D being zero. It is straightforward to check that in this case the underlying reduced divisor
Dred also has arithmetic genus zero. Hence, because h0(Ri) = 1 for every i, the divisor class Ri
is represented by a unique, possibly non-reduced, effective divisor of arithmetic genus zero and
bs(Ri) coincides with the support of this divisor whose arithmetic genus is also zero. The image
of bs(Ri) in X0 is contained in some fiber of the ruling Fa→ P1 which we denote by fi and which
represents the divisor class P .

For any Ri we denote Ei the strict transform on X of the corresponding exceptional divisor
on Xi. By abuse of notation we also use Ei for the strict transforms on the Xj with j > i. Any
effective divisor D whose support contains Ei can be written D =D′ + niEi where D′ is effective
and does not have any component with support Ei. We call ni the multiplicity of Ei with respect
to D. By abuse of notion we will also sometimes call ni the multiplicity of Ri.

We recall that the Ri form a partially ordered set. The maximal elements have the property
that E2

i =−1. Any maximal chain of Ri contains precisely one maximal element. All maximal
elements are incomparable and can be blown down simultaneously. In the nicest cases we will see
that the maximal length of maximal chains will be at most two and that X can be blown down
to X0 in two steps. However, the most part of our analysis in this section will be concerned with
the cases where there exist maximal chains of bigger length. In general there will be only very few
of these and, if such chains exist, we will have to look for some other way to blow down to some
minimal model X ′0 which might not coincide with X0. For this we will need exceptional divisors
which do not coincide with one of the Ei. These exceptional divisors can be the strict transform
of some fiber fi or, in the case X0

∼= F1, of the unique divisor on X0 with self-intersection −1.
Note that in the following we will consider the case where blow-ups are only over a fixed fiber f .
This will be without loss of generality, because in our conclusion at the end of this section we
will make use of the fact that fi 6= fj implies that Ri and Rj are incomparable.

Lemma 6.1. We use notation as before.

(i) For any i, the divisor class P −Ri is strongly left-orthogonal and bs(P −Ri) contains
bs(Rj) for every Rj with fj = fi and Ri 66Rj .
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(ii) If the multiplicity of Ri with respect to the total transform of fi is greater than one, then
bs(P −Ri) contains bs(Rj) for every Rj with fj = fi.

(iii) For any i 6= j, the divisor class P −Ri −Rj is strongly left-orthogonal if and only if either
fi 6= fj or Ri and Rj are comparable (say, Ri 6Rj) and bs(P −Ri) does not contain bs(Rj).

Proof. Clearly we have χ(−P +Ri) = 0, hk(−P +Ri) = 0 for all k, and χ(P −Ri) = 1. To show
that P −Ri is strongly left-orthogonal we need only to show that h0(P −Ri) = 1. However, this
follows from the fact that the divisor class P is nef and therefore base-point free and hence
h0(P −Ri) = h0(P )− 1 = 1. The divisor class P −Ri is non-trivial and its base locus is a curve
of arithmetic genus zero which projects to fi. The total transform of fi is a representative of P
in Pic(X) and contains the base loci of all the Rj with fj = fi. By subtracting Ri from P , we
at most (but not necessarily) cancel the base loci of those Rj with Ri 6Rj and statement (i)
follows. If the multiplicity of Ri with respect to the total transform of fi is greater than one,
then the multiplicities of all Ej with Ri 6Rj with respect to P is strictly smaller than their
multiplicities with respect to Ri. Therefore bs(P −Ri) also contains bs(Rj) for Ri 6Rj and
statement (ii) follows. From statement (i) it follows that statement (iii) essentially is a case
distinction for determining when bs(Rj) is not contained in the base locus of P −Ri. 2

Lemma 6.2. Consider the divisor Q on X0
∼= F1 and some strongly left-orthogonal divisor class

Q−Ri −Rj on X with Ri, Rj incomparable and f := fi = fj . Then bs(Q−Ri −Rj) contains
the total transform of f .

Proof. The class Q is the pullback of the class of lines in P2. Denote p the image of Ri in X0, then
we can identify the linear system |Q−Ri| with the set of lines passing through the image of p
in P2. If Rj lies over some other point of f than p, then bs(Q−Ri −Rj) fixes two points on f and
thus contains f . If Rj also lies over P , then we first observe that bs(Q−Ri) contains bs(Rk) for
all k 6= i and Rk 6Ri. Hence, the condition that Q−Ri −Rj is strongly left-orthogonal implies
that Ri is minimal and hence Ri 6Rj , which is a contradiction. 2

Lemma 6.3. Let A1, . . . , An be a strongly exceptional toric system on X which is a standard
augmentation of P, sP +Q, P,−(a+ s)P +Q with s>−1 for some choice of X0

∼= Fa such that
fi = fj for all i, j. Assume that Ak, Ak+1, . . . Al for some 1 6 k < l < n is a subsequence of the
toric system which contains the two slots around one of the P , i.e. (Ak−1)0, (Al+1)0 /∈ {0, P},
(Ap)0 = P for one k 6 p6 l, and (Aq)0 = 0 for all k 6 q 6 l with q 6= p. Then Ak, . . . , Al is, up
to possible order inversions, of one of the following forms:

(i) Ril−k , Ril−k−1
−Rik−l , . . . , Ri2 −Ri3 , Ri1 −Ri2 , P −Ri1 , where the Rij are pairwise

incomparable;

(ii) Ri1 , P −Ri1 −Ri2 , Ri2 −Ri3 , . . . , Ril−k−1
−Rik−l , Rik−l , where Ri1 6Rij and the Rij are

pairwise incomparable for j > 1.

Proof. After the first augmentation we get Ri1 , P −Ri1 . In the second step, we can extend
this sequence in the middle, or to the left, or to the right. By extending in the middle, we
get Ri1 −Ri2 , Ri2 , P −Ri1 −Ri2 which implies that bs(Ri2) /∈ bs(Ri1) ∪ bs(P −Ri1), where the
right-hand side coincides with the total transform of a fiber fi on X, which is not possible.
By extending to the left, we get Ri2 , Ri1 −Ri2 , P −Ri1 with the necessary condition that
bs(Ri1) ∩ bs(Ri2) = ∅ and therefore Ri1 , . . . , Ri2 are incomparable. By iterating to the left,
we obtain that the Rij are pairwise incomparable and therefore we arrive at the form (i).
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If we extend to the right instead, we get Ri1 , P −Ri1 −Ri2 , Ri2 and by Lemma 6.1(iii) Ri1 , Ri2
must be comparable. In the next step, we extend without loss of generality to the right and get
Ri1 , P −Ri1 −Ri2 , Ri2 −Ri3 , Ri3 where Ri1 , Ri3 are comparable and Ri2 , Ri3 are incomparable.
If we extend to the left in the next step, this implies that the pairs Ri1 , Ri4 and Ri2 , Ri3 are
incomparable, but Ri2 and Ri3 are comparable to Ri1 and Ri4 respectively, which is not possible.
Hence, we can continue extending only to the right and we inductively obtain that the Rij are
pairwise incomparable for j > 1 and Ri1 is comparable with every Rij . If l − k > 2, this implies
that Ri1 6Rij for every j > 1. 2

Now we consider standard augmentations starting from a standard sequence P, sP +
Q, P,−(s+ a)P +Q with s>−1 on X0. For this, we have four ‘slots’, in which we can insert the
Ri successively. The augmented toric system is of the form A1, . . . , An, where possibly An is only
left-orthogonal but not strongly left-orthogonal. For (An)0, there are four possibilities, namely
(An)0 = 0, (An)0 = P , (An)0 = sP +Q and (An)0 =−(s+ a)P +Q. We will first consider the
last case.

Proposition 6.4. Let A=A1, . . . , An be a strongly exceptional toric system which is a
standard augmentation of the toric system P, sP +Q, P,−(s+ a)P +Q with s>−1 on X0

∼= Fa
such that (An)0 =−(s+ a)P +Q and fi = fj for all i, j. Then X can be obtained from blowing
up a Hirzebruch surface two times (in possibly several points in each step).

Proof. We denote f the distinguished fiber such that f = fi for all i ∈ [t]. Because (An)0 =
−(s+ a)P +Q the toric system has two subsequences which are of the form as stated in
Lemma 6.3. This implies that there is a partition of the set {R1, . . . , Rt} into two subsets
S1 := {Ri1 , . . . , Rir}, S2 := {Rj1 , . . . , Rjs} such that, if non-empty, the elements in each of these
subsets either are (i) incomparable or (ii) Ri1 6Rik and the Rik incomparable for all k > 1
(Rj1 6Rjk and the Rjk incomparable for all k > 1, respectively). If both S1 and S2 are empty,
there is nothing to prove. If one of S1, S2 is empty, then the length of a maximal chain of
comparable elements among the Ri is at most two and the proposition follows. Hence we assume
that S1 and S2 both are non-empty. If S1 and S2 both satisfy property (i), then again the length of
a maximal chain of comparable elements among the Ri is at most two and the proposition follows.
If both satisfy property (ii), then we have two cases. The first is that Ri1 , Rj1 both are minimal.
Then again the length of a maximal chain of comparable elements among the Ri is at most
two. The second case is that only one of these, say Ri1 , is minimal and Ri1 =R1 without loss of
generality. On X1 we have f2 =−1 and we can choose to either blow down R1 or f . If we choose f ,
then we obtain another of basis for Pic(X1) given by P ′, Q′, R′1, where P ′ = P , R′1 = P −R1 and
Q′ =Q+ δP −R1, where δ = 1 if R1 corresponds to a blow-up of a point on the zero section of
the fibration Fa→ P1, and δ = 0 otherwise. If we complete this basis to a basis of Pic(X) by using
the Ri with i > 1, the sequence Ri1 , P −Ri1 −Ri2 , Ri2 −Ri3 , . . . , Rir−1 −Rir , Rir becomes
P ′ −R′1, R′1 −Ri2 , Ri2 −Ri3 , . . . , Rir−1 −Rir , Rir with R′1, Ri2 , . . . Rir pairwise incomparable.
Hence we have reduced to the case that S1 satisfies property (i) and S2 satisfies property (ii).
Moreover, we can assume that Rj1 is not minimal as otherwise we can choose another basis as
we did before and reduce to the case that both S1 and S2 satisfy property (i).

