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STEADY MOTION OF ICE SHEETS

By L. W. MorrAND and 1. R. JoHNsON
(School of Mathematics and Physics, University of East Anglia, Norwich NR4 7TJ, England)

ApsTrACT. Steady plane flow under gravity of a symmetric ice sheet resting on a horizontal rigid bed,
subject to surface accumulation and ablation, basal drainage, and basal sliding according to a shear-traction—
velocity power law, is treated. The surface accumulation is taken to depend on height, and the drainage and
sliding coefficient also depend on the height of overlying ice. The ice is described as a general non-linearly
viscous incompressible fluid, with illustrations presented for Glen’s power law, the polynomial law of Colbeck
and Evans, and a Newtonian fluid. Uniform temperature is assumed so that effects of a realistic temperature
distribution on the ice response are not taken into account. In dimensionless variables a small parameter »
occurs, but the v = o solution corresponds to an unbounded sheet of uniform depth. To obtain a bounded
sheet, a horizontal coordinate scaling by a small factor €(v) is required, so that the aspect ratio € of a steady
ice sheet is determined by the ice properties, accumulation magnitude, and the magnitude of the central
thickness. A perturbation expansion in e gives simple leading-order terms for the stress and velocity
components, and generates a first order non-linear differential equation for the free-surface slope, which is
then integrated to determine the profile. The non-linear differential equation can be solved explicitly for a
linear sliding law in the Newtonian case. For the general law it is shown that the leading-order approxima-
tion is valid both at the margin and in the central zone provided that the power and coefficient in the sliding
law satisfy certain restrictions.

REsumE. Mouvement des calottes glaciaires en écoulement permanent. On traite de I'écoulement permanent
plan sous I'effet de la gravité d'une calotte glaciaire symétrique reposant sur un lit horizontal rigide sous
Pinfluence de 'accumulation et de I’ablation de surface avec évacuation au fond et glissement sur le lit
selon une loi exponentielle vitesse/cisaillement. On admet que la surface d’accumulation dépend de la
hauteur, les coefficients d’écoulement et de glissement dépendent aussi de la hauteur de la glace susjacente.
La glace est considérée comme un fluide incompressible, & viscosité non linéaire, avec des exemples présentés
suivant la loi exponentielle de Glen, la loi polynomiale de Colbeck et Evans et 1a loi de Newton. On admet une
température uniforme de sorte que les effets de la distribution réelle des températures sur le comportement
de la glace ne sont pas pris en compte. En variables sans dimensions un petit paramétre v intervient, mais
la solution v—o correspond & une calotte non limitée d’épaisseur uniforme. Pour obtenir une calotte finie,
il faut pondérer les coordonnées horizontales par un petit facteur ¢(») de sorte que le rapport de relief ¢ d’une
calotte en état d’équilibre est déterminé par les propriétés de la glace, I'importance de I'accumulation et
I’ordre de grandeur de 1’épaisseur au centre. Une perturbation par expansion de ¢ donne des modifications
simples des termes réglant les composantes de contrainte et de vitesse, et entraine une équation différentielle
non linéaire de premier ordre pour la pente de la surface libre, qu’on peut alors intégrer pour déterminer le
profil. L’équation différentielle linéaire peut étre résolue explicitement pour une loi linéaire de glissement
dans le cas de I’écoulement Newtonien. Pour la loi générale, on montre que 'approximation de premier
ordre est valable a la fois sur la zone de bordure et au centre pourvu que 'exposant et le coefficient de la loi
de glissement satisfassent certaines conditions.

ZUSAMMENFASSUNG. Stationire Bewegung von Eisschilden. Es wird der stationére, ebene Fluss unter Schwer-
kraft eines symetrischen Eisschildes behandelt, der auf einem horizontalen starren Bett auf liegt, an seiner
Oberfliche Akkumulation und Ablation erfihrt, ein Abflusssystem am Untergrund besitzt und dort nach
einem Exponentialgesetz zwischen Scherspannung und Geschwindigkeit gleitet. Fiir die Akkumnulation an
der Oberfliche wird Hohenabhidngigkeit angenommen; auch der Abfluss und der Gleitkoeffizient sollen
von der Héhe des iiberlagernden Eises abhéingen. Das Eis gilt als eine im allgemeinen nicht linear viskose,
inkompressible Fliissigkeit, wobei Beispiele fiir Glen’s Exponentialgesetz, fiir das Polynomgesetz von Colbeck
und Evans und fiir eine Newton’sche Fliissigkeit herangezogen werden. Es wird gleichféormige Temperatur
angenommen, weshalb die Einfliisse einer tatsidchlichen Temperaturverteilung auf das Verhalten des Eises
nicht beriicksichtigt werden. Bei dimensionslosen Variablen tritt ein kleiner Parameter v auf, doch entspricht
die Losung fiir v=0 einem unbegrenzten Eisschild konstanter Dicke. Fiir einen begrenzten Eisschild wird
eine horizontale Koordinatenbezifferung mit einem kleinen Faktor e(v) bendétigt, so dass das Verhiltnis €
eines stationdren Eisschildes durch die Eigenschaften des Eises, die Grésse der Akkumulation und die Dicke
im Zentrum bestimmt wird. Eine Storungsexpansion in e gibt einfache Richtwertausdriicke fiir die
Komponenten der Spannung und Geschwindigkeit und fithrt zu einer nichtlinearen Differentialgleichung
1. Ordnung fir die Neigung der freien Oberfliche, deren Integration das Profil liefert; sic kann explizit fiir
ein lineares Gleitgesetz im Newton’schen Fall gelést werden. Fiir den allgemeinen Fall wird gezeigt, dass die
Richtwertniherung sowohl am Rand wie im Zentrum gilt, sofern die Potenz und der Koeffizient im
Gleitgesetz bestimmten Einschrinkungen geniigen.

