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Steady solutions of quasi-geostrophic flows
in basins, gulfs and channels on a β-plane
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Nonlinear steady solutions of the barotropic quasi-geostrophic equation in basins, gulfs
and channels on a β-plane are presented. The domains are rectangular with arbitrary aspect
ratios. The two-dimensional solutions assume a linear relationship between the potential
vorticity q and the stream function ψ . The sign of the slope in the linear q–ψ relationship
defines two broad sets of solutions. For a positive slope, the solutions in a closed basin
correspond to the inertial gyres derived by Fofonoff in 1954. The negative slope solutions
consist of normal modes that can be resonant. For gulfs and channels, the conditions at the
open boundaries are almost arbitrary flows entering or leaving the domain. Such conditions
allow a great variety of solutions in the interior, characterised mainly by arrays of vortices
with alternate signs. Several examples are presented and discussed.
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1. Introduction

The governing equations of homogeneous and incompressible two-dimensional (2-D) flow
in the limit of zero viscosity and no external forcing (Euler dynamics) admit steady,
nonlinear solutions. From the vorticity equation, it is readily found that the nonlinear
terms cancel out, implying a functional relationship between the vertical component of
the vorticity and a suitably defined stream function (whose spatial derivatives provide
the horizontal velocity components). This procedure has been known since the times of
Stokes in 1842, and was successfully applied by Lamb and Chaplygin at the turn of the
20th century to derive nonlinear solutions of dipolar vortices in ideal 2-D flows (see a
comprehensive discussion in Meleshko & van Heijst 1994).

In the context of large-scale oceanographic flows, which present a predominantly 2-D
behaviour due to the effects of the Earth’s rotation, Fofonoff (1954) applied the same
procedure to study nonlinear solutions of steady inertial flows in a rectangular closed
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basin (with no forcing or dissipation). In the quasi-geostrophic β-plane approximation,
the Fofonoff solutions consist of a linear relation between the potential vorticity q and the
stream function ψ , such that q = α2ψ + γ , where α2 and γ are free parameters. Here,
q = ω + βy, where ω is the relative vorticity, β is the latitudinal gradient of the Coriolis
parameter, and y is the latitudinal coordinate (see e.g. Vallis 2017).

The so-called Fofonoff modes consist of closed circulations in a rectangular basin,
whose characteristics are determined by constants α2 and γ . The modes of oceanographic
interest are characterised by a wide westward flow with a thin return current at either the
northern or southern boundary (for the case of single gyres, see figure 1 in Fofonoff 1954),
or at both boundaries (double gyre). Although the form of the Fofonoff solutions is highly
idealised and is still far from representing actual oceanic flows, they became an important
paradigm because they capture some essential features of basin-scale flows. For instance,
inertial solutions illustrate the westward intensification of the circulation with no need to
linearise the dynamical equation or use eddy viscosity terms, as in the wind-driven ocean
in the Stommel model (Stommel 1948).

The Fofonoff solutions and, in general, nonlinear flows obeying a functional q–ψ
relationship are of interest for the following reasons.

(i) Several studies based on more complex ocean dynamics have reported different
flows’ tendencies to acquire characteristics similar to those of the Fofonoff modes.
This behaviour is particularly remarkable in continuously forced turbulence (Griffa
& Salmon 1989; LaCasce 2002; Zavala Sansón 2022) and problems with different
viscous terms and boundary conditions (Cummins 1992; Wang & Vallis 1994).

(ii) The linear q–ψ relationship arises in different theoretical formulations, such as in the
statistical mechanics theory for finite resolution models (e.g. spectrally truncated;
see Salmon, Holloway & Hendershott 1976). The q–ψ linear correspondence is also
found for decaying flow over random topography in quasi-geostrophic (Bretherton
& Haidvogel 1976) and shallow-water (Merryfield, Cummins & Holloway 2001;
Zavala Sansón, González-Villanueva & Flores 2010) theories, as well as in the
2-D β-plane channel (Young 1987). Different vortex solutions based on equivalent
linear relationships have been found through the years; for instance, the asymmetric
Chaplygin dipole (Meleshko & van Heijst 1994), the dipolar modon (Stern 1975),
and several analytical solutions of monopolar and dipolar vortices over mountains
and valleys (Gonzalez & Zavala Sansón 2021).

(iii) Solutions with a linear q–ψ relationship with opposite sign behave differently. In this
case, there are normal mode solutions that can resonate, as discussed in the nonlinear
stability analyses of Carnevale & Fredericksen (1987) and in the shallow-water
context with topography by LaCasce, Nøst & Isachsen (2008).

(iv) More general functional q–ψ relationships have been studied in theoretical (Robert
& Sommeria 1991), numerical (Brands, Maassen & Clercx 1999) and experimental
(Trieling, van Heijst & Kizner 2010) studies of 2-D turbulence and vortex dynamics.

This paper discusses new linear q–ψ solutions for the quasi-geostrophic model on the
β-plane for a homogeneous fluid on a flat bottom in three domains: a closed basin, an
elongated gulf, and a channel. The gulf and the channel geometries allow very general
inlet and outlet conditions. In addition, the solutions consider the linear q–ψ relationship
with positive and negative slopes. Thus a comprehensive family of analytical expressions
is found.

Equilibrium states of oceanographic flows in different regions, domains and physical
conditions have been studied in various works based on long-term observations
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or measurements. For instance, there is a semi-permanent anticyclonic vortex in the
Lofoten Basin (Nordic Seas; Köhl 2007) and a cyclonic vortex at the Campeche Bay
(Gulf of Mexico; Zavala Sansón, Sheinbaum & Pérez-Brunius 2018). Several gulfs and
elongated bays in Earth’s oceans exhibit a pattern of eddies along their axis, such as in
the Aqaba Gulf (Berman, Paldor & Brenner 2000), and the Bahia de Banderas canyon in
the Mexican Pacific (Pantoja, Marinone & Filonov 2017). In more significant scale gulfs, a
train of eddies is commonly observed in the Red Sea (Zhan et al. 2014), the Gulf of Aden
(Bower & Fratantoni 2002), and along the Gulf of California (Lavín et al. 2013). Some
ocean channels have a dipolar structure that transports mass along them, as reported by
Wibowo et al. (2022) for the Malacca Strait. The analytical solutions in this paper consist
of an ample repertoire of different flow arrangements, some of which are of potential
oceanographic interest because they resemble field observations.