In the remaining case, the length of a maximal chain of comparable Ri is either two or three. If
it is two, the proposition follows. In the case where it is three, we assume without loss of generality
that A is an augmentation of a strongly exceptional toric system on X3 with R1 6R2 6R3

such that R1 ∈ S1 and R2, R3 ∈ S2. Then the divisor P −R2 −R3 is strongly left-orthogonal
and by Lemma 6.1(ii) it follows that the multiplicity of R2 with respect to the total transform
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of f is one. In particular, R2 does not come from a blow-up of the intersection of f with E1

on X1. If we now go back to X, then the Rik are incomparable with R1 and hence with R2,
because R1 6R2. Thus the Rik are minimal. Hence, by blowing down simultaneously all Ei
with E2

i =−1 (which includes E3) on X, we arrive at the surface X2. Here, we have f2 =−1
and E2

2 =−1. Hence, we can blow-down these two divisors simultaneously and arrive at some
Hirzebruch surface X ′0. 2

If s+ a > 1, it follows by Lemma 4.3 that necessarily (An)0 =−(s+ a)P +Q. If s+ a6 1,
then possibly (An)0 ∈ {0, P} and the standard toric system P, sP +Q, P,−(s+ a)P +Q must
be cyclic strongly exceptional on Fa for which, by Proposition 5.2, there are only four possibilities.
Our first step will be to reduce these to one.

Proposition 6.5. Let A=A1, . . . , An a toric system on X with (An)0 6=−(s+ a)P +Q. Then
there exists a sequence of blow-downs X =X ′t→ · · · →X ′0 such that X ′0

∼= F1 and A is an
augmentation of the toric system P ′, Q′, P ′, Q′ − P ′ on X ′0.

Proof. As argued before, A necessarily is an augmentation of a cyclic strongly exceptional
standard sequence. In particular, X0

∼= Fa with 0 6 a6 2. If a= 1, there is nothing to prove.
If a= 0, there are, up to symmetry by exchanging P and Q, two such toric systems, P, Q, P, Q
and P, P +Q, P,−P +Q. If we consider the blow-up X1→X0, then in the first case, there
exists, up to cyclic reordering and order inversion, only one possible augmentation which is
given by P −R1, R1, Q−R1, P, Q which is a cyclic strongly exceptional toric system on X1. If we
consider some projection X0→ P1 such that P represents a general fiber, then the divisor P −R1

is rationally equivalent to the strict transform under the blow-up and has self-intersection (−1).
If we blow down this divisor, we obtain X1→X ′0

∼= F1. If we denote P ′, Q′ the corresponding
divisors in Pic(F1), then we get a change of coordinates in Pic(X1) via P = P ′, Q=Q′ −R′1, and
R1 = P ′ −R′1. In this basis the toric system is given as R′1, P

′ −R′1, Q′ − P ′, P ′, Q′ −R′1 and the
assertion follows in this case. We proceed similarly in the second case. As h0(P −Q) = 0 and
(An)0 6= P −Q by assumption, the only possible augmentation (up to cyclic reordering and order
inversion) on X1 is given by P −R1, R1, P +Q−R1, P,−P +Q. By the same change of coor-
dinates as before we get R′1, P

′ −R′1, Q′, P ′, Q′ − P ′ −R′1 and the assertion follows for this case.
Now assume that a= 2. Then the only cyclic strongly exceptional toric system is given by

P, Q− P, P, Q− P and the only possible augmentation on X1 is given by P −R1, R1, Q− P −
R1, P, Q− P . The base locus of the complete linear system of the divisor Q− P consists of one
fixed component which is the zero section of the fibration F2→ P1. Therefore, if X1 is a blow-up
on the zero section, we have h0(Q− P −R1) = h0(Q− P ) = 2 and Q− P −R1 is not strongly
left-orthogonal and thus necessarily (An)0 =Q− P which is a contradiction to our assumptions.
Hence we can assume without loss of generality that X1 is a blow-up of X0 at some point which
is not on the zero section. In this case we can conclude as before that there exists a blow-
down to X ′0

∼= F1 and a corresponding change of coordinates P = P ′ −R′1, Q=Q′ + P ′ −R′1,
and R1 = P ′ −R′1 such that the toric system is represented as R′1, P

′ −R′1, Q′ − P ′, P ′, Q′ −R′1
which is of the required form. 2

Proposition 6.6. Let A=A1, . . . , An be a strongly exceptional toric system which is a
standard augmentation of the toric system P, Q, P,−P +Q on X0

∼= F1. Then X can be obtained
by blowing up a Hirzebruch surface two times (in possibly several points in each step).

Proof. We will only consider the case (An)0 ∈ {0, P}. Otherwise, the result follows from
Proposition 6.4. We will denote b the zero section (respectively its strict transform) of the
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P1-fibration X0→ P1 with b2 =−1 on X0. Note that in some steps below we will have to blow-
down b to arrive at some convenient minimal model X ′0. Strictly speaking, this would require us
not only to consider blow-ups of a fixed fiber f but rather the general case. However, in these few
cases this would only increase the number of case distinctions without changing the arguments.
Hence we will keep the assumption that all blow-ups lie above one distinguished fiber f .

First note that h0(−P +Q) = 1 and therefore any divisor of the form −P +Q−Ri −Rj
cannot be strongly left-orthogonal. This together with the condition (An)0 6=−P +Q implies
that we can use at most one of the two slots around −P +Q in the toric system P, Q, P,−P +Q
for augmentations. Moreover, for any (An)0, we can assume that the augmentations in the
two slots surrounding one of the P are strongly left-orthogonal and therefore we get there a
subsequence of A which corresponds to one of the two shapes given in Lemma 6.3. The slot
between P and Q can be augmented at most three times because h0(Q) = 3. Because of our
general assumption that all blow-ups lie over the same fiber, we can even conclude by Lemma 6.2
that this slot even can be extended at most two times. For the same reason, if this slot has been
extended two times, then the other slot neighbouring Q cannot be extended any more. Denote
S1 the subset of the Ri used for augmenting the two slots around P . We have seen that S1

can consist of at most three elements. In the maximal case, we have S1 = {Ri1 , Ri2 , Ri3} such
that Ri1 6Ri2 , Ri3 and Ri2 , Ri3 incomparable. In this case, the remaining two slots cannot be
augmented without violating our condition on (An)0 and thus the assertion follows. Hence we
assume from now that S1 consists of at most two elements, which may be comparable or not.
Also note that the base locus of P −Q coincides with the support of the total transform of b
on X. Therefore, in the cases where either Ri1 and Ri2 are comparable, or S1 = {Ri1} and Ri1
is used for augmentation in the slot between −P +Q and P , these divisors cannot come from
blowing up points on or above b.

If (An)0 = P , then the content of the two slots neighbouring this ‘bad’ P must be of the form
as given in Lemma 5.16(ii). That is, we have a partition of the set of the Ri into three sets, S1, S2,
S3, where the latter two each consist of pairwise incomparable elements. If both S2, S3 are empty,
the assertion follows. If S1 consists of two elements, then only one of S2, S3 can be non-empty,
say S2. If the two elements in S1 are incomparable, we have thus a partition into two subsets
of incomparable elements and the assertion follows. If the two elements in S1 are comparable,
i.e. Ri1 6Ri2 , then we have (up to order inversion) the subsequence Ri1 , P −Ri1 −Ri2 , Ri2 in A.
By Lemma 6.1 the divisor Ri1 must have multiplicity one with respect to P and Ri2 cannot come
from blowing up a point on the fiber f . By this, after blowing down all Ri with E2

i =−1 we
are left with at most one chain of length two, containing at least one Ei with E2

i =−1 and
we have f2 =−1. Hence, by simultaneously blowing down these two divisors we arrive at some
minimal surface X0 and the assertion follows. If S1 consists of only one element, then we have
two possibilities. If Ri1 is used for augmentation in the slot between −P +Q and P , then the
other slot neighbouring −P +Q is blocked for further augmentation and only one more slot is
free for augmentation by incomparable Ri. Hence we can blow down X to X0 in at most two
steps. If Ri1 is used for augmentation in the slot between P and Q, then we can have two non-
empty sets S2, S3. Let us assume that the elements in S2 are used for augmentation between
Q and P , and the elements in S3 for augmentation between −P +Q and P . As the base locus
of −P +Q contains the support of the total transform of b on X, none of the Ri ∈ S3 are lying
over any point of b. Hence, if Ri0 lies over some point in b, then it can be part of a chain of
comparable Ri of length two. Hence, the maximal such length is at most two for all Ri. Hence
the assertion follows. If Ri0 does not lie over some point of b, then the maximal length of a chain
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of comparable Ri which lie over some point of b is one, and after simultaneously blowing down
the Ei with E2

i =−1, there is no such Ri left. However, then Ri0 might still be part of a chain
of length two, which will be the only such chain and another simultaneous blow-down will leave
one of the components of this chain. However, now we can additionally blow down b instead and
we will arrive at some other X ′0 within two steps and the assertion follows.