1. INTRODUCTION

The first theoretical treatment of a bounded ice sheet with steady free surface, a property
of the flow solution, was given by Nye (1959). His basic problem was a two-dimensional
symmetric ice sheet on a horizontal bed, in steady plane flow under gravity, with a steady
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profile maintained by surface accumulation and ablation. This is illustrated by the cross-
section in Figure 1 with horizontal bed y = o and surface profile y = k(x) in rectangular
Cartesian coordinates Oxpz, and all physical variables are independent of z. The velocity
components are (u, 7, 0), g is the acceleration due to gravity acting in the negative y-direction,
o is the Cauchy stress tensor with 6z, = 6y; = 0, and (l, ) denote tangential and normal
tractions on the surface.

Fig. 1. Ice-sheet cross-section.

Nye notes that in the ice sheets of Antarctica and Greenland the relative velocity between
surface and bed is small compared with basal sliding, and, while the differential motion in
glaciers is not negligible, it is largely concentrated in a thin basal shear layer. Using an
estimated temperature profile with depth and a temperature-dependent flow law, Nye
calculates the velocity and stress profiles under a point on the Greenland ice sheet, and
concludes that any significant shear motion must be concentrated in the warmest layer at the
bottom. He therefore proposes the approximation that the horizontal velocity is uniform
with depth and is determined through a sliding law by the basal shear stress. In particular
he makes the assumption '

u=u(x) = t{tom(y = 0)/4m, xZo. (N1)

A and m are constants, which will depend on bed roughness, temperature, and basal ice
structure; m = 2.5 is used for calculations. If a concentrated shear layer occurs near the bed,
then (N1) applies at the base of the mean uniform velocity region. A rigorous derivation of a
sliding law such as (N1) to describe mean flow conditions over a smoothed bed contour has
yet to be found.

While Nye’s subsequent analysis is independent of the flow law and any temperature
dependence, he has, nevertheless, deduced that observed temperature profiles give rise to an
approximately uniform horizontal velocity profile above a thin bottom layer. In this paper
we determine the horizontal velocity distribution by considering the full field equations,
but on the assumption of uniform temperature so that Nye’s deduction can not be tested,
nor can we predict the effect of temperature variation. However, our solutions demonstrate
the errors produced by the same approximate procedure applied to the uniform temperature
case, but more important is the presentation of a rational approximation scheme which
appears to be appropriate to related free-surface problems involving other features, including
temperature effects.

Nye next assumes that the surface slope is small, |#'(x)| <€ 1, and approximates the basal
shear stress by

ory(y = 0) = —pght, (N2)

where p is the uniform ice density. Equation (N2) is based on an equilibrium argument (Nye,
1952), which supposes that the stress gradients parallel to the surface are negligible, and also
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implies 622 ¥ oyy. Eliminating o2y between Equations (N1) and (N2), and expressing uh
as the integrated surface accumulation by the assumption of incompressibility, gives a non-
linear first-order differential equation for £(x). For uniform accumulation ¢, Nye (1959)

obtains the solution
b\ 2+1/m lxl 1+1/m
(h—c) = (T) =1 (N3)

pg(m+l) hcz+t,’m = Aqllm(2m+]) [1+1/m, (N4)

Thus, for given A, m, and g, the centre height / is related to the semi-length [, and either f,,
or [, or the aspect ratio ke/l, must be specified to complete the solution. The assumption of
constant g is inconsistent with zero net mass flux across the surface required for a steady
profile, but Equation (N3) fails as |x| —» [ where the slope |#'| becomes infinite, and violates
the basic assumption when |4'| is no longer small compared with unity, so there is an un-
specified margin range with unknown profile where the necessary ablation takes place.
Weertman (1961) also suggests that a requirement of slowly varying slope is implicit in Nye’s
arguments, and is not satisfied by Equation (N3) in some central region. He further proposes
that a non-zero effective longitudinal stress a;o— &y, can be accounted for by using a stress
invariant in the boundary condition (N1), by analogy with Glen’s three-dimensional consti-
tutive law, but retains Equation (N2) and gives no further consideration to momentum or
constitutive equations.

We have therefore re-examined the steady-motion-steady-profile problem shown in
Figure 1, treating the ice as a general non-linearly viscous fluid, prescribing the accumulation
(ablation) as a function of the height of the free surface, prescribing basal drainage as a function
of the overlying height of ice, and adopting a basal sliding law of the form of Equation (N1)
but with a coefficient A(h) depending on the overlying height of ice. Thus Equation (N1)
is replaced by

»=o: omy = EAB[£aYm,  xZo. (1)
Note that Equation (1) assumes that basal shear stress and velocity are everywhere directed
away from the centre. Basal drainage is described by

y=0i v= —b(h) < o. (2)
If ¢ is the accumulation (volume flux per unit area) per unit horizontal cross-section, and ¢y
that per unit surface area, then

» = h(x): v—h'u = —q(h) = —gn(h)[1+A7] (3)
The normal form may be more appropriate on steep slopes, particularly for ablation zones

g << 0. Assuming that atmospheric pressure is uniform over the surface, and measuring stress
relative to this isotropic pressure, the free-surface conditions are