The paper is structured as follows. In § 2, we present the steady and nonlinear
quasi-geostrophic solutions based on a general q–ψ linear relationship. The solutions for
positive and negative slopes are shown. Section 3 evaluates and presents the two solutions
for three flow domains: a closed basin, a gulf and a channel. Stability arguments for some
solutions are presented. In § 4, we summarise and discuss the results.

2. Analytical solutions

We consider a homogeneous, incompressible and inviscid fluid described by the barotropic
quasi-geostrophic model on the β-plane. Using a Cartesian coordinate system (x, y) in
which east and north coincide with the positive x and y directions, respectively, the
dimensional quasi-geostrophic vorticity equation is

∂

∂t
∇2ψ + J(ψ,∇2ψ + βy) = 0, (2.1)

where ψ is the stream function, J(a, b) ≡ ∂xa ∂yb − ∂ya ∂xb is the Jacobian operator, and
∇2 ≡ ∂xx + ∂yy is the Laplacian. The horizontal velocity components (u, v) are defined as

u = −∂yψ and v = ∂xψ, (2.2a,b)

so ω = ∇2ψ is the vertical component of the relative vorticity. Recall that (2.1) represents
the material conservation of potential vorticity, q ≡ ∇2ψ + βy.

The flow domain is a rectangle with meridional and zonal dimensions Ly and Ly/ε,
respectively, with ε an arbitrary aspect ratio (figure 1). The domain is elongated zonally
when ε < 1. A non-dimensional form of (2.1) is obtained using the scales

ψ = ψ̂ψa, y = Lyya, x = Ly

ε
xa, t = L2

y

εψ̂
ta, (2.3a–d)

where ψ̂ is the stream function amplitude, and subscript a denotes the non-dimensional
variables. For steady flows, (2.1) without dimensions (and omitting subscript a for
notational convenience) is given by

J(ψ, ε2 ∂xxψ + ∂yyψ + β̂y) = 0. (2.4)

We solve this nonlinear equation by assuming the linear q–ψ relationship

q = ±α2ψ± + γ, (2.5)

where α and γ are constants, and the sign before α2 defines two types of solutions.
Equation (2.5) implies that the stream function satisfies a non-homogeneous Helmholtz
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Figure 1. Rectangular zonal domain on a β-plane with aspect ratio ε. The x and y directions are scaled with
the meridional domain length Ly. The zonal walls are free-slip boundaries. The meridional walls can be closed
or open.

equation

ε2 ∂xxψ
± + ∂yyψ

± ∓ α2ψ± = −β̂y + γ, (2.6)

in which the inhomogeneity is provided by the β effect and γ .
We propose the separable solution

ψ±(x, y) = F(x)G( y)+ η( y), (2.7)

yielding

ε2G ∂xxF + F ∂yyG ∓ α2FG + ∂yyη ∓ α2η = −β̂y + γ. (2.8)

Equation (2.8) can be split into

∂yyη ∓ α2η = −β̂y + γ, (2.9)

ε2G ∂xxF + F ∂yyG ∓ α2FG = 0. (2.10)

In the rest of this section, we present the solutions of (2.9) and (2.10), and then the
stream functions ψ± using (2.7). We will apply free-slip conditions at the zonal walls, i.e.
at y = 0, 1. Afterwards, in § 3, we will show complete solutions for different conditions at
the meridional boundaries x = 0, 1.

2.1. Solutions for q = −α2ψ− + γ

2.1.1. Solution for η−( y)
We require a free-slip condition at the zonal boundaries, implying a constant stream
function there. Thus the complete problem for η−( y) using (2.9) is

∂yyη
− + α2η−= − β̂y + γ, with η−(0) ≡ ηS, η

−(1) ≡ ηN . (2.11)
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Note that the solution admits different constant values at the southern and northern walls.
Let η−( y) = η−

h ( y)+ η−
p ( y), where the homogeneous (η−

h ) and particular (η−
p ) solutions

of (2.11) are

η−
h ( y) = A1 cos(αy)+ A2 sin(αy), η−

p ( y) = (γ − β̂y)/α2. (2.12a,b)

with A1 and A2 constants. To satisfy the boundary conditions, it is found that

A1 = ηS − γ

α2 , A2 = ηN − (ηS − γ /α2) cos(α)− (γ − β̂)/α2

sin(α)
. (2.13a,b)

Therefore, the solution is

η−( y;α, β̂, γ, ηS, ηN) =
(
ηS − γ

α2

)
cos(αy) (2.14)

+ ηN − (ηS − γ /α2) cos(α)− (γ − β̂)/α2

sin(α)
sin(αy)+ (γ − β̂y)/α2. (2.15)

2.1.2. Solution for F−(x) and G−( y)
We can write (2.10) as

∂yyG−

G− = −
(
ε2 ∂xxF−

F− + α2
)

= k, (2.16)

with k a constant. This gives the following equations for G−( y) and F−(x):

∂yyG− − kG− = 0, (2.17)

ε2 ∂xxF− + (α2 + k)F− = 0. (2.18)

We choose k = −p2 with p ∈ R to obtain the solution for G− that satisfies the meridional
boundary conditions:

G−( y) = b1 sin( py)+ b2 cos( py), (2.19)

where b1 and b2 are constants. The no-normal flow condition v(x, 0) = v(x, 1) = 0, or
equivalently ∂xF−G− = 0 at the zonal boundaries, implies that G−(0) = G−(1) = 0,
which leads to

b2 = 0, p ≡ pn = nπ (with n integer), b1 = 1 (arbitrary), (2.20a–c)

and then
G−

n ( y) = sin( pny). (2.21)

The equation for F−(x) has n solutions:

F−
n (x;α, ε) = c1n sin(λ−n x)+ c2n cos(λ−n x), (2.22)

where c1n, c2n and λ−n are complex constants, with the latter given by

λ−n =
(
α2 − p2

n

ε2

)1/2

∈ C. (2.23)
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2.1.3. ψ− solutions
Equation (2.10) has linearly independent solutions F−

n G−
n for each mode n. Hence the more

general solution is the sum
∑∞

n F−
n G−

n . Using (2.14), (2.21) and (2.22) in (2.7), we get the
desired solution:

ψ−(x, y) =
∞∑

n=1

F−
n (x) sin( pny)+ η−( y)

=
∞∑

n=1

[c1n sin(λ−n x)+ c2n cos(λ−n x)] sin( pny)+
(
ηS − γ

α2

)
cos(αy)

+ ηN − (ηS − γ /α2) cos(α)− (γ − β̂)/α2

sin(α)
sin(αy)+ (γ − β̂y)/α2. (2.24)

2.2. Solutions for q = α2ψ+ + γ

Now we present the solutions of (2.9) and (2.10) using the positive sign to obtain ψ+.
Given the similarity with the preceding subsection, some details will be omitted.

2.2.1. Solution for η+( y)
The problem for η+( y) in (2.9) satisfying free-slip conditions at y = 0, 1 is given by

∂yyη
+ − α2η+ = −β̂y + γ, with η+(0) = ηS, η

+(1) = ηN . (2.25)

The homogeneous (η+
h ) and particular (η+

p ) solutions of (2.25) are

η+
h ( y) = A1 cosh(αy)+ A2 sinh(αy), η+

p ( y) = −(γ − β̂y)/α2, (2.26a,b)

where constants A1 and A2 are obtained as in (2.12a,b). Thus the general solution satisfying
the boundary conditions is

η+( y;α, β̂, γ, ηS, ηN) =
(
ηS + γ

α2

)
cosh(αy) (2.27)

+ ηN − (ηS + γ /α2) cosh(α)+ (γ − β̂)/α2

sinh(α)
sinh(αy)− (γ − β̂y)/α2. (2.28)

2.2.2. Solution for F+(x) and G+( y)
Equation (2.10) yields

∂yyG+

G+ = −ε2 ∂xxF+

F+ + α2 = k. (2.29)

Separating the equation for G+( y) and choosing k = −p2 yields the solution

G+
n ( y) = sin( pny), (2.30)

with pn = nπ again; from (2.21), note that G+
n ( y) = G−

n ( y). The equation for F+(x) has
solutions of the form

F+
n (x;α, ε) = c1n sinh(λ+n x)+ c2n cosh(λ+n x), (2.31)
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with the real constants

λ+n =
(
α2 + p2

n

ε2

)1/2

∈ R. (2.32)

2.2.3. ψ+ solutions
Finally, the stream function solution of (2.6) is given by

ψ+(x, y) =
∞∑

n=1

F+
n (x) sin( pny)+ η+( y)

=
∞∑

n=1

[c1n sinh(λ+n x)+ c2n cosh(λ+n x)] sin( pny)+
(
ηS + γ

α2

)
cosh(αy)

+ ηN − (ηS + γ /α2) cosh(α)+ (γ − β̂)/α2

sinh(α)
sinh(αy)− (γ − β̂y)/α2. (2.33)

2.3. General properties
The steady solutions ψ± given by (2.24) and (2.33) have the following properties.

(i) The zonal mass flux depends only on the boundary conditions at the zonal walls, and
is independent of the spatial coordinates:∫ 1

0
u±(x, y) dy ≡

∫ 1

0
∂yψ

±(x, y) dy = ηN − ηS. (2.34)

This result will be useful to prescribe open boundary conditions in gulfs and
channels, as will be discussed in next section.

(ii) The parameter γ determines the meridional structure of the solutions ψ±, which
is given by sin(nπy) and functions η±( y). In particular, when γ = β̂/2 and
considering ηS = ηN = 0, the stream functions are antisymmetric with respect
to y = 1/2. This is verified by using y∗ = y − 1/2 (with −1/2 ≤ y∗ ≤ 1/2) and
proving that

ψ±(x, y∗;α, ε, β̂, γ = β̂/2) = ψ±(x,−y∗;α, ε, β̂, γ = β̂/2). (2.35)

(iii) To have a physical interpretation of α, we assume that its dimensional value αd
(with units of 1/length) depends on the physical parameters involved in the problem:

αd = αd(ψ̂, β, Ly). This implies that αd =
√
βLy/ψ̂ ≡ L−1

R , where LR is the Rhines
scale (Rhines 1975). Thus

α = Lyαd = Ly/LR. (2.36)

Henceforth, we consider solutions with α ≥ 1.

3. Solutions in basins, gulfs and channels

This section discusses the steady flow solutions ψ±(x, y) (2.24) and (2.33) by prescribing
suitable boundary conditions. These conditions can be free-slip walls or open boundaries.
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The closed-basin
ya = 1

ya = 0

ya = 1

ya = 0

ya = 1

ya = 0

The gulf The channel

xa/ε = 0 xa/ε = 1/ε xa/ε = 0 xa/ε = 1/ε xa/ε = 0 xa/ε = 1/ε

(b)(a) (c)

Figure 2. Non-dimensional domains: (a) closed basin, (b) zonal gulf, (c) zonal channel.

3.1. Boundary conditions
Three domains are analysed: a closed basin, a gulf and an open channel (figure 2). For the
three domains, the zonal walls (y = 0, 1) are free-slip, and the constant value of the stream
function there is chosen to be zero:

ψ±(x, 0) ≡ ηS = 0, ψ±(x, 1) ≡ ηN = 0. (3.1a,b)

Recall, however, that the formulation allows ηS, ηN /= 0.
The meridional conditions at x = 0, 1 are defined by prescribing a constant value of ψ±

at free-slip walls, or the meridional velocity v = ∂xψ
± for open boundaries. For the closed

basin, the meridional boundaries are free-slip; the gulf has an open boundary at the west,
and a closed one at the east; the channel has the western and eastern boundaries open.
Thus the meridional conditions are as follows.