If (An)0 = 0, then An is located in one of the slots and the subsequence of A in this slot can
be of one of the following forms:

Q− P −Rj1 , Rj1 −
r∑

k=2

Rjk , Rjr , Rjr−1 −Rjr , . . . , Rj2 −Rj3 , P −Rj1 −Rj2 − F, (7)

Q−Rj1 −Rj2 −G, Rj2 −Rj3 , . . . , Rjr−1 −Rjr , Rjr , Rj1 −
r∑
i=2

Rji −
s∑
i=1

Rki ,

Rks , Rks−1 −Rks , . . . , Rk1 −Rk2 , P −Rj1 −Rk1 −H, (8)

where F, G, H denote some possible additional summands coming from augmentations in the
neighbouring slots. We denote S2 := {Rj2 , . . . , Rjr} and S2 := {Rk1 , . . . , Rks}. In the case (7),
we have Rj1 6Rji and the Rji incomparable for all i > 1. In the case (7), we have Rk1 6Rji
and the Rji incomparable for all i. If both S2 and S3 are empty, then A is an augmentation by
the elements of S1 and by Rj1 and one possible augmentation by some Ri in the remaining slot.
Then Ri and Rj1 must be comparable. These can form a chain of length at most three which
cannot lie over b. Therefore we can conclude as before that we can blow-down the surface X to
a surface X ′0 in at most two steps. If S2 consists of two incomparable elements, then the other
neighbouring slot of Q is blocked for augmentations and the remaining augmentation must be
of the form (7) with Rj1 (and thus all the Rji) not lying over b. Hence, if there exists a chain of
length three, this chain cannot lie over b and again we can blow-down in two steps to some X ′0.
If S1 consists of two comparable elements then the remaining augmentation must be of the form
(7) where S2 = ∅, as G 6= 0. Then we possibly have a maximal chain of length four, where at least
one of the elements in S1 and one of Rj1 and Rki involved have multiplicity one, and all the Rki
incomparable. With similar arguments as before, we can always blowing down X to some X ′0 in
two steps by possibly contracting the fiber f .

In the remaining cases we have to consider S1 consisting of one or two elements. The argu-
ments are completely analogous to the previous arguments and we leave these to the reader. 2

We conclude that Theorem 5.11 follows from Propositions 6.5 and 6.6 in the case (An)0 6=
−(a+ s)P +Q. For the case (An)0 =−(a+ s)P +Q we note that if fi 6= fj then Ri and Rj are
incomparable. Moreover, from the proof of Proposition 6.4 we see that in order to blow down
to some X ′0 we may have to blow down the strict transform of some fiber. However, any such
choices can be made simultaneously. This proves Theorem 5.11.

7. Divisorial cohomology vanishing on toric surfaces

Let X be a smooth complete toric surface whose associated fan is generated by lattice
vectors l1, . . . , ln and recall that Pic(X) is generated by the T -invariant divisors D1, . . . , Dn.
Recall from § 2 that, besides the coordinates associated to a minimal model X0, we have two
further coordinatizations for Pic(X). The first is given by choosing for a given divisor D a
T -invariant representative D ∼

∑n
i=0 ciDi such that we can identify this representative with
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a tuple (c1, . . . , cn) in Zn. The second coordinatization is given by tuples (d1, . . . , dn) ∈ Zn
such that

∑
i∈[n] dili = 0. The di are uniquely determined by the ci by the relations di =

ci−1 + aici + ci+1 for i ∈ [n]. The ci are determined by the di up to a character m ∈M , that
is,
∑n

i=0 ciDi ∼
∑n

i=0 c
′
iDi if and only if there exists some m ∈M such that c′i = ci + li(m) for all

i ∈ [n]. In what follows, we will use all of these coordinatizations for the classification of strongly
left-orthogonal divisors on X.

Now assume that for a given divisor D, a T -invariant representative D ∼
∑n

i=0 ciDi is chosen.
Then we can associate to D a hyperplane arrangement {Hi}i∈[n] in MQ which is given by
hyperplanes

Hi := {m ∈MQ | li(m) =−ci}.
The twist ci 7→ ci + li(m) for some m ∈M then corresponds to a translation of the hyperplane
arrangement by the lattice vector −m. The action of T induces an eigenspace decomposition of
the space of global sections of O(D):

H0(X,O(D))∼=
⊕
m∈M

H0(X,O(D))m.

The non-trivial isotypical components H0(X,O(D))m are one-dimensional and we have

H0(X,O(D))m 6= 0 if and only if li(m) >−ci for all i ∈ [n]

for m ∈M , i.e. the non-vanishing isotypical components correspond to the characters which are
contained in a distinguished chamber of the hyperplane arrangement.

Definition 7.1. Let D =
∑n

i=1 ciDi be a torus invariant divisor, then we denote GD := {m ∈
M |H0(X,O(D))m 6= 0}= {m ∈GD | li(m) >−ci for all i ∈ [n]} and G◦D := {m ∈GD | li(m)>
−ci for all i ∈ [n]}.

As the set GD counts the global sections of a T -invariant divisor D, by Serre duality, the set
G◦D can naturally be associated with a T -eigenbasis of H2(X,O(−D)). Namely, the canonical
divisor on X is given by KX =−

∑n
i=1 Di and h2(−D) = h0(KX +D) = |G◦D|. We want to

interpret strong (pre-)left-orthogonality as a problem of counting lattice points, starting from
GD for some strongly pre-left-orthogonal divisor D on P2 or Fa as classified in Propositions 4.7
and 4.9. In general, the region containing GD is not quite a lattice polytope, but rather close to
being one, as we will see in Proposition 7.12. This is illustrated in the following example.

Example 7.2. Figure 1 shows examples for strongly pre-left-orthogonal divisors on P2 and Fa.
The dots indicate the set GD, the white dots the subset G◦D.

Consider any pre-left-orthogonal divisor βH, where β > 0, on P2. Then it is easy to see that
formulas (3) and (4),

χ(βH) =
(
β + 2

2

)
, χ(−βH) =

(
β − 1

2

)
,

count GβH and G0
βH , respectively. Similarly, formulas (5) and (6),

χ(αP + βQ) = (α+ 1)(β + 1) + a

(
β + 1

2

)
, χ(−αP − βQ) = (α− 1)(β − 1) + a

(
β

2

)
,

count GαP+βQ and G◦αP+βQ, respectively.
For the γi, there is a similar interpretation. Assume we have fixed a sequence of blow-ups

b1, . . . , bt as in the previous section, where every bk is toric. For some k ∈ [t], there are p, q, r ∈ [n]
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3Q – P:

1

3l

l2

3l

l2

l1

l4

3H:

P:

l

Figure 1. The fans for P2 and F2 and the regions in M containing GD, for the cases D = 3H
on P2 and D = P , D = 3Q− P on F2, respectively.

such that lp and lq span a cone in the fan of Xk−1 and lr = lp + lq represents the toric blow-up bk.
We have the following lemma.

Lemma 7.3. Let p, q ∈ S ⊂ [n] such that the lj with j ∈ S span the fan of Xk−1 and denote D =∑
i∈S ciDi a T -invariant divisor. Then b∗kD ∼

∑
i∈S ciDi + (cp + cq)Dr and γiRi ∼ crDr on Xk.

Proof. Only the first assertion needs a proof. Let L the matrix whose rows are the li with i ∈ S
and L′ the matrix consisting of the same rows as L but with the additional row lp + lq added
between lp and lq. The assertion follows from the commutativity of the following diagram.

0 // M
L // Z|S|� _

��

// Pic(Xi−1)� _

��

// 0

0 // M
L′ // Z|S|+1 // Pic(Xi) // 0 2

For given γk 6 0, we consider the lattice triangle which is inscribed by the lines Hp, Hq, Hr

and whose lattice points we can count.

Definition 7.4. Let lp, lq, lr be as before and γk 6 0, then we denote:

(i) Tγk := {m ∈M | lp(m) >−cp, lq(m) >−cq, lr(m) 6−cr};
(ii) T−γk := {m ∈M | lp(m) >−cp, lq(m) >−cq, lr(m)<−cr};
(iii) T+

γk
:= {m ∈M | lp(m)>−cp, lq(m)>−cq, lr(m) 6−cr}.
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Hp

lip

liq lik

Hk

Hq

Figure 2. Three primitive vectors lp, lq, lr which pairwise generate N and the corresponding
orthogonal hyperplane arrangement for γk =−3.

As lp and lq form a basis of N , by translation by some m ∈M we can assume without loss of
generality that cp = cq = 0. Then, using Lemma 7.3, we can directly see that the lattice points
of Tγk , T+

γk
, T−γk are counted by binomial coefficients. We have |Tγk |=

(
γk−1

2

)
, |T−γk |=

(
γk
2

)
, and

|T+
γk
|=
(
γk+1

2

)
. This is illustrated in the following example.

Example 7.5. With notation as before, Figure 2 shows the local configuration of lp, lq, lr and
the relative positions of Hp, Hq, Hr for γk =−3. The dots indicate the

(−3−1
2

)
= 10 lattice points

in Tγk , the gray dots the
(−3+1

2

)
= 3 lattice points in T+

γk
and the circled dots the

(−3
2

)
= 6 lattice

points in T−γk , with one lattice point in the intersection T+
γk
∩ T−i .

By Proposition 4.12, a pre-left-orthogonal divisor D is of the form (D)0 +
∑t

i=1 γiRi with
(D)0 pre-left-orthogonal on X0 and γi 6 0 for every i. The following proposition shows that
strong pre-left-orthogonality is equivalent to that the Tγi cut out the lattice points of G(D)0 in a
well-behaved manner.

Proposition 7.6. Let k > 0 and consider a blow-up bk :Xk −→Xk−1 with notation as before.
Let D be a pre-left-orthogonal divisor on Xk−1 and γk 6 0. Then b∗kD + γkRk is pre-left-
orthogonal if and only if T+

γk
⊂G◦D. If D is strongly pre-left-orthogonal, then b∗kD + γkRk is

strongly pre-left-orthogonal if and only if T+
γk
⊂G◦D and T−γk ⊂GD.

