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The Cuntz semigroup of unital
commutative AI-algebras
Eduard Vilalta
Abstract. We provide an abstract characterization for the Cuntz semigroup of unital commutative
AI-algebras, as well as a characterization for abstract Cuntz semigroups of the form Lsc(X ,N) for
some T1-space X. In our investigations, we also uncover new properties that the Cuntz semigroup
of all AI-algebras satisfies.

1 Introduction

The celebrated Effros-Handelman-Shen theorem [11, Theorem 2.2] characterizes
when a countable ordered abelian group G is order isomorphic to the ordered
K0-group of an approximately finite-dimensional (AF) C∗-algebra. More explicitly,
it states that G is unperforated and has the Riesz interpolation property if and only if
G is order isomorphic to the K0-group of such a C∗-algebra.

In analogy to the definition of an AF-algebra, a C∗-algebra A is said to be an
AI-algebra if A is ∗-isomorphic to an inductive limit whose building blocks have the
form C[0, 1] ⊗ Fn with Fn finite-dimensional for every n. In the unital commutative
setting, an AI-algebra is of the form C(X), with X homeomorphic to an inverse limit
of (possibly increasing) finite disjoint unions of unit intervals.

In this paper, we use the Cuntz semigroup of a C∗-algebra, a refinement of
K0 introduced by Cuntz in [10] and used successfully in the classification of not
necessarily simple C∗-algebras (see, for example, [7, 8, 19, 21]). We provide an abstract
characterization for the Cuntz semigroup of unital commutative AI-algebras and
introduce new properties that the Cuntz semigroup of every AI-algebra satisfies.
This settles the range problem for the Cuntz semigroup of this class of commutative
C∗-algebras; the corresponding problem in the setting of general AI-algebras was
posed during the 2018 mini-workshop on the Cuntz semigroup in Houston, and is
studied in [25].

Abstracting some of the properties that the Cuntz semigroup of a C∗-algebra always
satisfies, the subcategory Cu of partially ordered monoids was introduced in [9].
This subcategory, whose objects are often called Cu-semigroups, contains the Cuntz
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1832 E. Vilalta

semigroup of all C∗-algebras, and has been studied extensively in [1, 3, 4, 5], among
others. A relevant family in Cu is that of countably based Cu-semigroups satisfying
(O5) (see Paragraph 2.3), which contains the Cuntz semigroups of all separable
C∗-algebras (see [2, 22]).

The range problem for this class of algebras consists of finding a list of properties
that a Cu-semigroup S satisfies if and only if S is Cu-isomorphic to the Cuntz
semigroup of a unital commutative AI-algebra. In order to do this, we first investigate
when a compact metric space X is such that C(X) is an AI-algebra, that is to say, we
analyze when X is homeomorphic to an inverse limit of finite disjoint unions of unit
intervals. To this end, and in analogy to the definition of a chainable continuum (see,
for example, [17, Chapter 12]), we introduce almost chainable and generalized arc-like
spaces (see Definitions 3.4 and 3.7, respectively). We prove the following theorem.

Theorem 1.1 (3.15) Let X be a compact metric space. The following are equivalent:
(i) X is almost chainable.

(ii) X is a generalized arc-like space.
(iii) X is an inverse limit of finite disjoint copies of unit intervals.
(iv) C(X) is an AI-algebra.

The dimension of the spaces appearing in Theorem 1.1 is at most one, and in this
case the Cuntz semigroup of C(X) is isomorphic to the semigroup Lsc(X ,N) of lower
semicontinuous functions from X to {0, 1, . . . ,∞} (see, e.g., [20]). Thus, the next step
in our approach is to characterize those Cu-semigroups of the form Lsc(X ,N) for
some T1-space X. In Section 4, we define the notion of an Lsc-like Cu-semigroup.
Given such a semigroup S, we prove in Section 5 that S has an associated T1-topological
space XS (Paragraph 5.1) and that many properties defined for Cu-semigroups have
a topological counterpart whenever the semigroup is Lsc-like (see Proposition 5.6).
For example, an Lsc-like Cu-semigroup S has a compact order unit (in the sense of
Paragraph 2.3) if and only if XS is countably compact. In Theorem 6.4, we show that
S is Lsc-like if and only if it is Cu-isomorphic to Lsc(XS ,N).