Basins:

{
ψ±(0, y) = 0,

ψ±(1, y) = 0.
(3.2)

Gulfs:

{
∂xψ

±(0, y) = V0 sin(sπy),

ψ±(1, y) = 0.
(3.3)

Channels:

{
∂xψ

±(0, y) = VW sin(sWπy),

∂xψ
±(1, y) = VE sin(sEπy).

(3.4)

The constants V0, VW and VE for the gulf and the channel are arbitrary magnitudes of
the meridional flow at the open boundaries, and parameters s, sW and sE are arbitrary
natural numbers 1, 2, 3, . . . . We specified the meridional velocity to ensure continuity of
the stream function at the points (0, 0) and (0, 1). Specifying the zonal velocity could
result in non-zero meridional velocity profiles at these points.

The meridional velocity component in the open boundaries must be zero at the
intersections with the zonal walls because the normal flow is zero there. This feature
is satisfied by the sinusoidal functions in (3.3) and (3.4), but any other continuous
function with the same property is allowed. In addition, the property (2.34) guarantees
that the net zonal flux is zero regardless of the form of the meridional component
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at the open boundaries. For instance, an arbitrary meridional velocity v+(0, y) at the
western boundary will imply a zonal component u+(0, y) such that

∫ 1
0 ∂yψ

+(0, y)
dy = 0.

The ψ± solutions (2.24) and (2.33) include infinite series, so the exact solutions
correspond to n → ∞. Thus the plots presented in subsequent subsections necessarily
correspond to truncated solutions for a finite number of modes N. Hereafter, unless
otherwise indicated, we assume β̂ = 100, corresponding to β ∼ 2 × 10−8 km−1 s−1,
a length scale Ly = 1000 km, and velocity ψ̂/Ly = 0.2 m s−1. For these values, the
Rhines scale is LR ∼ 100 km. We first present the ψ+ solutions to compare with
the Fofonoff solutions. Afterwards, we examine the more complex structures obtained
with ψ−.

3.2. ψ+(x, y) solutions

3.2.1. Basins
From the ψ+ solution (2.33), the conditions (3.2) at the west and east boundaries are

ψ+(0, y) =
∞∑

n=1

c2n sin( pny)+ η+( y;α, β̂, γ, 0, 0) = 0, (3.5)

ψ+(1, y) =
∞∑

n=1

[c1n sinh(λ+n )+ cosh(λ+n )] sin( pny)+ η+( y;α, β̂, γ, 0, 0) = 0. (3.6)

The values of c1n and c2n are determined by the method of Fourier coefficients, yielding

c2n = I+(n), c1n sinh(λ+n )+ c2n cosh(λ+n ) = I+(n), (3.7a,b)

with the integral

I+(n) = −2
∫ 1

0
η+( y;α, β̂, γ, 0, 0) sin( pny) dy

= 2
∫ 1

0

(
− γ

α2 cosh(αy)− −γ cosh(αy)+ γ − β̂

α2 sinh(α)
sinh(αy)− β̂y − γ

α2

)
sin( pny) dy

= −2
γ

α2

[
α sinh(α) sin(nπ)− nπ cosh(α) cos(nπ)+ nπ

α2 + (nπ)2

]
+ 2γ
α2nπ

[1 − cos(nπ)]

− 2
γ − γ cosh(α)− β̂

α2 sinh(α)

[
α cosh(α) sin(nπ)− nπ sinh(α) cos(nπ)

α2 + (nπ)2

]

+ 2β̂
α2nπ

cos(nπ). (3.8)

Hence solving the system (3.7a,b), the constants are

c1n = 1 − cosh(λ+n )
sinh(λ+n )

I+(n), c2n = I+(n). (3.9a,b)
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Figure 3. Stream function ψ = ψ+(x, y) and velocity field in: (a,b) a square basin (ε = 1) with α = 10,
γ = 0, β̂/2, N = 10; and (c,d) an elongated domain (ε = 0.25) with α = 1, γ = 0, β̂/2, N = 55.

Note that I+ → 0 for n � 1, which implies c1n, c2n → 0, thus guaranteeing the absence
of singular terms in the solution (2.33). In addition, c1n is always finite because of the limit
[1 − cosh(λ+n )]/ sinh(λ+n ) → 0 for very small λ+n values.

Consider first a square basin, ε = 1, which corresponds to the cases studied by Fofonoff
(1954). Figures 3(a,b) present the stream function and the velocity field for α = 10 and
two different γ values. When γ = 0, there is an intense anticyclonic cell next to the
northern wall, as found by Fofonoff (see the lower panel of his figure 1, and also recall
that Fofonoff showed an approximate boundary layer solution). For γ = β̂/2, the solution
corresponds to the well-known counter-rotating inertial gyres. Thus the Fofonoff structures
are recovered satisfactorily with N = 10 terms. Figures 3(c,d) show the stream function
fields in a zonally elongated basin (ε < 1) for the same γ values. The single anticyclonic
gyre (figure 3c) and the double gyre (figure 3d) structure are found again but now stretched
in the zonal direction. In this rectangular basin, the solutions converge with N = 55 terms.

The total kinetic energy and potential enstrophy are

E(α, ε, β̂, γ ) = 1
2

∫
A

|∇ψ±|2 dx dy, (3.10)

Z(α, ε, β̂, γ ) = 1
2

∫
A
(∇2ψ± + β̂y)2 dx dy. (3.11)

These global quantities as functions of α in the square basin are smooth, decaying
functions, as seen in figure 4.

The curves reveal that the energy and enstrophy do not diverge for any α (we will see
later that this is not the case for solutions ψ−). Similar energy and enstrophy curves are
found in elongated domains (not shown).
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Figure 4. Kinetic energy (blue) and enstrophy (black) calculated with solutions ψ+ (N = 10) as a function
of α in a square basin, ε = 1: (a) γ = 0, (b) γ = β̂/2. Both functionals are divided by β̂2 for visualisation
purposes.