Proof. By Riemann–Roch we get χ(γkRk) = 1−
(
γk
2

)
and χ(−γkRk) = 1−

(
γk+1

2

)
. Moreover,

we get χ(b∗kD + γkRk) = χ(D) + χ(γkRk)− 1 = χ(D)−
(
γk
2

)
and χ(−b∗kD − γkRk) = χ(−D) +

χ(−γkRk)− 1 = χ(−D)−
(
γk+1

2

)
. Hence we see that h1(−b∗kD − γkRk) = 0 if and only if T+

γk

precisely cuts
(
γk+1

2

)
lattice points out of G◦D and h1(b∗kD + γkRk) = 0 if and only if T+

γk
precisely

cuts
(
γk
2

)
lattice points out of GD and the assertion follows. 2

Consequently, we get the following corollary.

Corollary 7.7. Let D = (D)0 +
∑

i γiRi pre-left-orthogonal. Then D is left-orthogonal if and
only if G(D)0\GD =

∐t
k=1 T

−
γk

. Moreover, D is strongly left-orthogonal if and only if G(D)0\GD =∐t
k=1 T

−
γk

and G◦(D)0
=
∐t
k=1 T

+
γk

.

In terms of lattice figures inM , strong left-orthogonality can be understood by Proposition 7.6
and Corollary 7.7 as follows. We start with an almost lattice polytope associated to a strongly
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3 (d)

(e)

H

H

2

3

H1

l

l

l1

2

(c)

(b)(a)

Figure 3. The fan of F2 blown up three times and the hyperplane arrangements corresponding
to the divisors (a) 3Q− P − 2R1, (b) 3Q− P − 2R3, (c) 3Q− P − 2R1 − 2R2, (d) 3Q− P −
2R1 −R2 − 2R3, (e) 3Q− P − 2R1 − 2R2 −R3.

pre-left-orthogonal divisor (D)0 on X0 and successively cut out lattice points of G(D)0 and
G◦(D)0

by moving in hyperplanes Hr until G◦(D)0+
∑
kγkRk

is empty and the sets {T+
γk
| k ∈ [t]}

and {T−γk | k ∈ [t]} form a ‘tiling’ of G(D)0\G(D)0+
∑
kγkRk

and G◦(D)0
, respectively. We illustrate

this in the following example.

Example 7.8. Figure 3 shows on the left the fan of F2 from Figure 1 blown up three times by
successively adding the primitive vectors l1, l3, and l2. Note that the numbering of the Rj does
not match with the numbering of the li, but rather the order in which the li were added to the
fan. The right side shows the hyperplane arrangements for five examples of divisors D all of
which have (D)0 = 3Q− P , with G3Q−P and G◦3Q−P shown in Figure 1. In (a) the hyperplanes
H1, H2, H3 are indicated. The dark gray area indicates Tγ1 , the medium gray indicates Tγ2 , and
the light gray Tγ3 . In (a) we have D = 3Q− P − 2R1; here T−γ1 cuts out three elements of G3Q−P
and T+

γ1 cuts out one of G◦3Q−P . Therefore D is pre-left-orthogonal in this case. In (b) we have
D = 3Q− P − 2R1 and T−γ3 cuts out only one of G3Q−P and T+

γ1 none of G◦3Q−P . Therefore D is
not strongly pre-left-orthogonal. Note that R1 and R3 behave differently because li1 does form
a basis of N with either of the two primitive vectors which belong to the fan of F2 and in whose
positive span li1 is contained, whereas li3 does not. In the cases (c)–(e), all T−γi and T+

γi cut out
the correct number of lattice points of G3Q−P and G◦3Q−P , respectively, such that precisely the
two elements in G◦3Q−P are cut out. Hence in all these cases D is strongly left-orthogonal.

We will also need to know how we can pass from the coordinates associated to a minimal
model X0 to the di-coordinates. For this we first illustrate the correspondence between divisors
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3Q – P – 2R1 – 2R2 – R33Q – P  
P

Figure 4. The fan of Figure 3 and the polygonal lines associated to the divisors P , 3Q− P , and
3Q− P − 2R1 − 2R2 −R3. The picture shows the hyperplane arrangements associated to these
divisors rotated by 90 degrees and the polygonal lines embedded into them.

of the form αP + βQ+
∑t

i=1 γiRi and polygonal lines of the form
∑

i∈[n] dili = 0 in the following
example.

Example 7.9. It is convenient to interpret the relation
∑

i∈[n] dili = 0 as closed polygonal lines. If
we successively place the vectors dili end to end in NQ, we obtain a figure which can be viewed as
a polygonal line complex embedded in the arrangement {Hi}i∈[n], rotated by 90 degrees. Figure 4
shows examples of divisors on the surface shown in Figure 3. Note that the order in which the
dili are placed end to end is not canonical, but there are the two obvious choices (clockwise
or counterclockwise) by which the line complex can be interpreted as being embedded in the
corresponding hyperplane arrangement.

To change from coordinates associated to X0 to di-coordinates, by linearity it suffices to
consider (d1(D), . . . , dn(D)), where D is one of P , Q, H, Ri, i ∈ [t]. For the following lemma
we assume that the fan of X0 is generated by lb, lc, ld, le if X0

∼= Fa or by lb, lc, ld if X0
∼= P2. In

the first case we assume that lb + ld = alc. With respect to Rk, we choose lp, lq, lr as above. The
following lemma is just an observation.

Lemma 7.10. (i) If X0
∼= P2, then di(H) = 1 if i ∈ {b, c, d} and di(H) = 0 otherwise.

(ii) If X0
∼= Fa, then di(P ) = 1 if i ∈ {c, e} and di(P ) = 0 otherwise.

(iii) If X0
∼= Fa, then dc(Q) = a, di(Q) = 1 if i ∈ {b, c}, and di(Q) = 0 otherwise.

(iv) Without assumptions on X0 we have dp(Rk) = dq(Rk) = 1, dr(Rk) =−1, and di(Rk) = 0
otherwise.

If we compare Figure 4 with Figure 3, we see that in these examples, for strongly left-
orthogonal D, the associated polygonal line contains GD. More generally, we get the following
lemma.

Lemma 7.11. Let D = (d1, . . . , dn) ∈N1(X) be a T -invariant curve on a smooth complete toric
surface X. If, as a divisor, D is numerically left-orthogonal, then χ(D) =

∑
i di.
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Proof. Let E =
∑

i∈[n] c
′
iDi, then it follows from the discussion in § 2 that D · E =

∑
i∈[n] dic

′
i.

We apply this to E =−KX =
∑

i∈[n] Di and use Lemma 3.3(i). 2

Of course, if D is strongly left-orthogonal, then it follows that h0(D) =
∑

i di. If moreover,
(D)0 is strongly pre-left-orthogonal, it follows by induction, starting from the classification of
Propositions 4.7 and 4.8, that GD ⊂

⋃
dik>0 Hk, i.e. the positive di attribute to the global sections

not only numerically, but the associated line segments bounding GD actually contain GD.
By Proposition 2.4 a divisor D is nef if and only if di > 0 for every i. Then the associated

polygonal line complex is the boundary of a lattice polytope in MQ. The figures of Example 7.9
show that these strongly left-orthogonal divisors are almost nef, as in every case di >−1 for
every i ∈ [n]. This also holds in general.

Proposition 7.12. Let D be a strongly left-orthogonal divisor on X. Then
∑

i∈I di(D) >−1
for every cyclic interval I ⊂ [n].

Proof. We choose some sequence of equivariant blow-downs to some minimal model X0. Assume
first that (D)0 = 0. Then by Proposition 4.11 D =Rk for some k or D =Rk −Rl for k 6= l ∈ [t]
and Rk, Rl incomparable. For p, q, r as above, we have by Lemma 7.10 that di(Rk) =−1 for
i= r, di(Rk) =−1 for i ∈ {p, q} and di(Rk) = 0 else. Hence the assertion follows immediately
for D =Rk. For D =Rk −Rl we have just to take into account that the Rk and Rl are
incomparable. If (D)0 6= 0 we can assume without loss of generality that (D)0 is strongly pre-left-
orthogonal. Otherwise, we have necessarily h0(D) = h0((D)0) = 0 and −(D)0 is strongly pre-
left-orthogonal. Then if the statement is true for the case −(D)0 strongly pre-left-orthogonal,
we have di 6 1 for every i and therefore by above discussion that −di >−1 for every i.

We show by induction on (D)k, k = 0, . . . , t that the assertion is true for a strongly pre-left-
orthogonal divisor D. For k = 0, the assertion is true by inspection of the classification of strongly
pre-left-orthogonal divisors on P2 (Proposition 4.7) and Fa (Proposition 4.8). It also follows that
dj = |G(D)0 ∩Hi| if li belongs to fan associated to X0, i.e. the di count the lattice length plus
one of the bounding faces of the polygonal line inscribing G(D)0 . In the induction step we will
show that this is still true for all triples p, q, r and all k > 0. For k > 0, let (D)k − (D)k−1 = γkRk.
Consider the triple lp, lq, lr as before, by Proposition 7.6 it is a necessary condition thatHp andHq

intersect in some m ∈G(D)k\G
◦
(D)k

. Moreover, necessarily dp, dq >−γk − 1 and the result follows
from above characterization of di(Rk). 2

Remark 7.13. If ai =−1 for some i, then we can find a basis of Pic(X) with respect to
some minimal model X0 such that Rt =Di. For any strongly pre-left-orthogonal divisor D
it follows that D = (D)t−1 + γtRt for some γt 6 0. Therefore, we have di > 0. If ai > 0, the
divisor Di necessarily is the strict transform of some torus invariant divisor on X0. Hence by
the classification 4.7 and 4.8, the only cases with ai > 0 and di(D) =−1 is where X0

∼= P1 × P1

and D is the pullback of P −Q or Q− P . Otherwise, if ai > 0, then di > 0.