2(1+h'2) tn = (1+4'2) (622+0yy) + (1 —h'?) (0yy—022) —4h 62y = 0, (4)
(1+h'2) ts = k' (oyy—022) + (1 —h'%) 62y = o. (5)
The problem may be solved for x << 0 or for x > o by adjoining the symmetry conditions

where

Xi—lox i =10, Gy = O, h = (6)

Formulation of the full problem in dimensionless variables introduces a parameter », for
which only a magnitude of k¢, not A itself, is prescribed in the definition. For a wide range
of practical conditions v € 1. The approximation v = o gives a solution only for an un-
bounded sheet of uniform depth, not permitting a margin at finite distance [ from the centre.
This may be treated as an approximate solution valid in some central region—an “outer
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solution” in a matching procedure—Dbut an intermediate scaling of the horizontal coordinate
by a factor e(v) <€ 1 determines an approximate solution valid also in the central region. The
parameter e defines the small surface-slope magnitude, and is determined by the ice properties,
accumulation magnitude, and magnitude of k.. Further, this small-slope solution is valid up
to the margin (h = o) provided that the sliding coefficient A(h) ~ Aok as h — 0. Here we
present the leading-order small-slope solution under this validity condition. The central
height /i, and semi-length [ (and hence the aspect ratio, k/l) are determined by the solution,
in contrast to Equations (N3) and (N4) where one parameter must be prescribed. From
this leading-order solution Nye’s assumptions

|0'xa:—°'yyl £ |ozy| € |oz2touyls (7)

and Equation (N2) are confirmed, but the profile, and consequently the shear stress and
velocity distributions, are quite different from those of Nye (1959) and Weertman (1961).

Illustrations are presented for Glen’s power law, the polynomial law of Colbeck and
Evans, and a Newtonian fluid. The infinite viscosity at zero stress implied by the power law
requires a more elaborate scaling procedure, but the analysis and solution are presented since
the power law has become the conventional model. However, this model was introduced to
describe overall response over a wide stress range, and not an accurate response near zero
stress, and response functions which exhibit finite viscosity at zero stress are probably a better
physical description as well as leading to more straightforward analysis.

2. BALANCE LAWS AND CONSTITUTIVE LAWS

Mass balance for an incompressible material implies

B
kS R (8)
ox oy

Inertia terms are negligible in this slow viscous flow so momentum balance requires

30',;,, E‘O'zy aﬁzy aﬂ'y'y
= = = — — i
o % 0, = By P8 (9)

The ice is assumed to be an incompressible non-linearly viscous fluid with a temperature-
dependent rate factor (Morland, 1979). A convenient representation for use in Equation

(9) is
0'-::51 = ¢l(f27 IJ) ﬁJF‘i{’z(fz; fs)[f)l—§f21], (IO)
where
p= —3itre, fzzétrﬁz, j3=detf), (11)
and
o ¢
g (a_z+;_2) . D =DBaTy (12)

T denotes temperature and a(7) is the rate factor, normalized by a(T,) = 1 for some tem-
perature T, with a'(T) = 0. g, and D, denote a constant stress magnitude and a constant
strain-rate magnitude respectively, so that D, the invariants 7, /;, and response functions
é,, #, are dimensionless. The alternative general representation for strain-rate in terms of
deviatoric stress, given by Glen (1958), cannot be used to eliminate stress from Equations

(9)-
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However, the laws commonly adopted for D give the simpler form

N ¥ (13

Go Gy

which implies

L = Ju(Jh) = G(Ja) say, =0,
¢ = 9{’1(1‘:): Ji = z‘f’lz(fz) == Gi'(jz)-

For example, with
6o = 105 N m~2, By~ =85 107 4 To=073 K, (15)
Glen’s law deduced from uniaxial compression data is represented by

w(]z) = 1,5k(3j2)tn-1)/z, ﬁﬁl(jz) = Ek—u'n (4_]’2){”‘-'”2"’,
f 3 (16)

k = 0.5, n=1.3—>4,
n depending on the stress range over which the response is approximated by this law. The
singularity in ¢,(f,) as , — o (7, — o) implies an infinite viscosity at zero stress, and com-
plicates the order of magnitude analysis of the problem described in Section 1. However, the
analysis for such a singularity is presented since Glen’s law is the conventional model. More
accurate data fitting over a low stress range suggests a finite viscosity at zero stress, and for
0 — 105 N -m~2 Colbeck and Evans (1973) propose a polynomial law represented by

w(f2) = I'S(Co+361.j[z+gcz.722):

C, = 0.21, =0 iy C, = 0.055.

(17)

#(I,) cannot be obtained by analytic inversion of Equations (14), but our leading-order
solution can use Equations (16) or (17) directly.

From Equations (13) and (17) the viscosities at 7, = 0 and 7, = 1 (a deviatoric stress of
1 bar) are

. Hxi107 . - To1= _
(o) = 2(T) Nm-—2s, p(n) = o) Nm2s, (18)

and the mean viscosity commonly assumed for a Newtonian model near pressure melting is
p & 3x102 Nm=2s. As T decreases from T,, a(T) decreases from unity and the viscosity
at each stress increases; at 7 = 250 K the viscosity is increased by a factor ten (Paterson,
1969, p. 83), so a(250 K) & o.1. Increases are less pronounced for further decreases of
temperature. In the subsequent analysis we assume a uniform temperature and take a=o.1
for magnitude estimates. For a non-uniform temperature field the factor a[ 7(x)] introduces
non-homogeneous response. In adopting the general law (10) we assume that the stress
contribution from a non-zero ¢, term is not of greater magnitude than that of the ¢, term.
Also it is assumed that ¢, is bounded, so |¢,| << O(1), and ¢, can have a singularity only of
the form given in Equations (16).