3.2.2. Gulfs
For this domain, we consider an open boundary at the western side and a closed wall at
the eastern side (figure 2b). Thus conditions (3.3) are

∂xψ
+(0, y) =

∞∑
n=1

c1nλ
+
n sin( pny) = V0 sin(sπy), (3.12)

ψ+(1, y) =
∞∑

n=1

[c1n sinh(λ+n )+ c2n cosh(λ+n )] sin( pny)+ η+( y;α, β̂, γ, 0, 0) = 0.

(3.13)

Using the Fourier method again, the solution of this system for c1n and c2n is

c1n =

⎧⎪⎪⎨
⎪⎪⎩

V0

πλ+n

[
sin[(s − n)π]

s − n
− sin[(s + n)π]

s + n

]
if s /= n,

V0

λ+n
if s = n,

(3.14)

c2n =

⎧⎪⎪⎨
⎪⎪⎩

(
I+(n)− V0 sinh(λ+n )

πλ+n

[
sin[(s − n)π]

s − n
− sin[(s + n)π]

s + n

])
/ cosh(λ+n ) if s /= n,(

I+(n)− V0 sinh(λ+n )
λ+n

)
/ cosh(λ+n ) if s = n,

(3.15)

with I+(n) the integral (3.8).
Figure 5 presents the stream function and velocity fields in zonally elongated gulfs for

four γ values and using V0 = 0. This condition corresponds to solutions where the total
velocity at the entrance is purely zonal. In all cases, the flow remains zonal except near the
eastern wall, where the fluid recirculates and turns westwards. The influence of γ is, again,
to generate a single anticyclonic cell (γ = 0, figure 5a) or double gyres (0 < γ < β̂), as
observed in the Fofonoff solutions.

In figure 6, the velocity at the entrance is non-zonal, V0 /= 0. In these cases, the
non-parallel-flow condition at the gulf mouth affects only the meridional structure near
the entrance, while the flow in the rest of the domain remains parallel until reaching the
eastern wall. Again, these fields exhibit regions with closed circulations, resembling the
Fofonoff flows according to the γ value.
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Figure 5. Stream function ψ = ψ+ and velocity fields in an elongated gulf (ε = 0.2) with α = 10, for γ
values (a) 0, (b) β̂/4, (c) β̂/2, and (d) 3β̂/4. The parameters at the western boundary are V0 = 0 and s = 1.
The solutions are computed with N = 20.
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Figure 6. Same as figure 5 but for an elongated gulf (ε = 0.5) and a non-parallel-flow at the entrance, V0 /= 0.

3.2.3. Channels
A channel, as illustrated in figure 2(c), is a domain with openings in both meridional
boundaries. The meridional velocity components satisfy conditions (3.4):

∂xψ
+(0, y) =

∞∑
n=1

c1nλ
+
n sin( pny) = VW sin(sWπy), (3.16)

∂xψ
+(1, y) =

∞∑
n=1

[c1n cosh(λ+n )+ c2n sinh(λ+n )]λ
+
n sin( pny) = VE sin(sEπy). (3.17)
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Steady solutions of quasi-geostrophic flows on a β-plane

Following the procedures of the previous subsubsections, the coefficients c1n and c2n are

c1n =

⎧⎪⎨
⎪⎩

0 if sW /= n,

VW

λ+n
if sW = n,

c2n =

⎧⎪⎨
⎪⎩

−c1n cosh(λ+n )/ sinh(λ+n ) if sE /= n,(
VE

λ+n
− c1n cosh(λ+n )

)
/ sinh(λ+n ) if sE = n.

(3.18a,b)

In the case of purely parallel flow at the meridional boundaries, VW and VE are zero and
the coefficients c1n and c2n become null. Then the x-dependent terms in the ψ+ solution
(2.33) disappear too. Consequently, the stream function depends solely on the latitudinal
coordinate as ψ+( y) = η+( y;α, β̂, γ, 0, 0). Thus

ψ+( y) = γ

α2 cosh(αy)+ γ [1 − cosh(α)] − β̂

α2 sinh(α)
sinh(αy)− γ − β̂y

α2 . (3.19)

Figure 7 shows the zonal velocity profiles for different values of γ . The net zonal flow
is zero, as anticipated from property (2.34). In particular, for γ = 0, the flow near the
northern boundary goes eastwards through a relatively thin region. Consequently, this
boundary jet is compensated by westward motion at lower latitudes.

When the flow imposed at the meridional boundaries is not zonal (VW /= 0, VE /= 0), the
ψ+ solutions exhibit a zonal structure. Figures 8(a,b) present two cases in an elongated
domain where VW = VE and VW = −VE, both with sW = sE = 1. The resulting flows at
the zonal boundaries enter and exit the channel, as shown in figures 8(c,d), which present
the meridional profiles of the zonal velocity u+( y). In both examples, the flow is mostly
zonal in the interior domain, except near the western and eastern ends, where the velocity
acquires a meridional component to satisfy the boundary conditions (as found for the
gulfs). Observe that the dominant part of the solution is a double gyre because γ = β̂/2.
Note also that the two cases exhibit different symmetries with respect to x and y.

3.3. ψ−(x, y) solutions

3.3.1. Basins
From the ψ− solution (2.24), the conditions (3.2) at the meridional boundaries are

ψ−(0, y) =
∞∑

n=1

c2n sin( pny)+ η−( y;α, β̂, γ, 0, 0) = 0, (3.20)

ψ−(1, y) =
∞∑

n=1

[c1n sin(λ−n )+ cos(λ−n )] sin( pny)+ η−( y;α, β̂, γ, 0, 0) = 0, (3.21)

where η−( y) is given by (2.15). To determine the values of c1n and c2n, we follow again
the Fourier method used in § 3.2.1, which gives

c1n = 1 − cos(λ−n )
sin(λ−n )

I−(n), c2n = I−(n), (3.22a,b)
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Figure 7. Zonal velocity profiles u = u+( y) = −∂yψ
+( y) calculated with (3.19) in a channel with

parallel-flow conditions (VW = VE = 0) and different α values (coloured curves), for γ values (a) 0, (b) β̂/4,
(c) β̂/2, and (d) 3β̂/4.

with the new integral

I−(n) = −2
∫ 1

0
η−( y;α, β̂, γ, 0, 0) sin( pny) dy

= 2
∫ 1

0

(
γ

α2 cos(αy)− γ cos(α)− γ + β̂

α2 sin(α)
sin(αy)− γ − β̂y

α2

)
sin( pny) dy

= γ

α2

[
cos(α − nπ)

α − nπ
− cos(α + nπ)

α + nπ
+ 1
α + nπ

− 1
α − nπ

]
− 2β̂
α2nπ

cos(nπ)

− γ cos(α)− γ + β̂

α2 sin(α)

[
sin(α − nπ)

α − nπ
− sin(α + nπ)

α + nπ

]
− 2γ
α2nπ

[1 − cos(nπ)] .