8. Strongly exceptional sequences of invertible sheaves on toric surfaces

The following results give a full classification of strongly exceptional sequences of invertible
sheaves on smooth complete toric surfaces. As we have seen in Proposition 5.18, for any
given strongly exceptional sequence of invertible sheaves O(E1), . . . ,O(En) on a smooth
complete rational surface X, we can reorder this sequence by successive transposition of
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pairs O(Ei),O(Ei+1) whenever Hom(O(Ei),O(Ei+1)) = 0, until its associated toric system is
in normal form in the sense of Definition 5.17. In the case that we can write this normal form as
a standard augmentation in the sense of Definition 5.4, we immediately obtain by Theorem 5.11
that X is can be obtained by blowing up some Hirzebruch surface at most two times (in possibly
several points simultaneously in each step). In general we do not know whether every strongly
exceptional toric system in normal form is a standard augmentation (we conjecture that this is
true), but we can show that this at least holds for toric surfaces.

Theorem 8.1. Let X be a smooth complete toric surface, then for every strongly exceptional
toric system A there exists a sequence of blow-downs X =Xt→ · · · →X0, where X0 = P2 or
X0 = Fa for some a> 0 such that the normal form of A is a standard augmentation from X0.

We obtain the following as a corollary of Theorems 8.1 and 5.11.

Theorem 8.2. Let X 6= P2 be a smooth complete toric surface. Then there exists a full strongly
exceptional sequence of invertible sheaves on X if and only if X can be obtained by equivariantly
blowing up a Hirzebruch surface two times (in possibly several points in each step).

We will prove Theorem 8.1 in the remaining sections. In this section we will state and prove
some more of its direct consequences.

Corollary 8.3. Let X be a smooth complete toric surface. If there exists a strongly exceptional
sequence of invertible sheaves on X, then rk Pic(X) 6 14.

Proof. A Hirzebruch surface Fa has four torus fixed points. Hence, after blowing up some of these
points, the resulting toric surface has up to eight fixed points. After blowing up these, we get a
toric surface X whose fan is generated by at most 16 lattice vectors and thus rk Pic(X) 6 14,
and the statement follows from Theorem 8.2. 2

Example 8.4. Consider the toric surface which is given by the sequence of self-intersection
numbers −2,−2,−1,−3,−2, 0, 1. It is easy to see that there is no way to blow-down this surface
to any Hirzebruch surface in only two steps. Hence by Theorem 8.2 there does not exist a
strongly exceptional sequence of invertible sheaves on this surface. This is the counterexample
which has been verified by explicit computations in [HP06]. Now consider the blow-up of this
surface given by −2,−2,−1,−3,−2,−1,−1, 0. This surface can be blown down to a F1 in two
steps by simultaneously blowing down two divisors in each step. Therefore by Theorem 5.9 there
exist strongly exceptional sequences of invertible sheaves on this surface. More concretely, if
the F1 is spanned by lattice vectors l1, l2, l3, l6 with l3 = l2 + l6, we successively add l7 = l1 + l6,
l8 = l1 + l7, l4 = l3 + l6 and l5 = l4 + l6. Then, for example, we get for s>−1 a family of strongly
exceptional toric systems by

R1, R3 −R1, P −R3, sP +Q, P −R2, R2 −R4, R4,−(s+ 1)P +Q−R1 −R2 −R3 −R4.

For a cyclic strongly exceptional toric system A on X the associated toric surface Y (A) has
a nef anti-canonical divisor. It turns out that this even is a necessary condition for X if X itself
is a toric surface.

Theorem 8.5. Let X be a smooth complete toric surface. If there exists a cyclic strongly
exceptional sequence of invertible sheaves on X, then its anti-canonical divisor is nef.

Proof. By Proposition 2.5 we have to show that ai >−2 for every i. Assume that A=
A1, . . . , An is a cyclic strongly exceptional toric system and assume that ai <−2 for some i.
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Table 2. Cyclic strongly exceptional toric systems on toric surfaces with nef anti-canonical
divisor.

5b −1, −2, 0, 1,−1 H − R1, R1, H − R1 − R2, R2, H − R2

6b −1, −2, −1, −1, 1,−1 H − R1 − R3, R1, H − R1 − R2, R2, H − R2 − R3, R3

6c −1, −2, 0, 0, −1, −2 H − R1 − R3, R1, H − R1 − R2, R2, H − R2 − R3, R3

6d −1, −2, −2, 0, 1, −2 P − R1, R1, Q − R1 − R2, R2, P − R2, Q − P

7a −1, −1, −1, −1, −2, −1, −2 H − R1 − R2, R2, R1 − R2, H − R1 − R3 − R4,
R4, R3 − R4, H − R3

7b −1, −2, 0, −1, −1, −2, −2 H − R1 − R3, R3, R1 − R3, H − R1 − R2 − R4,
R4, R2 − R4, H − R2

8a −1, −2, −1, −2, −1, −2, −1, −2 P − R1 − R4, R1, Q − R1 − R2, R2, P − R2 − R3,
R3, Q − R3 − R4, R4

8b −1, −2, −1, −1, −2, −1, −2, −2 H − R1 − R2 − R4, R4, R2 − R4, R1 − R2, H − R1 − R3,
R3 − R5, R5, H − R3 − R5

8c −1, −2, −2, −2, −1, −2, 0, −2 P − R1 − R4, R4, R1 − R4, P + Q − R1 − R3, R3 − R2,
R2, P − R2 − R3, −P + Q

9 −1, −2, −2, −1, −2, −2, −1, −2, −2 H − R1 − R4 − R5, R4, R1 − R4, H − R1 − R3 − R6,
R6, R3 − R6, H − R2 − R3 − R5, R2, R5 − R2

We denote dji := di(Aj) for every j ∈ [n]. Then
∑

j∈[n] d
j
i = ai + 2< 0 by Proposition 2.5. Because

A is cyclic and strong, every sum
∑

j∈I Aj is strongly left-orthogonal for every proper cyclic
interval I ⊂ [n]. In particular,

∑
j∈I d

j
i >−1 for every such I by Proposition 7.12. Now assume

that there exists j ∈ [n] such that dji =−1. Without loss of generality, we can assume that
j = 1. Then by choosing a decomposition [n]\{1}= I1

∐
I2, where I1, I2 are intervals, we can

consider A1, A
′
1, A

′
2, a short toric system of length 3 as in Example 2.14. Then d1

i + di(A′1) >−1
and d1

i + di(A′2) >−1, hence di(A′1) > 0 and di(A′2) > 0, and we get ai >−3. Now assume that
ai =−3. Then there exist at least two j such that dji =−1; because otherwise, if there was only
one j with dji =−1, the condition that

∑n
j=1 d

j
i =−1 would imply that dki = 0 for all k 6= j and

thus all the Ak with k 6= j are contained in a hyperplane in Pic(X), which is not possible. Let
j, k such that dki , d

j
i =−1. Then |k − j|> 1, as Al +Al+1 must be strongly left-orthogonal for

every l ∈ [n]. Hence we can consider a short toric system to periodicity 4: A′1, A
′
2, A

′
3, A

′
4 with

di(A′1) = di(A′3) =−1. As A′1 +A′2 +A′3 and A′2 +A′3 +A′4 must be strongly left-orthogonal, this
implies that di(A′2), di(A′4) > 1 and so ai >−2, which contradicts the hypothesis. 2

The converse is also true in the toric case.

Theorem 8.6. If X is a smooth complete toric surface with nef anti-canonical divisor, then
there exists a full cyclic strongly exceptional sequence of invertible sheaves on X.

Proof. The case of P2 is clear, and Hirzebruch surfaces are covered by Proposition 5.2. For
the remaining two del Pezzo surfaces the existence follows from Theorem 5.14. For the other
cases, we give in Table 2 a list of examples, one for each surface. By construction, these toric
systems are exceptional and to check that these are indeed cyclic strongly exceptional is a direct
application of Proposition 7.6 and Corollary 7.7. Note that for 8a and 8c we have given examples
which are augmentations of cyclic strongly toric systems on P1 × P1 and there is an ambiguity
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of assigning P and Q. For 8a, both cases are cyclic strongly exceptional. For 8c, we choose Q to
be the class of the unique torus invariant prime divisor with self-intersection zero on 8c. 2

9. Straightening of strongly left-orthogonal toric divisors

In order to prove Theorem 8.1 we classify strongly left-orthogonal divisors on a given toric
surface X. For this, we introduce in this section a procedure for simplifying a given strongly
left-orthogonal divisor. We call this procedure a straightening. We will classify strongly left-
orthogonal divisors up to straightening.

Lemma 9.1. Let D be a T -invariant strongly left-orthogonal divisor on X and i ∈ [n] such that
D2
i =−1. If di(D)< 0, then either h0(D) = 0 or D =Di.