3. DIMENSIONLESS FORMULATION AND THE SMALL PARAMETER
We introduce dimensionless variables by
(%2, by 1) = ho(X, T, H, L), (0, p) = pgho(Z, P),
(19)
(u, v, g, b) - qm(U, 4 Q! B)’

where h, is a magnitude of the maximum ice thickness (he = hoH, is determined by the solution,
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with H, order unity), and ¢p, is a magnitude of maximum accumulation density, so P and @
are of order unity. We will suppose gm = q(h,) on the assumption that ablation at lower
heights does not significantly exceed this value; otherwise the ablation maximum should be
used. We suppose that the drainage B is not greater in magnitude than . We can then

define
K (x) = H'(X) =T'(H). (20)
Setting
O 3 T (21)
aur ax?

in terms of a dimensionless stream function ¥(X, 1), satisfies the mass balance Equation (8).
The momentum equations (g9) become

0Zzz 0Zazy 0Xzy 0Zgy
sx Tar > axter " (22)
Boundary conditions (1)—(6) become, for ¥ = o:
o\ vm Aqmu‘m
= i > = ¢
ny = :I:A(H) (:l: BT) ’ X Z 0, A Pgho 3 (23)
o
X = B(H), (24)
for ¥' = H(X):
v o
-— — = = !
D) 57 = QUH) = Qu(H)[1+ T (H)T, (25)
[1+T2(H)](Zza+Zyy) +[1—T2(H)](Zyy—Zaz) —4T(H) Zay = o0, (26)
T(H)[Zyy—Zze] +[1—T2(H)] Zzy = 0, (27)
and for X = o:
o
ﬁ' = 0, E;y =0, I =@, (28)
The tensors D, D? have non-zero components
[ - 5 2¥ b s o v )
= —Dw=b5z7: Dw=33 77 7%

(ﬁz)zx = (ﬁz) gy =1, = 84, 8 = gm/aDyh,, - (29)

7 I W N2 1Y PP\2
2=0%  h=\axer) T\
Taking a central accumulation ¢gm & 3% 10-9 ms~! (used by Nye (1959) with &, ~ 3 000 m),

a rate factor a = 0.1, and the other variables taking the values given in Equations (15), gives

hy = 3 000 m: 8 x 31078,
£1

7

(30)

hy = 100m: 6 ~ 1072,

for a thick ice sheet and moderate glacier. In fact, with larger a and smaller g for a thin
glacier, 8 will be smaller than the larger value given in Equations (30), and the strong
inequality 8 € 1 will apply in most, if not all, practical situations.
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In Glen’s law (16), ¢, is unbounded as 7, o (z > 1), but $,D —>0. For any singular
¢, of this form, we can write

‘f’lﬁ — ‘}gt(ﬁfz_m): oa<y, (31)

where Df,~= > 0 as [, —+ 0 and

?gx = jza‘?g’]: (32)
is bounded. For Glen’s law
n—i 2 f3 (n—1)/2n
— - —_— —_ = / ="
=<l =l ( 4) kriin = 0(x), (33)

and ¢, is constant, while the finite viscosity case is obtained by setting « = o, with ¢ = 0(1)
by Equations (17). Hence Equations (31) and (32) cover both cases. From Equations
(10) and (29),

E-’W’ — — —m__ai l
(Eyy) = —P+v {i&:lz X 3T+3 81+u¢'211 3

I GES SEGED (34)
Zay = 20 \ 39w ) -
where
v = §d1—2a, 5= P;;lu : (35)

TasLe I. MAGNITUDES OF v AND € FOR A FINITE VISCOSITY LAW (n = 1) AND GLEN'S LAW WITH EXPONENT R

n 1 2 3 4

ho v € v € v € v €
m

3 000 107 1078 6x 1075 1.5% 1073 2X107* 17X 1073 4X 1074 1.9X107?
100 1073 X103 1072 4.6x 1072 2X 1072 g5X 1072 gxX1072 6x1077

For Glen’s law, Equations (33), with n = 1 corresponding to the finite viscosity case,
and the parameter values given by Equations (15) and (30), the thick ice sheet and moderate
glacier values of v are shown in Table I. Thus, recalling that a lower value of § is expected
for hy = 100 m, and that n = 1 is the most realistic law, Table 1 implies

v <, (36)
which is the condition we adopt. Note also that
6 = 8/s = o.0g, (37)

is independent of k,, and decreases with decrease of ¢y, and increase of a. For practical
conditions we can assume § < O(1). Assuming that P, ¥, and their gradients, are not
greater than order unity, the leading order of a series solution in v is given by setung » = o.
In particular, from Equations (22) and (26),

P = H-Y, H = constant, =8 ’ (38)

which correspond to an unbounded sheet of uniform depth. That is, a margin at finite
distance L cannot be obtained. Such a solution may represent an “outer” solution, valid in
some central zone, to match with a solution which incorporates a surface slope, but as we now
show that the indicated intermediate coordinate scaling leads to a solution uniformly valid
to the centre, under a weak restriction on the sliding law, the » expansion is not pursued.
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4. SCALED VARIABLES AND SLOPE MAGNITUDE

For a non-zero surface slope, P, to leading order, must not be independent of X, so the
horizontal momentum balance given by the first of Equations (22) must involve the shear-
stress gradient in 7. This suggests a horizontal coordinate contractiorr