(3.23)

If γ = 0, then the coefficients c1n defined in (3.22a,b) are singular for λ−n = mπ
with m = 1, 3, 5, 7, . . ., and are zero when m = 2, 4, 6, 8, . . ., which is easily shown
by L’Hopital’s rule: limλ−n →mπ[1 − cos(λ−n )]/ sin(λ−n ) = limλ−n →mπ sin(λ−n )/ cos(λ−n ).
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Figure 8. Stream function ψ = ψ+ and velocity fields in an elongated channel (ε = 0.5) with α = 10 and
γ = β̂/2 for boundary parameters sW = sE = 1 and (a) VW = VE = 10, (b) VW = −VE = 10. (c,d) The zonal
velocity profiles at x = 0 and x = 2. The solutions are obtained with N = 10.

Therefore, from the λ−n definition (2.23), the values of α where the singularities exist are

αmn = π
√
ε2m2 + n2. (3.24)

To illustrate the singularities, figures 9(a,b) present the kinetic energy and potential
enstrophy as functions of α for a square domain (ε = 1) and two characteristic values of
γ . The curves demonstrate that the energy and enstrophy diverge when α = αmn, so the
corresponding solutions are forbidden. The plots also reveal that there are more singular
values for γ = 0 than for γ = β̂/2 in the same α interval. Figures 9(c,d) present the
energy and enstrophy curves but now as a function of the aspect ratio for zonally elongated
domains, 0 < ε < 1, and fixed α. The singularities εmn satisfy (3.24). The curves show that
the density of singular values increases for more elongated domains, i.e. for ε → 0.

The main consequence of having singularities is that the solutions corresponding to
different α or ε intervals between singular values are steady flows of a specific class
or characteristic structure, which is different from other classes. The large variety of
admissible classes in solutions ψ− is an essential difference compared to solutions ψ+.

To clarify the previous assertion, figure 10 presents the steady flow fields for different α
values in a square basin (ε = 1) with γ = 0. These plots correspond to minimum energy
solutions in figure 9(a) and are representative of four different classes. Evidently, for larger
α, the flows have more and smaller vortical structures. A remarkable aspect is that there
are no smooth transitions between the solutions of adjacent classes. For instance, all the
solutions of the first class are characterised by a large anticyclonic cell (as in figure 10a),
whilst the solutions of the second class are cyclonic vortices (as in figure 10b).

Figure 11 shows solutions in an elongated domain (ε = 0.4) with different α and γ
values. It is observed again that bigger α implies more and smaller vortices, as can be
seen by comparing figures 11(a,b) (α = 10) and figures 11(c,d) (α = 20). The effect of γ
has an influence on the north–south symmetry: the flow is asymmetrical for γ = 0, and
antisymmetrical with respect to y = 0.5 for γ = β̂/2 (as in the Fofonoff solutions).
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Figure 9. Kinetic energy (blue) and enstrophy (black) based on solutions ψ− as functions of (a,b) α (ε = 1),
and (c,d) ε (α = 10), for (a,c) γ = 0, (b,d) γ = β̂/2. The curves are obtained using N = 10 terms. The dashed
vertical lines indicate singularities.
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Figure 10. Stream function ψ = ψ−(x, y) and velocity fields in a square basin (ε = 1) with γ = 0, for
(a) α = 1, (b) α = 6, (c) α = 12, (d) α = 18.7. The solutions are truncated at N = 50.
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Figure 11. Stream functionψ = ψ−(x, y) and velocity fields in a rectangular basin (ε = 0.4) with: (a) α = 10,
γ = 0; (b) α = 10, γ = β̂/2; (c) α = 20, γ = 0; (d) α = 20, γ = β̂/2. The solutions are truncated at N = 20.

3.3.2. Gulfs
For this domain, the solutions (2.24) satisfy the meridional boundary conditions (3.3):

∂xψ
−(0, y) =

∞∑
n=1

c1nλ
−
n sin( pny) = V0 sin(sπy), (3.25)

ψ−(1, y) =
∞∑

n=1

[c1n sin(λ−n )+ c2n cos(λ−n )] sin( pny)+ η−( y;α, β̂, γ, 0, 0) = 0. (3.26)

The coefficients are

c1n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0

πλ−n

[
sin[(s − n)π]

s − n
− sin[(s + n)π]

s + n

]
if s /= n,

V0

λ−n
if s = n,

(3.27)

c2n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
I−(n)− V0 sin(λ−n )

πλ−n

[
sin[(s − n)π]

s − n
− sin[(s + n)π]

s + n

])
/ cos(λ−n ) if s /= n,

(
I−(n)− V0 sin(λ−n )

λ−n

)
/ cos(λ−n ) if s = n,

(3.28)

with I−(n) the integral (3.23). The coefficients c2n in (3.28) are singular when λ−n =
(1/2 + m)π with m = 0, 1, 2, 3, . . . , i.e. for α satisfying

αmn = π

√
ε2
(

1
2 + m

)2 + n2. (3.29)

Thus there are forbidden solutions in the gulf, as in the closed basin.
Figure 12 shows the stream function and velocity fields of steady flows in an elongated

gulf (ε = 0.2) for three α classes, and for each of them, four values of γ . To simplify,
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Figure 12. Stream function ψ = ψ−(x, y) and velocity fields in a rectangular gulf (ε = 0.2) for different α
and γ values. In all cases, the meridional velocity amplitude at the western boundary is zero, V0 = 0, so the
entering flow is zonal. The solutions are obtained with N = 10.