Proof. We write D = γtDi + (D)t−1, where Xt−1 is the blow-down of X along Di. Then di =−γt
by Proposition 2.4 and Lemma 4.2. By Proposition 4.12 and Remark 4.13 this implies that (D)0 is
not pre-left-orthogonal with respect to the choice of any minimal model X0 for X which factorizes
through Xt−1. However, then we either have h0(D) = 0 or (D)0 = 0 or both. If (D)0 = 0, then by
Proposition 4.11 we have D =Rp −Rq for some p, q ∈ [t] or D =Rp for p ∈ [t]. In the first case,
we also get h0(D) = 0; in the second, we necessarily have Rp =Di by Lemma 7.10. 2

Hence for any strongly left-orthogonal divisor D which is not a prime divisor Dj , we will ass-
ume without loss of generality that di > 0 for any i ∈ [n] such that D2

i =−1. Otherwise, we will
just take −D instead of D. Let us write D = γtDi + (D)t−1 for X →Xt−1 the blow-down of Di.
If −1 6 γt 6 0, then T+

γt = ∅ and it follows from Lemma 4.6, Proposition 7.6, and Corollary 7.7
that (D)t−1 is strongly left-orthogonal on Xt−1. By iterating, we obtain a sequence of blow-downs
X =Xt→ · · · →Xs, where s> 0 and Xs lies over some (not necessarily completely specified yet)
minimal model X0. We can write D = (D)s +

∑t
i=s+1 εiRi, where εi ∈ {0,−1} for every i and Ri

is the total transform on X of the exceptional divisor of the blow-up Xi→Xi−1. The divisor (D)s
now has the property that either (D)s coincides with a prime divisor Di on Xs with D2

i =−1 or
di((D)s) > 2 with respect to every T -invariant prime divisor Di on Xs with D2

i =−1. It follows
from Lemma 3.3(iv) that h0(D) = h0((D)s) + s− t.

Definition 9.2. Assume (D)s is constructed as above and does not coincide with a prime
divisor Di on Xs. Then we call (D)s a straightening of D. A divisor D is straightened if D = (D)s
(and consequently X =Xs).

In the following we will keep the index ‘s’ to denote that Xs has been chosen with respect to
the straightening of some strongly left-orthogonal divisor. In general, s 6= 0 and a straightening
(D)s is not unique. However, we will show that the existence of a straightened divisor imposes
a strong condition on the geometry of X.

Proposition 9.3. Let X be a smooth complete toric surface and D a straightened divisor on X.
Then either −KX is nef or X ∼= Fa with a> 3.

To prove Proposition 9.3 we first show an auxiliary statement. Let f ∈ [n] and denote
e1, . . . , er, g1, . . . , gu ∈ [n] all indices i such that lf and li form a basis of N , where the
enumeration is as follows. Consider the line generated by lf in NQ, Then all the ei are contained
in one half plane bounded by this line and all the gj in the other. Moreover, we require that for
any i < j, the vector lej is contained in the cone generated by lf and lei , and lgj is contained in

1269

https://doi.org/10.1112/S0010437X10005208 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005208


L. Hille and M. Perling

the cone generated by lf and lgi , respectively. We denote S ⊂ [n] all i such that li is contained
in one of the cones σ1, σ2, where σ1 is generated by le1 and lf , and σ2 is generated by lg1 and lf .
Let D =

∑
i∈[n] ciDi be a T -invariant divisor. We denote

Zf := {m ∈M | li(m) =−cf + 1},
Z ′f := {m ∈ Z | li(m)>−ci for all i ∈ {f, e1, . . . , ej , g1, . . . , gk}},
Z ′′f := {m ∈M | lf (m) = 0 and li(m) > 0 for i ∈ {e1, . . . , er, g1, . . . , gu}}.

Lemma 9.4. If af 6−3, then there exists m ∈ Zf such that li(m)>−ci for all i ∈ S.

Proof. It follows from Proposition 2.3 that there exists a sequence of blow-downsX =Xt→ · · · →
Xp such that the cones generated by lf , le1 and lg1 do not contain any lattice vector which belongs
to the fan associated to Xp. Correspondingly, we have injective maps φ : [r]→ [t], ψ : [s]→ [t]
such that Rφi , Rψj are the total transforms the exceptional divisors associated to the primitive
vectors lei and lgj , respectively. Then for i < j, we have Rφi <Rφj and Rψi <Rψj , respectively,
and Rφi , Rψj incomparable for all i, j. Note that we have the relations 0 = af lf + lej + lgk ,
where af =D2

f , and 0 = le1 + blf + lg1 for some b> af . We write D = (D)p +
∑t

i=p+1 γiRi.
Then the T+

γφi
, T−γφi and T+

γψi
, T−γψi have to fulfill the conditions of Proposition 7.6 and

Corollary 7.7. In particular, we have df = df (D) = ce1 + bcf + cg1 +
∑j

i=1 γφi +
∑k

i=1 γψi with
df >−1 by Proposition 7.12. Let ler(m) =−cer + ker and lgu(m) =−cgu + kgu for some m ∈ Zf
and ker , kgu ∈ Z. Then we have ker + kgu = cer + afcf + cku − af = df − af . The number of
solutions such that ker , kgu > 0 is given by max{0, df − af − 1 > 1}, which is always non-zero for
af 6−3. We claim that if af 6−3 then there exists m ∈ Z ′f such that li(m)>−ci for all i ∈ S.
Assume there exists i ∈ S\{f, e1, . . . , er, g1, . . . , gu} such that li(m) 6−ci for some m ∈ Z ′f .
Without loss of generality, we assume that li is contained in σ1. As li and lf do not form a basis
of N , then the fact that the hyperplane Hi cuts out lattice points in T ′ implies that Hi also
cuts out at least the same number of lattice points m of Z ′′f . However, because af 6−3, we have
|Z ′f |> |Z ′′f | and the claim follows. 2

Proof of Proposition 9.3. If there does not exist f ∈ [n] such that af <−2, then −KX is nef by
Proposition 2.5. Hence if there exists such an f we show that Xs

∼= Fa for a> 3. With above
notation there exists m ∈M such that li(m)>−ci for all i ∈ S by Lemma 9.4. Assume first that
there exists u ∈ [n] such that lu =−lf . In this case there do not exist lv which are contained in
one of the cones generated by lu and le1 or lu and lg1 , respectively, because any blow-up of one
of these cones would require a lattice vector li which forms a basis of N together with lu and
therefore with lf . This lattice vector then would be one of the lei or lgj , which is excluded by
assumption. However, then the hyperplane Hu must pass through Zf , as otherwise h2(−D) 6= 0,
and (D)0 = kP +Q, where k >−1, with respect to the minimal model X0 associated to the fan
generated by le1 , lg1 , lf , lu. However, G◦nP+Q = ∅ and thus γi ∈ {0,−1} for all p < i6 t and in
fact γi = 0, as D is straightened. This implies X =X0

∼= F|b|, where le1 + blf + lg1 = 0. Such an
lu necessarily exists in the following cases. If a > 1, then by the classification of toric surfaces lf
must belong to any minimal model for X which can be obtained by blowing down Xp, and there
necessarily exists lu =−lf . If a= 1, then le1 and lg1 form a basis of N and the blow-up of the cone
generated by these two just yields lu. Hence either X0 = F1 or X0 = P2. If a <−1, then none of le1 ,
lg1 , lf can be blown down and thus together with −lf must span the fan of a minimal model F|b|.

It remains to consider the cases b ∈ {0,−1} and there is no u ∈ [n] with lu =−lf . If a= 0, then
le1 =−lg1 and le1 , lg1 , lf must be part of a fan of any minimal model X0 which is a blow-down
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Table 3. Classification of straightened divisors. The first column of the table shows the name
of the surface as given in Table 1, the second column shows the self-intersection numbers of the
toric divisors, and the third columns lists the straightened divisors on the surface. The underlined
intersection numbers indicate which divisors are blown down to obtain a minimal model and the
numbering of the Ri is just the left-to-right order of the underlined divisors.

P2 1 1 1 H, 2H
P1 × P1 0 0 0 0 P + sQ, Q+ sP , where s>−1
F1 0− 1 0 1 P , Q+ sP , where s> 1
F2 0− 2 0 2 P, 2Q− P, Q+ sP , where s>−1
Fa, a> 3 0− a 0 a P , Q+ sP , where s>−1
6d −1 −2 −2 0 1 −2 3H − 2R1 −R2 −R3

8a −1 −2 −1 −2 −1 −2 −1 −2 4H − 2(R1 +R2 +R3)−R4 −R5

8c −1 −2 −2 −2 −1 −2 0 −2 4H − 2(R1 +R2 +R4)−R3 −R5

9 −1 −2 −2 −1 −2 −2 −1 −2 −2 4H − 2(R1 +R3 +R5)−R2 −R4 −R6

of Xp. Moreover, there exists lv1 such that lf + blv1 + le1 = 0, where without loss of generality
b > 0 (and therefore b > 1), and all li in the fan associated to Xp for i different from e1, g1, f , v1,
are contained in the cone generated by lv1 and lg1 . Then we have (D)0 = kP + lQ with respect
to the coordinates in Pic(X0), where the fan of X0 is generated by le1 , lg1 , lf , lv1 . The divisor
(D)0 is strongly pre-left-orthogonal and for any i /∈ {e1, g1, f, v1}, the index of the subgroup of
N generated by lf and li is at least 3. Let v1, . . . , vw ⊂ [n] denote all elements such that lvi forms
a basis of N together with lg1 and denote D = (D)0 +

∑w
i=2 γviRi+ rest. Then

∑w
i=2 γvi 6 k + 1

and because the index of the subgroup of N generated by lf and one of the lvi with i > 1 is at
least 3 and we have

∐w
i=2 T

+
γηi
∩ Z ′f = ∅, where η : {2, . . . , w}→ [n] is the injective map which

associates the Ri to the elements v2, . . . , vw. Hence Z ′f must be empty and therefore af >−2.
In the last case, a=−1, for every i /∈ {e1, g1, f} with li part of the fan associated to Xp, by

our assumptions the index of the subgroup of N generated by lf and li is at least 2 and, similarly
as in the previous case, we have

∐
i∈K T+

γηi
∩ Z ′f = ∅, where K ⊂ [n] denotes those i such that li

in the complement of σ1 and σ2. Hence we have af >−2. 2

Using Corollary 7.7 and Proposition 9.3 it is a rather straightforward exercise to go through
Table 1 and to find all possible straightened divisors.