£ =k, I' = ey = edH/[d¢, (39)

where £, y = 0(1), and the slope T' has magnitude e. To retain the surface accumulation
balance given by Equation (25), we need also a stream-function scaling

p =¥ = 0(1), (40)
so Equation (25) becomes
0 o
V= H! a—‘/;+y%,=Q(H). (41)

Now, by Equations (29) and (34), 5
i . Lo\ 0% \* 1 0% %] 1 G A
L, = e I—Z<8T2) +e [(a_{ﬁ") —2 98 m]+;€4(afz) =0(1), (42)

L. o# I .
(Brr) = P { b sty mvna]

(43)

1 . 04 O
oy = Evez"‘ ‘tﬁ,l o (a—yl—ez )

The terms of the first of Equations (22) now have orders of magnitude e, ve2at1, ve~1 521,
ve2a—1 pe2ati and a balance for the P-gradient with the shear-stress gradient requires

verr—2 = 0(1), ve—2§2att < O(1). (44)
To satisfy the equality, take
e = pl/z—2a) — ypu/n+1 — §H—n/in+t1),
. 2 for 6 = o.09 (45)
— g-tn-njzintn) s 8 for = 1073 »all for n = 4.
e(n = 1) 16 for 8 = 1074

Then the term in the inequality in (44) is ef2a+1/(2—22) << O(¢). Thus the ¢, term does not
contribute to £z, £,y to leading order with the assumption |¢2| < O(1). Equations (45)
show values of the ratio of the coordinate scale factor between n = 1 and n = 4, the extreme
range, for a wide range of 6. Clearly the ratio is of order unity when @ is not too small or when
n is close to unity. Table I shows the magnitudes of  for the large and small %, and various
values of the exponent n. Again, n = 1 is the most realistic law, and smaller » is expected for
hy = 100 m, so in most, if not all, practical situations,

e<1L (46)
From Equations (29), (42), and (45), we have the identity
i = g-iu-af, (47)

5. LEADING-ORDER APPROXIMATION
We now seek the leading-order approximation of a series expansions in e. Let
P = Py+o (1), § = ho+o (1), and
H=n(®)+o (), 7o =7'(8). (48)
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First derivatives of P, and first to third derivatives of ¢, arise in the momentum balance, so
these derivatives must be of order unity or less in a valid approximation. This is confirmed
under weak restrictions on the sliding-law parameters. Denoting all leading-order quantities
by a subscript or superscript o, we have

N
Exzo = Eyyo = _Pos

I . onf . I 0%,\2
Eaf =it g, o= (E ar”:) ’

D24, - (49)
2 o1’

o B,
oY’ o0&’
which confirm the magnitude relations (7). Recall that ¢, is evaluated at f, = g/0~a)j,
I=o.
The momentum balance equations (22) become

oB, @  QGE I 0%\ %] =
i G5 ] =

(Bzz—Zyy)® = 26%¢,i,

Uoze_ V°=

-

- (50)
1]
B
On ¥ = o, by Equations (23) and (24),
1 0%, I 0%y \ 2]~ . ae oo\ 1/m S
(; W) [(5 573 $: = £ jA(n) t=y) » £20
20 (51)
0
= B(n),
where
— Agmi/m [ @\ lm+1)/zm
{= g-ntminamnt) < O(1), A = % (ﬁ) : (52)

A is independent of n. This definition of A is normalized on the coordinate scale e, =¢e(n=r1)
to be independent of the exponent  used, and j is order unity except for n = 3 or § < 107%;
*=1 for n = 1. We suppose that the sliding law influences the leading-order solution,
implicit in Nye’s (1959) assumptions, so regard jA as order unity in the analysis. Perfect
slip is given by A = o, and non-slip by A — . On ¢ = o, by Equation (28):

o, 0%r
=% =% vo=o. (53)
On ¥ = 7(£), by Equations (26), (27), (49), and (41):
0%

P, = o, 62’2 =o, »
54

e vt 2= — Qo)

o0& Yo7 YA n)-.

By the second of Equations (50) and the first of Equations (54),

Py =n(§)-T. (55)
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Hence, by the first of Equations (50) and the second of Equations (54),

by
o

_n’(g)[.,?(g) — _’Y'] — i&liok—u = :|:B—(l—:m)/(z—za)(fzo)éqgu

N

0, (56)
using Equations (32), (42), and (47). Thus the second of Equations (49) gives

I = —en'(§)[n(§)—T], (57)

which confirms Equation (N2). Now by Equations (49), Zzy® and 9%,/0}? have the same
sign, and Equation (56) shows that this sign is unchanged at constant ¢, being the opposite
sign to n'(£). In turn, Equations (51) shows that Uy(£, o) has the opposite sign to 7'(£).
Thus, for the sliding law given by Equation (1) with basal velocity directed away from the
centre,

7(§) So for £ 2o, (58)
which imply monotonic profiles in ¢ > 0 and ¢ < o separately. Alternatively, monotonic
profiles imply an unchanged sliding direction.