we examine cases with parallel flow at the western side, V0 = 0. These choices illustrate
the variety of different flow configurations. The plots reveal that a zonal sequence of
vortices with alternating sign is a characteristic pattern of this domain (except for α = 5,
γ = β̂/2). As expected, the number of vortices increases with α for most of the γ values.
In each α class, the change of the flow pattern for different γ is similar: the flow is
almost unaltered from γ = 0 to γ = β̂/4, then becomes meridionally antisymmetric when

997 A24-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.608


Steady solutions of quasi-geostrophic flows on a β-plane

–20

–20

0 20

u(0, y)

–20 0 20

u(0, y)

–20 0 20

u(0, y)

–20 0 20

u(0, y)

–40 0 20 –20–40 0 20 –20–40 0 20 –20–40 0 20

–50 0 50 –50 0 50 –50 0 50 –50 0 50

1.0

0.5y

0

1.0

0.5y

0

1.0

0.5y

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

α = 10

α = 9

α = 5

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

γ = 0 γ = β̂/4 γ = β̂/2 γ = 3β̂/4

γ = 0 γ = β̂/4 γ = β̂/2 γ = 3β̂/4

γ = 0 γ = β̂/4 γ = β̂/2 γ = β̂/4

(b)(a) (d )(c)

(e) ( f ) (h)(g)

(i) (k) (l)( j)

Figure 13. Meridional profiles of the zonal velocity at the western entrance, u = u−(0, y), corresponding to
the gulfs shown in figure 12.

γ = β̂/2, and reverses for γ = 3β̂/4 (this sequence resembles what is observed in the
Fofonoff solutions).

Figure 13 displays the zonal velocity profiles at the gulf entrance corresponding to the
cases shown in figure 12. For α = 5, the fluid enters parallel to the zonal direction and
exits through the central part for all the γ values. In contrast, the zonal inflow and outflow
for bigger α has a more irregular pattern and changes with γ .

3.3.3. Channels
This domain has meridional open boundaries. Conditions (3.4) are

∂xψ
−(0, y) =

∞∑
n=1

c1nλ
−
n sin( pny) = VW sin(sWπy), (3.30)

∂xψ
−(1, y) =

∞∑
n=1

[c1n cos(λ−n )− c2n sin(λ−n )]λ
−
n sin( pny) = VE sin(sEπy), (3.31)
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and solving the coefficients yields

c1n =

⎧⎪⎪⎨
⎪⎪⎩

VW

πλ−n

[
sin[(sW − n)π]

sW − n
− sin[(sW + n)π]

sW + n

]
if s /= n,

VW

λ−n
if s = n,

(3.32)

c2n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1n cos(λ−n )− VE

[
sin[(sE − n)π]

sE − n
− sin[(sE + n)π]

sE + n

]
/πλ−n

sin(λ−n )
if s /= n,

c1n cos(λ−n )− VE/λ
−
n

sin(λ−n )
if s = n.

(3.33)

As we found for the ψ+ solutions, the parallel-flow condition at both ends, VW = VE =
0, implies that c1n = c2n = 0 for all n, therefore the flow is purely zonal. The stream
function is ψ− = η−( y;α, β̂, γ, 0, 0):

ψ−( y) = − γ

α2 cos(αy)− γ [1 − cos(α)] − β̂

α2 sin(α)
sin(αy)+ γ − β̂y

α2 . (3.34)

Figure 14 shows the zonal velocity profiles calculated with (3.34) for several values of
α and four values of γ . In all cases, the profiles represent eastward and westward zonal
jets, and the number of jets increases with α. This more complicated structure contrasts
with the much smoother zonal jets found for solutions ψ+ in figure 7. A general feature
of the ψ− profiles is that the eastward jets are slightly more intense than their westward
counterparts. Consequently, the eastward flows are narrower because the net zonal flux is
zero, according to property (2.34).

To show solutions with non-parallel inflow/outlfow conditions, figures 15(a,b) present
the steady flows for an elongated channel (ε = 0.5), where VW ,VE /= 0, and α = 5 and
10, respectively. For these values, the flow structure remains similar for solutions with
different values of γ , thus we show only examples with γ = 0. For α = 5, the flow consists
of a zonally elongated cell occupying mostly the southern part and two smaller cells at the
north. For α = 10, the structure is much more complex: there is a series of vortices with
alternating sign along the channel, as we found in the basin and the gulf for higher α
values.

3.4. Stability arguments
In this section, we examine the stability of the solutions by considering the minimum
enstrophy principle for quasi-geostrophic flows on a β-plane (Bretherton & Haidvogel
1976); for shallow-water flows, see Merryfield et al. (2001) and Zavala Sansón (2010),
and for vortical structures, see Leith (1984). The principle is based on the invariants of
the vorticity equation (2.1): the global kinetic energy (3.10) and the generalised enstrophy
integrals, the most important one being (3.11). The enstrophy cascades towards smaller
scales, where viscous effects dissipate it. In contrast, energy cascades towards larger scales,
and is virtually conserved. Thus the system tends towards a state of minimum enstrophy
determined by the prescribed energy level. As mentioned by Young (1987), this heuristic
argument suggests that the configuration to which the flow evolves can be obtained by
solving the variational principle of minimising the enstrophy subject to the given initial
energy.
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Figure 15. Stream function ψ = ψ− and velocity fields in an elongated gulf (ε = 0.5) with γ = 0 and
(a) α = 5, (b) α = 10. The boundary parameters are VW = 10, sW = 1 and VE = 20, sE = 3. The solutions
are truncated at N = 10.