Proposition 9.5. Table 3 shows a complete list of straightened divisors and their associated
toric surfaces.

It turns out that there exist only four straightened divisors which are realized on toric surfaces
different from P2 or Fa. Their associated hyperplane arrangements and polygonal lines are shown
in Figure 5.

10. Proof of Theorem 8.1

Let A=A1, . . . , An be a strongly exceptional toric system on X. The first step for proving
Theorem 8.1 is to consider the straightening of A :=

∑n−1
i=1 Ai and to find a preferred coordinate
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6d

98c

8a

Figure 5. The hyperplane arrangements and the polygonal lines associated to the four
straightened divisors which are not realized on P2 or a Hirzebruch surface. The dots indicate the
global sections.

system for Pic(X) with respect to A. The idea here is that by Proposition 9.5 there are only
the few possibilities for Xs listed in Table 3, which are already close to a minimal model X0. It
follows from Proposition 10.2 that every strongly exceptional sequence on X is an augmentation
of a sequence on Xs. In the case where Xs is the projective plane or a Hirzebruch surface, we
have Xs =X0 and so by definition every augmentation of a strongly exceptional toric system on
Xs is a standard augmentation. If Xs is isomorphic to 6d, then the assertion of the theorem
follows from Proposition 10.3. In remaining cases, i.e. Xs is one of 8a, 8c, 9, we show in
Lemma 10.4 that X =Xs. These three cases are analyzed in Propositions 10.5, 10.6 and 10.7,
which show that in every case A is a standard augmentation on Xs. This completes the proof of
Theorem 8.1.

Moreover, we draw the following corollary from Propositions 10.5, 10.6 and 10.7.

Corollary 10.1. If Xs is one of 8a, 8c, 9, then X =Xs and A is cyclic.

Now we prove the statements mentioned above.
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Proposition 10.2. Every strongly exceptional toric system has a normal form which is an
augmentation of a strongly exceptional toric system on Xs.

Proof. Let A=A1, . . . , An be a strongly exceptional toric system and A :=
∑n−1

i=1 Ai and
(A)s the straightening of A. We assume that X 6=Xs and denote Rt, . . . , Rs−1 the total
transforms of the exceptional divisors of the blow-ups b1, . . . , bs−1 and complete these to a
basis of Pic(X) with respect to some X0 which is a blow-down of Xs. We may now assume
that A is in normal form. The divisor Rt represents a torus invariant prime divisor of self-
intersection −1 on X. Then A= (A)t−1 + γtRt, where γt ∈ {0,−1}, and An = (An)t−1 + δtRt,
where γt + δt =−1. There must be at least two of the Ai which are not contained in the
hyperplane R⊥t , as otherwise the projection (A1)t−1, . . . , (An)t−1 would also satisfy properties
(i) and (ii) of Definition 2.6. However, it is clear from the proof of Proposition 2.7 that this is
not possible.

Hence, as A is in normal form, there must be some Ai such that Ai = (Ai)t−1 +Rt and
(Ai)0 = 0. Let i ∈ I = [i1, i2]⊂ [n− 1] be the maximal interval such that (Aj)0 = 0 for every
j ∈ I. Then the sequence AI =Ai1 , . . . , Ai2 must be of one of the forms (i) or (ii) of Lemma 5.16.
Moreover, there cannot be any other j ∈ [n]\I such that (Aj)0 = 0 and Aj = (Aj)t−1 +Rt as this
would necessarily contradict property (ii) of Definition 2.6. If AI is of the form of Lemma 5.16(ii),
we have two possibilities.

First, Ai =Rt, which implies Ai−1 = (Ai−1)t−1 −Rt (respectively An = (An)t−1 −Rt if i= 1)
and Ai+1 = (Ai+1)t−1 −Rt and (Aj)t−1 = 0 for every other j ∈ [n]. Therefore we can consider the
projection (A1)t−1, . . . , (Ai−1)t−1, (Ai+1)t−1, . . . , (An)t−1 which is a strongly exceptional toric
system in Pic(Xt−1).

Second, Ai =Rt −Rk for some k < t and thus χ(Ai) = 0, then, as in Proposition 5.18, we
can reorder the toric system by replacing Ai by −Ai, Ai−1 by Ai−1 +Ai and Ai+1 by Ai+1 +Ai,
respectively, such that it remains strongly exceptional. In particular, we can reorder it such that
Aj becomes Rt for some j ∈ I and apply the same argument as before.

If AI is of the form of Lemma 5.16(i), we can consider the divisors Ai1−1 and Ai2+1, where
we identify i1 − 1 with n if i1 = 1. Note that i2 − i1 < t, so that i1 − 1 6= i2 + 1. Now again by
reordering, we can change A such that either Ai1 = (Ai1)t−1 −Rt and Ai1−1 = (Ai1−1)t−1 +Rt,
or Ai2 = (Ai2)t−1 −Rt and Ai2+1 = (Ai2+1)t−1 +Rt. However, then by our assumption on I and
A being of normal form, one of i1 − 1, i2 + 1 must be equal to n. However, above we have seen
that δt 6 0, which is a contradiction, and AI cannot be of the form of Lemma 5.16(i).

Altogether we have seen now that A is an extension of a strongly exact toric system on Xt−1

and the proposition follows by induction. 2

Proposition 10.3. Let X be a toric surface isomorphic to 6d and A=A1, . . . , A6 a strongly
exceptional toric system on X such that A= (A)s =

∑5
i=1 Ai = 3H − 2R1 −R2 −R3 in the

coordinates indicated in Table 3. Then A is the augmentation of a standard sequence on X2.

Proof. Clearly A6 =R1, so A5 = (A5)2 −R1 and A1 = (A1)2 −R1. If we consider the projection
(A1)2, . . . , (A5)2 and denote AI :=

∑
i∈I Ai for every interval I ⊂ [4], then (AI)2 =AI if 1 /∈ I

and (AI)2 −R1 =AI if 1 ∈ I and thus AI is strongly left-orthogonal for every such I and thus
(A1)2, . . . , (A5)2 is a strongly exceptional toric system on X2 and A an augmentation. 2

Denote P(A)s := {m ∈MQ | li(m) >−ci} the rational polytope containing G(A)s .
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Table 4. Strongly left-orthogonal divisors with Euler characteristic less than or equal to 4 on
the variety 8a.

χ(D) D

0 Ri −Rj with {i, j} 6= {1, 5}, {3, 4},
±(H −Ri −Rj −Rk) with i, j, k pairwise distinct and {i, j, k} 6= {1, 2, 5}, {2, 3, 4}

1 Ri for i ∈ {1, 2, 3, 4, 5},
H −Ri −Rj for i 6= j,
2H −R1 −R2 −R3 −R4 −R5,

2 H −Ri for i ∈ {1, 2, 3, 4, 5},
2H −

∑
i6=j Rj for i ∈ {1, 2, 3, 4, 5}

3 H, 2H −Ri −Rj −Rk with i, j, k pairwise distinct,
3H − 2Ri −

∑
j 6=i Rj for any i

4 2H −Ri −Rj for i 6= j
3H − 2Ri −

∑
j 6=i,k Rj for k 6= i and (i, k) 6= (1, 5), (3, 4),

4H − 2(Ri +Rj +Rk)−Rl −Rm for i, j, k, l, m pairwise distinct,
5H − 3Ri − 2(Rj +Rk +Rl)−Rm for i, j, k, l, m pairwise distinct and i ∈ {1, 4, 5}

Lemma 10.4. (i) Let X be a toric surface and A=A1, . . . , An a strongly exceptional toric
system on X such that A= (A)s and PAs has no corners in M . Then A cannot be augmented
to a strongly exceptional sequence on any toric blow-up of X.

(ii) In the cases where Xs is one of 8a, 8c, 9, the polytope P(A)s has no corners.

Proof. Write (A)s =
∑n

i=1 ciDi. From 7.6 it follows that for (A)s −Ri1 to be strongly left-
orthogonal, there must exist a lattice point m ∈GD and li, lj such that li(m) =−ci and
lj(m) =−cj , i.e. m is a corner of P(A)s , and moreover, li1 must be contained in the positive span of
li and lj . Hence it follows that (A)s cannot be a straightening of a divisor living on some blow-up
of X of the form (A)s −Ri1 − · · · −Rik , where i1, . . . , ik > t. Now consider A′ =A′1, . . . , An+k a
toric system which is an augmentation of A. As (A)s = (A′)s′ , where s′ = s+ k, the augmentation
process can only happen between An−1 and An, or between An and A1. However, then there
exists n′ > l > n− 1 such that

∑l
i=1 A

′
i =As −Ril with il > t, which cannot be strongly left-

orthogonal, which proves statement (i). For statement (ii) we refer to Figure 5. 2

We observe that the condition of Lemma 10.4 is fulfilled for the remaining three cases.

Proposition 10.5. Let X be a toric surface isomorphic to 8a and A=A1, . . . , A8 a strongly
exceptional toric system on X such that A= (A)s =

∑7
i=1 Ai = 4H − 2(R1 +R2 +R3)−R4 −

R5 in the coordinates indicated in Table 3. Then A is cyclic strongly exceptional and its normal
form is an extension of the standard toric system on P2. Without bringing it into normal form,
the toric system cannot be extended to a strongly exceptional toric system on any toric blow-up
of X.