For laws of the form of Equations (13), using the relations (14),

02 5 2
(5 ai) — GGy (£)]2[n(€) — 1], (59)

which does not require explicit inversion of Equations (13). Given ¢,(,, 0) in the general
law given by Equation (10), Equation (56) must be solved for 7, to obtain the form of Equation
(59). For Glen’s law (16), Equation (59) becomes

Otho

R = L3Ry (= 1)), (60)
and for the polynomial law (17), for which « = o,

oz

e 37 (1= D)ot 3G = 1)+ 9CE )~ 1)) (61)

A Newtonian fluid approximation with constant viscosity p is given by Equation (60)
or (61) with

n=1, O =G =0y o =ki=

3aDop . S
For example, taking ap = 3x 102N m~2, based on Nye’s temperate viscosity, gives
C, = k = 0.33. In Equation (61), if § < 1, the higher-power terms make little contribution,
which implies that the deviatoric stress is much smaller than 6, ; thatis |Zzy s |Zoa—Zyy| <€ 5.
By Equations (49) and (45), |Zzy|/s = O(8U—20/2-20)), 50 the shear stress only approaches
1 barif 0 ~ 1; thatis, gm ~ 3eX 107 ms™1.

From Equation (59),

4,
a}bz = g[F7' (O —T11], (63)

with g(t) given by Equation (60) for the power law and by Equation (61) for the polynomial
law. Define

t i

pilt) = f aar, o= [a (64)

o
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then integrating Equation (63):

Te= 2 &l =1 HA(O),
b = A &l Fr - D1+ TAQ (D), (65)
L {gzm = oo, )
Hence, by the second of Equatlons (51
8 — 4 [&lFum]
B8 = B(n):Fd5{ o, (66)
and by the first of Equations (51) and Equation (56)
Fm'l™ & (Fm)
: 6
5o = =[] alE 67)

Finally, the accumulation condition given by the third of Equations (54) on ¥ — n(€) gives

d Fn' U &(Fm') A L
dg{i" [J’J_\(n)] ,gx(:Fn IE——= o) } Q) —B(n) = Q*(»).  (68)

6. GENERAL PROPERTIES AND VALIDITY
We can rewrite Equation (68) as a first-order differential equation for 7'(£) = y,(n):

')’o% [ﬂ:'q {%}m:ﬁ:nzﬂ(?nyo)] = @*(»),

Q(z) ~ Quzn as z — 0;

(69)

n = 1 is the finite viscosity case. This follows from the definitions (64) and Equations (60)
and (61) for a power law and polynomial law respectively. Explicitly
o 3{(1;4-1)’1:(%[,7,},9)11.

T e ¥

from Equation (61): Q = Co(Fny0) +20C(F 7o) 3 +3202C,(F ny,)s.

el

from Equation (60) :
(70)

Nowf Q* d¢ = o for zero mass flux, and the term in braces in Equation (69g) is zero at
o

Yo = 0 (£ = 0), so must also vanish at n = 0 (£ = &ém = €L) if Equation (6g) holds over the
entire range. This requires

vo(m) = Fymp?(1—ym+..), B >=o, s
= 71
Alm) = Amt(1—Am+ ...), 0 < mt<i1+m(14B),

as n — o. _
As m — ¢ = 7(0), A(n) and Q*(x) are finite and Yo —> 0, so the essential behaviour of
Equation (69) is

d
Yo g, (nf) = 0(x), (72)
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where [ = min (m, n), 1. Hence

Yo = (e—m)V+D as g — e (73)
As 7 >0 (0 <Y <) or y,—>0, the dominant terms of i, from Equation (65), are, in

both limits,
&

bo— | Bl at = Trapygror v ()" (74)

o

Thus, as y, = 0, 1 —> N

o = (pe—mn) ¥+, (75)

Only derivatives &i,/0¢ and 2y/61" (r = 1, 2, 3) occur in the leading-order equations,
but du,/0£2, 0%,/cé 21 enter coefficients of higher-order terms in the stress expansions
All are bounded as 5 —> n¢ for { = 1. Anticipating, however, that B3t/ 0€3 which arises in
higher-order terms of the stress gradient must also be bounded, it is necessary that [ < 1,
and hence |dy,/dé| < O(1) which implies Weertman’s (1961) postulate of slowly varying
slope. Direct differentiation of both terms of Equation (74) shows that bounded B3,/ 0E3
requires (i) if /=n =1 thenm =1 o0r 2 or m = 3; (ii) if [ =m =1 then n = 1 or 2 or
n = 3. It remains to determine the behaviour of y, as 7 — 0, and in particular to find any
restrictions on m, n, B, and ¢ to ensure that y, and appropriate i, derivatives are bounded.

Let
Q*(n) = —Qo(1—gqm+ ) asn —0, @y >0, (76)

which represents positive ablation plus drainage at the margin. If the first term within the
braces in Equation (6g) is dominant, then since 1+m(1+pB—t) > o by Equation (71), the
lowest power of 7 on the left-hand side of Equation (69) is B+m(1+—t), =0 to balance
the right-hand side; hence

B= . (77)

The inequalities of t71) require
1
1<t <2t o< B, (78)

and t = 1 <> B = o. If the second term within the braces of Equation (69) is dominant,
then p = —1, which is not an acceptable solution. Now the first ¢ derivative of the second
term of Equation (74), applying Equation (77), =7 if o < B < 1, and hence we require
B = o,t = 1, so that y, is analytic in » and third derivatives of both terms of s, are bounded
with the previous restrictions on m, n. The power of 5 in the left-hand side of Equation (69)
resulting from the second term is now (n+1) = 2, confirming that only the first term contributes
to 7° and n'. An explicit expansion shows that

g +amA
Ym = [QO(J)‘O)M]II(I+m)! Y= ﬁH__Qm_l " (79)

Consider the solution of Equation (69) for —Lfe < ¢ < o with @*(n) such that the
profile is monotonic: n'(£) = 0, yo(n) = o The end condition given by the third of Equations