Following Young (1987), we consider the enstrophy–energy curves Z versus E
corresponding to the present solutions ψ± for different α values (in our problem, α
corresponds to the only Lagrange multiplier of the variational problem). Then we look for
the minimum enstrophy solution for a given energy, which must be stable. Figures 16(a,b)
show the energy–enstrophy relation for solutions ψ− (solid curves for different α classes)
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Figure 16. Enstrophy–energy curves for the solutions ψ± in the square basin (ε = 1) with (a) γ = 0 and
(b) γ = 50. Solid (dashed) curves represent ψ− (ψ+) solutions. Colours distinguish the α classes of the ψ−
solutions found in figure 9. Labelled dots on the curves indicate some solutions presented in figures 3 and 10.
Note that α− (α+) represents the α value for solutions ψ− (ψ+).
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Figure 17. Same as figure 16, but now for a gulf with aspect ratio ε = 0.2. Labelled dots on the curves
indicate some solutions presented in figures 5 and 12.

and ψ+ (dashed curves) in the square basin (ε = 1) with γ = 0 (figure 16a) and γ = 50
(figure 16b). Consider first the case with γ = 0 (figure 16a). There are three energy
intervals where we find different minimum enstrophy solutions. Such solutions are ψ+
(dashed curve) for low energy values. In particular, the flow shown in figure 3(a) is stable.
Note that the ψ+ branch merges with the first α class of the ψ− solutions (1 < α < 4.4).
In the intermediate energy range, the minimum enstrophy solution corresponds to the
ψ− solutions of the third class 7 < α < 9.9 (figure 10a), and for even larger energies
to the second class 4.4 < α < 7 (figure 10b). The ψ− solutions in the other α classes
are expected to be unstable. The energy–enstrophy curves for γ = 50 and defined for
different α classes (see figure 9) are presented in figure 16(b). Note that the flows shown in
figures 3(b) and 10(c) are stable (minimum enstrophy for the corresponding energy), while
that shown in figure 10(d) is unstable.

A similar analysis can be made for the solutions within the gulf with γ = 0 and 50
(figures 17a,b). In these cases, we find again that the stable configurations for low energies
correspond to ψ+ solutions. For larger energies, the minimum enstrophy solutions

997 A24-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.608


Steady solutions of quasi-geostrophic flows on a β-plane

correspond to ψ− for different α classes. Again, the labelled dots indicate whether the
solutions presented in previous figures are stable or not. Interestingly, the ψ+ solutions in
the elongated gulf shown in figures 5(a,c) are minimum enstrophy cases, as well as the
ψ− solutions presented in figures 12(a,c,g).

4. Discussion and conclusions

We derived nonlinear, stationary solutions of inviscid, quasi-geostrophic flows in different
domains on a β-plane. The rectangular domains were a closed basin, a gulf, and a channel
with arbitrary aspect ratio ε. The solutions assume a linear relationship between the
potential vorticity and the stream function, q = ±α2ψ± + γ , so there are two broad sets
of solutions: for +α2, the ψ+ solution is (2.33), and for −α2, the ψ− function is (2.24).
The ψ+ solutions in a closed basin correspond to the classical inertial gyres in a closed
basin derived by Fofonoff (1954). The ψ− solutions in a closed domain consist of normal
modes that can be resonant for specific discrete values of α (Carnevale & Fredericksen
1987; LaCasce et al. 2008). The parameter γ modifies and shifts the resulting flow patterns
in the meridional direction. The aspect ratio also strongly affects the elongation of the
vortical structures.

One of the main features of the present solutions is that they admit a wide range of
inward and outward flow conditions at the open boundaries of gulfs and channels. This
characteristic is achieved by prescribing sinusoidal functions for the meridional velocity
as boundary conditions in gulfs (3.3) and channels (3.4). The sine functions imply that
the meridional velocity becomes null at the zonal walls, and the zonal transport is zero
(otherwise, there would be non-zero divergence in the interior domain). A significant
advantage of using these conditions is allowing multiple entries/exits to/from the domain.
Also, they permit non-zonal flows at a given boundary.

The solutions consist of infinite sums. Therefore, the examples presented in the paper
correspond to truncated solutions with N terms. The convergence of the solutions depends
on the choice of N. Some flows rapidly converge for N = 5 or 10 terms, while others
require more than 50 terms. Not using sufficient terms might generate wrong values at the
open boundaries.

The ψ+ solutions in the three domains present a gradual modification when changing
α. In these cases, the energy and potential enstrophy are smooth functions of α. For this
reason, the solutions are probably linearly or formally stable. In contrast, the ψ− functions
exhibit resonances for certain α values, at which the energy and potential enstrophy blow
up. The flow patterns change abruptly for different α intervals delimited by the resonant
values. Thus the ψ− solutions are potentially unstable (Carnevale & Fredericksen 1987;
LaCasce et al. 2008). However, a more detailed analysis in § 3.4 has shown that for
specific prescribed energy values, there are minimum enstrophy solutions that are stable
(Young 1987). Consequently, these states are plausible configurations in the oceanographic
context. Hence we emphasise that the ψ− solutions are as relevant and complementary as
ψ+. An important case to mention is the pattern of alternating vortices along an elongated
gulf, as shown in figure 12(a). Similar arrays have been observed in the ocean (see § 1),
laboratory experiments (van Heijst, Davies & Davis 1990; Maassen, Clercx & van Heijst
2003) and numerical simulations of decaying flows (Zavala Sansón 2003) and forced 2-D
flows (González Vera & Zavala Sansón 2015). Another stable arrangement consisting of
nearly symmetrical dipoles along the gulf is shown in figure 12(g).

Considering the vast amount of possible solutions, the minimum enstrophy analysis is
limited to discussing only some particular cases. Nevertheless, the results are sufficient
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to show that several solutions are stable, especially those in elongated domains. Another
point to take into account is that Young (1987) studied a periodic β-plane channel and also
considered the invariant zonal momentum to examine the enstrophy–energy curves for
symmetric and non-symmetric solutions (wave solutions with zonal dependence). Future
work might be devoted to performing a detailed analysis of the differences with the present
results (with more general boundary conditions).

The present quasi-geostrophic solutions in flow domains with a zonal orientation
have revealed various interesting patterns (arrays of alternating vortices, structures with
predominant zonal motions, and recirculations near open boundaries). However, the ocean
circulation is bounded not by zonal domains but by complex and oblique geometries
oriented in any direction. Indeed, we expect that a tilted orientation of the domains will
introduce new effects. This research line is under investigation, and the results will be
published elsewhere.
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