Proof. The latter assertion follows by Lemma 10.4. To prove the first claim, we have to check
that for any non-empty cyclic interval ∅ 6= I ( [8] the divisor AI :=

∑
i∈I Ai is strongly left-

orthogonal. By assumption, this is true for every I which does not contain n, and it thus remains
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to check the complementary intervals [n]\I for n /∈ I. For A8 =−H +R1 +R2 +R3 we have
χ(A8) = 0 and with K2

X = 4 it follows that χ(AI) 6 4 for every ∅ 6= I ( [8] by Lemma 3.3(iii).
Using Proposition 7.6 and Corollary 7.7 together with formulas (3) and (4), it is a straightforward
exercise to determine all strongly left-orthogonal divisors with Euler characteristic at most 4.
These are shown in Table 4. We see that almost all elements in this table can be paired, i.e. if
some D is in the table, then also −KX −D is. Hence, because −KX =

∑8
i=1 Ai, it follows

that if AI is in the table, then A[n]\I is and the proposition follows. The only exceptions
which cannot be completed to a strongly left-orthogonal pair are 2H −R3 −R4, 2H −R1 −
R5, 3H −R2 −R3 −R4 − 2R5, 3H −R1 −R2 − 2R4 −R5, 4H − 2(R1 +R2 +R5)−R3 −R4,
4H − 2(R2 +R3 +R4)−R1 −R5, and 5H − 3Ri − 2(Rj +Rk +Rl)−Rm. We show that these
cannot be of the form AI for I ⊂ [n− 1].

The case 5H+ rest can be excluded at once, as by assumption A is in normal form with
respect to X0, hence we always have (AI)0 = βH with β < 4. With respect to A and I = [k, l]
with 1 6 k < l < n, we consider the following four divisors: C1, AI , C2, A8, where AI as before
and A8 =−H +R1 +R2 +R3 as before, and C1 :=

∑k−1
j=1 Aj , C2 :=

∑n−1
j=l+1 Aj , where C1 = 0

if k = 1 and C2 = 0 if l = n− 1. Because of the properties of toric systems, we have that
A8 · (C1 + C2) =AI · (C1 + C2) ∈ {0, 1, 2}, depending on the Ci being non-zero or not.

Now let us assume that AI = 2H −R3 −R4. Then C1 + C2 =−KX −A8 −AI = 2H −R1 −
2(R2 +R3)−R5 and A8 · (C1 + C2) = 3, which is not possible.

If AI = 3H −R2 −R3 −R4 − 2R5, we get C1 + C2 =H +R5 − 2R1 −R2 −R3 and (C1 +
C2) ·A8 = 3. Therefore this case is also excluded.

If AI = 4H − 2(R1 +R2 +R5)−R3 −R5), then (C1 + C2) =R5 −R3 and A8 · (C1 + C2) =
−1, which is not possible.

The remaining three cases differ only by enumeration from the first three and can be excluded
analogously. Altogether, under the conditions of the proposition, the strongly exceptional toric
system A is always cyclic. If we bring it into normal form by inverting A8, we get that
A′ = 2H −R4 −R5 and (A′)s = 2H. Hence by Proposition 10.2 and the subsequent remark,
the toric system is an extension of the toric system H, H, H on P2. 2

Proposition 10.6. Let X be a toric surface isomorphic to 8c and A=A1, . . . , A8 a strongly
exceptional toric system on X such that A= (A)s =

∑7
i=1 Ai = 4H − 2(R1 +R2 +R4)−R3 −

R5 in the coordinates indicated in Table 3. Then A is cyclic strongly exceptional and its normal
form is an extension of the standard toric system on P2. Without bringing it into normal form,
the toric system cannot be extended to a strongly exceptional toric system on any toric blow-up
of X.

Proof. In this case the arguments are completely analogous to the proof of Proposition 10.5. The
only difference is the classification of strongly left-orthogonal divisors with Euler characteristic
at most 4, which is shown in Table 5. In Table 6 we list the divisors D from Table 5 which
are candidates for some AI and do not have a strongly left-orthogonal partner together with
C :=A−D, and the intersection numbers C.D, C ·A8. As we can see, we get in every case
that the intersection numbers are not compatible with AI coming of a toric system. Hence,
under the conditions of the proposition, the strongly exceptional toric system A is always cyclic.
If we bring it into normal form by inverting A8, we get that A′ = 2H −R3 −R5 and (A′)s = 2H.
Hence by Proposition 10.2 and the subsequent remark, the toric system is an extension of the
toric system H, H, H on P2. 2

1275

https://doi.org/10.1112/S0010437X10005208 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005208


L. Hille and M. Perling

Table 5. Strongly left-orthogonal divisors with Euler characteristic less than or equal 4 on the
variety 8c.

χ(D) D

0 ±(Ri −Rj) with i ∈ {1, 2, 3}, j ∈ {4, 5},
±(H −Ri −Rj −Rk) with i 6= j ∈ {1, 2, 3}, k ∈ {4, 5}

1 Ri for any i,
H −Ri −Rj for i 6= j,
2H −R1 −R2 −R3 −R4 −R5

2 H −Ri for any i,
2H −

∑
i6=j Rj for any i

3 H, 2H −Ri −Rj −Rk with i, j, k pairwise distinct,
3H − 2Ri −

∑
j 6=i Rj for any i

4 2H −Ri −Rj for i 6= j,
3H − 2Ri −

∑
j 6=i,k Rj for k 6= i and (i, k) 6= (4, 5), (2, 3), (1, 3), (1, 2),

4H − 2(Ri +Rj +Rk)−Rl −Rm for i, j, k, l, m pairwise distinct,
i, j ∈ {1, 2, 3}, k ∈ {4, 5},
5H − 3Ri − 2(Rj +Rk +Rl)−Rm for i, j, k, l, m pairwise distinct and i ∈ {4, 5}

Table 6. Testing intersection numbers of some divisors of Table 5.

D C C ·D C ·A8

2H −R4 −R5 2H − 2(R1 +R2)−R3 −R4 3 3
3H − 2R5 −R1 −R2 −R3 H +R5 −R1 −R2 − 2R4 3 0
3H − 2R3 −R1 −R4 −R5 H +R3 −R1 − 2R2 −R4 3 2
3H − 2R3 −R2 −R4 −R5 H +R3 − 2R1 −R2 −R4 3 2
3H − 2R2 −R3 −R4 −R5 H − 2R1 −R4 2 1

Proposition 10.7. Let X be a toric surface isomorphic to 9 and A=A1, . . . , A9 a strongly
exceptional toric system on X such that A= (A)s =

∑7
i=1 Ai = 4H − 2(R1 +R3 +R5)−R2 −

R4 −R6 in the coordinates indicated in Table 3. Then A is cyclic strongly exceptional and its
normal form is an extension of the standard toric system on P2. Without bringing it into normal
form, the toric system cannot be extended to a strongly exceptional toric system on any toric
blow-up of X.

Proof. The proof is analogous to Propositions 10.5 and 10.6. Here, we have χ(A) = 3, and Table 7
shows the strongly left-orthogonal divisors with Euler characteristic less than or equal to 3. The
unpaired divisor 5H − 2(R1 +R2 +R3 +R4 +R5 +R6) can be excluded at once, as A is in
normal form. For the other cases, we make use of the Z3-symmetry of the table and consider
only three cases, and the others follow the same way by exchanging indices.

Assume firstAI = 3H − 2R2 −R3 −R4 −R5 −R6, then C :=A−AI =H − 2R1 −R3 −R5.
Then C ·A9 = C · (−H +R1 +R3 +R5) = 3, which is not possible.
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Table 7. Strongly left-orthogonal divisors with Euler characteristic less than or equal to 3 on
the variety 9.

χ(D) D

0 Ri −Rj with {i, j} 6= {1, 2}, {3, 4}, {5, 6},
±(H −Ri −Rj −Rk) with i, j, k pairwise distinct, {i, j, k}\{1, 2} 6= {5}, {6};
{i, j, k}\{3, 4} 6= {1}, {2}; {i, j, k}\{5, 6} 6= {3}, {4},
2H −R1 −R2 −R3 −R4 −R5 −R6

1 Ri for any i,
H −Ri −Rj for i 6= j,
2H −

∑
j 6=i Rj for any i

2 H −Ri for any i,
2H −

∑
k 6=i,j Rk for any i 6= j,

3H − 2Ri −
∑

j 6=i Rj for any i

3 H, 2H −Ri −Rj −Rk with i, j, k pairwise distinct,
3H − 2Ri −

∑
k 6=i,j Rj for any i 6= j and j 6= i+ 1 if i odd,

4H − 2(Ri +Rj +Rk)−Rl −Rm −Rn with i, j, k, l, m, n pairwise distinct,
{i, j, k}\{1, 2} 6= {5}, {6}; {i, j, k}\{3, 4} 6= {1}, {2}; {i, j, k}\{5, 6} 6= {3}, {4},
5H − 2(R1 +R2 +R3 +R4 +R5 +R6)

The next case is AI = (2H −R1 −R2 −R5). Then C = 2H −R1 − 2R3 −R5 −R6 and
C.A9 =−1, which is not possible.

The last case is AI = 4H − 2(R1 +R2 +R5)−R3 −R4 −R6. Then C =R2 −R3 and C ·
A9 =−1, and this case also is excluded.

Again, all together we get that under the conditions of the proposition, the strongly
exceptional toric system A is always cyclic. If we bring it into normal form by inverting A9, we get
that A′ = 2H −R2 −R4 −R6 and (A′)s = 2H. Hence by Proposition 10.2 and the subsequent
remark, the toric system is an extension of the toric system H, H, H on P2. 2
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BS10 T. Bridgeland and D. Stern, Helices on del Pezzo surfaces and tilting Calabi–Yau algebras, Adv.
Math. 224 (2010), 1672–1716.

Bro06 N. Broomhead, Cohomology of line bundles on a toric variety and constructible sheaves on its
polytope (2006), arXiv:math/0611469.
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