(53) is
Yo =0 at n = e, (80)
but 7. is a property of the solution, being the height at which the net mass flux becomes zero:
e
*(n) d
i (81)
Ya(m)

o
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Here we suppose Q* is negative near the margin, and increases monotonically with % into
positive accumulation, and y, > o for 0 < 5 < ne. However, Equation (81) is guaranteed
for a valid solution under the restrictions (71), and Equation (79) prescribes the behaviour of
Yo atn = o. Thus, we integrate Equation (69) from n = 0 and determine ne explicitly as the
height at which y, first becomes zero. The profile is determined by evaluating
MNe d i
it}
g =_J"—"_r) EL=_§0:§J 82
(m) =T} (0) = ém (82)
n
bounded as 7 — 7 in view of Equation (73). In practice, the slope and profile are determined
by numerical integration of the simultaneous differential equations
dn
d_'}’u = F(n, y0), 7(ym) = o,
. (83)

d
§ B1k, 5 = v Fm v Eym) =0,

obtained from Equations (69) and (82) by using y, as independent variable. Starting at the
margin we determine n = 7¢ and £ = £m — eL when y, = 0. Since B = o, F(y, y,) is
defined explicitly at 7 = 0, y, = ym. Also A = O(h) as h —> o which is equivalent to A
being linear in the overburden pressure in view of Equation ( 55). The combination of linear
dependence on height (pressure) and linear dependence on velocity (m = 1) was proposed
by Bodvarsson (1955). So validity requires a “perfect slip” limit at the margin. Global
perfect slip A = o leads to y, = o which is a uniform-depth solution with no margin. How-
ever, this may also be the leading-order solution for non-zero jA < O(e) which is valid in
some central zone, and then the margin solution appears to have slope <<O(e). In practice
a slope of order e (or greater) at the margin is expected, so jA = O(1) is a reasonable assump-
tion. In the nonslip limit A — o, Equation (69) gives B = —1, implying that a margin
solution with slope greater than order e (not necessarily unbounded) is needed. A new
matched asymptotic expansion analysis is required to investigate this situation.

A Newtonian fluid solution is obtained by setting n = 1 in Equation (70) when
Q = Fkny,. Then, with a linear sliding law (m = 1), (69) becomes (for ¢ < o)

d n?
0. o]l = —Q*(n), = 8
Hordy L/ () vl Q*(m)s  f(n) = ky +J At) (84)
which has the explicit solution
I ﬂ I’ * ’ r é
7o) = = | —2 f S @) | )

since f(0) = o, and Q* is negative at n = o and increases with n. Note that f(5) =~ ¢
as n — 0, since { = 1, 50 y, is finite. Thus y,(n) and £(5) are determined by simple quadra-
tures, and this evaluation was used to test the accuracy of the numerical integration of the
differential equations (83).

Nye’s (1959) profile is deduced from constant accumulation ¢ and constant A. If we take
¢ = gm and A = A(n,), it is

/ e R
prtm :

independent of the ice law, and 5, unknown. Nye proposes m = i(n-41) where n is the
power in Glen’s law, then

grtym — .qcz+1/m’ (86)
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nz(u+2)/(n+1l+w §tn+3),'m+n — ncztnn)/tnﬂ)_
n+3

n_|_3 (n+1)/(n+3)

to = [rarim0)

2(n+2) JA(1)
By choosing 7. in Equation (87) as the central height determined by the preceeding solution
for various cases, we can compare the profiles and ¢m of Equation (87) with those of our
leading-order solution. However, following Nye's approximate procedure with general
g(h), A(h) leads to the differential equation (6g) with Q = o; that is, the influence of the
constitutive response is absent. It is clear from Equations (70) that when 7 and y, are not
much smaller than unity, that is, away from the margin and centre, and jA () is not much
smaller than unity, then the Q term has the same magnitude as the sliding term, so omission

of the Q contribution is not justified.

(87)

2(n+2)/(n+3) 7 — pln—nn+3)/2(n+1)?
e ’ J o

7. ILLUSTRATIONS

For comparison between laws with different exponent n, we express all results in terms of
the same dimensionless horizontal coordinate based on the scale factor e, = €(n = 1); that
is, using Equations (45),

i (n—1)/2(n+1)
pr="g—0 ¢ (88)

All calculations adopt the values (15) with a = 0.1, gm = 3x1079ms"!, 50 that § = o0.09
and the real slope magnitude ¢ for different n and k, is shown in Table I. In £ < o the
velocities are given by

e(U— Up) = 5‘”‘”“‘“*”{8:[70(71—T)]ﬁgx[?a‘f?]}fyo,

e Up = _gm—:),‘z(nJrn(.,wmij) m,

(89)
Us—U, —
‘% = &i(yom) (FA[yom)™ Vo
where the subscripts b, s denote base and surface values, and
d =
V4B(n) = Yy, — {(W!JA)m‘l" Yyoelyam) +ailye(n— )] _31[70W1}+
dn
dy, e = Y
+E m¥ (yan/ JA) ™+ Ynglyan] +T gilyoln—1)1—
+Y 2
T gy yonl o (ol =) ~alyad|. ()

Both linear and exponential forms of the accumulation—drainage function @*(») and the
sliding coefficient A(n) have been treated, namely

Q*(n) = _Qu+(‘+Qo) m or ﬁQo"}'(I‘FQO)(]—EXP (—sm))» (91)
Aln) — A of A{i—exp (—r)/r. (92)

The exponential forms with large s and r imply small gradients @* and A’ for n order unity,
which correspond better with Nye’s constant @*, A approximations than the linear functions.
A case s = r = 5 is shown in Figure 2 together with an example using the linear forms, both
with A, = Q, = 1, comparing Nye’s profiles given by Equation (87) with the corresponding
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_],5 -1 -5 0

Fig. 2. Comparison of small-slope profile for Glen’s law with Nye’s profile for g = Q, = 1.

(#) vrovee m = I, n = I, and exponential X and Q*, s = r — 5.
(i) m = I, n= I, and linear A and Q*.

complete small-slope solution. As demonstrated earlier, the constitutive response term £ in
Equation (69) cannot be neglected, but the examples in Figure 2 illustrate the entirely
different profiles obtained with the further assumptions of constant Q* and A.

Next we indicate how the choice of constitutive law between the Colbeck and Evans
polynomial law and Glen’s power law with n = 1 and n — 3 affects the solution. Table II
shows values of the semi-length ¢m* and height 7, for the linear forms of Equations (g1) and
(92) with m = 1, and A,, @, between 1 and 10. The margin distance and centre height
represent the maximum profile discrepancies. The greatest differences arise in £y*, increasing
with increasing A, for given law and given @,. As A increases, the constitutive term has more
influence, and the maximum differences in ¢n* occur for A, = 10 with changes of 18 to 229,
for the different @, between CE and #n = 3. For moderate A, the discrepancies are small,
and the following illustrations are all based on the polynomial law, which eliminates the
parameter n, and use the linear @* (), A(n).

Figure 3 shows profiles for four sets of (A, Q,, m). Increasing Q, with A, and m fixed
decreases {m* and increases 7.; that is, large ablation at the margin decreases the length as
expected. Increasing A, with @, and m fixed decreases én* significantly but makes little

TasLE II. SEMI-LENGTH €m*, HEIGHT 70, FOR LINEAR ACCUMULATION Q*(x)
AND LINEAR SLIDING LAW (M = I) WITH LINEAR COEFFICIENT A (7). SOLUTIONS
ror CoLBECK aND Evans Law (CE) aNp GLEN'S LAW WITH n — 1, 3

Ao I 5 10

Qo Law fm* Ne: Em* e Em* e
CE 1.542  0.742 0.758 0.719 0.590 0.702
1 1 1.534 0.743 0.741  0.724 0.568 0.708
3 1.500 0.750 0.675 0.749 0.484 o0.747
CE 1.207 1.216 0.683 1.156 0.587 1.128
5 1 1.186  1.222 0.632 1.165 0.520 1.132
3 .128  1.248 0.564 1.223 0.458 1.203
CE 0.950 1.321 0.572 1.255 0.507 1.230
10 1 0.924 1.329 0.504 1.262 0.420 1.226
0.882 1.357 0.480 1.318 0.410 1.2096
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difference to n¢; that is, a larger “friction coefficient” decreases the horizontal spread.
Similarly, increasing m with A, and Q, fixed decreases {m*. Figure 4 shows the basal velocity
distributions for the same sets, all approximately linear on the normalized scale. The margin
velocity is noticeably greater for the largest ablation, but the gradient along the base is not
strongly influenced by change of A, or m.

Finally, Figure 5 shows both horizontal and vertical velocity distributions with height at
various distances from the centre, for the case A\, = 1, @, = 5, m = 1. @V/2Y is nearly

i f .’f... . .':. .
=15 -1 =5 0
Fig. 3. Comparison of profile for Colbeck and Evans law with linear A and o,
(&) N=1IQs=1m=1
(#) —— MN=1,Q,=5m=1"I
(€12) BEERER =5 Qo=1,m=1I
(i) —-=-~ —hG=1nm=23
e
A
N .
% il
A S
\
\
\
\
~
N
N
N
%
N
-, \\ 41
oy | .l e AR

ol i) = =53 0

Fig. 4. Basal velocities |e;Un(£*) | corresponding to Figure 3 profiles.
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constant in both ¥"and ¢*, implying the same for 8U/2X by mass balance, and demonstrating
that @V/dY and 0U/0.X are both of order unity. While ¢, 8U/87 is small compared with unity
except, perhaps, near the bed, it does not follow that 3U/3Y is small, and though the basal
sliding velocity is much greater than the differential velocity between base and surface as
noted by Nye (1959), the contribution of 9U/2? to the shear strain-rate, and hence the Q

Y
11
N |
N |
N\ 1
\ I
\ |
N I
\\ 1 3
5 i i
Y 5 ! ;
™ 1
\ -
L) !
"o ]
-.) " !
» roof
/ |
I & &
v ! : ! €U
. ] : gt
-2 =] 0 1 ]
Fig. 5. Horizontal and vertical velocity distribution with height for linear X and Q* with Xy = 1, Qo = 5,m = 1, at positions
(z) ¢ = —o.13
(1) &% = —0.63 —————
(iz) €= —0_87 ......
() &= —1.04 —-—-—

term in Equation (69), is not negligible. Since 2V/2¢* is order unity, the contribution
oV[oX is O(e;), so 2U/[0Y does indeed make a significant contribution. This highlights the

need for a rational scaling of coordinates and physical variables to obtain the correct gradient
balances in the field equation, and such scaling should be dictated by the boundary conditions

or driving terms for the flow. Clearly our approach is appropriate to a variety of ice-sheet
flow problems in which the driving mechanism suggests small-slope features.
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