Using this characterization, together with the notion of covering dimension for
Cu-semigroups introduced in [23], we obtain the following result.

Theorem 1.2 (6.5) Let S be a Cu-semigroup satisfying (O5), and let n ∈ N ∪ {∞}. Then,
S is Cu-isomorphic to Lsc(X ,N) with X a compact metric space such that dim(X) = n
if and only if S is Lsc-like, countably based, has a compact order unit, and dim(S) = n.

In particular, a Cu-semigroup S is Cu-isomorphic to the Cuntz semigroup of the
C∗-algebra C(X) with X compact metric and dim(X) ≤ 1 if and only if S is Lsc-like,
countably based, satisfies (O5), has a compact order unit, and dim(S) ≤ 1.

With these results at hand, we introduce in Section 7 notions of chainability for
Cu-semigroups. These conditions aim at modeling, at the level of abstract Cuntz
semigroups, the concepts of cover and chain for a topological space. We prove the
following theorem.

Theorem 1.3 (7.11) Let S be a Cu-semigroup. Then, S is Cu-isomorphic to the Cuntz
semigroup of a unital commutative AI-algebra if and only if S is countably based, Lsc-
like, weakly chainable, has a compact order unit, and satisfies (O5).
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The Cuntz semigroup of unital commutative AI-algebras 1833

Finally, in Section 8, we generalize some of the properties used in Theorem 7.11
and show that these generalizations are satisfied for the Cuntz semigroup of every
AI-algebra (see Theorem 8.7).

In [25], we continue the study of Cuntz semigroups of AI-algebras and develop
tools toward a similar characterization of Theorem 7.11 in the general case.

2 Preliminaries

Given a C∗-algebra A and two positive elements a, b ∈ A, recall that a is Cuntz
subequivalent to b, and write a ≾ b, if there exists a sequence (rn)n in A such that
a = limn rnbr∗n . Moreover, if a ≾ b and b ≾ a, we say that a and b are Cuntz equivalent,
in symbols a ∼ b.

The Cuntz semigroup of A, denoted by Cu(A), is defined as the quotient
(A⊗K)+/∼, where we denote by [a] the class of an element a ∈ (A⊗K)+. Equipped
with the order induced by ≾ and the addition induced by [a] + [b] = [( a 0

0 b )], the
Cuntz semigroup becomes a positively ordered monoid (see [9, 10]).

2.1 Given two elements x , y in a partially ordered set, we say that x is way-below y,
and write x ≪ y, if for every increasing sequence (zn)n whose supremum exists and
is greater than or equal to y there exists n ∈ N such that x ≤ zn .

In [9], it was shown that the Cuntz semigroup S of every C∗-algebra always satisfies
the following properties:

(O1) Every increasing sequence in S has a supremum.
(O2) Every element in S can be written as the supremum of a≪-increasing sequence.
(O3) For every x′ ≪ x and y′ ≪ y, we have x′ + y′ ≪ x + y.
(O4) For every pair of increasing sequences (xn)n and (yn)n , we have supn xn +

supn yn = supn(xn + yn)n .

2.2 In a more abstract setting, we say that a positively ordered monoid is a
Cu-semigroup if it satisfies (O1)–(O4).

We also say that a map between two Cu-semigroups is a Cu-morphism if it is a
positively ordered monoid morphism that preserves suprema of increasing sequences
and the way-below relation. As proved in [9], every *-homomorphism φ between
C∗-algebras induces a Cu-morphism Cu(φ) between their Cuntz semigroups.

Thus, one can consider the subcategory Cu of the category of positively ordered
monoid as the category with Cu-semigroups and Cu-morphisms as its objects and
morphisms, respectively. By the results from [9], the assignment Cu∶C∗ → Cu is
functorial.

Moreover, we know from [3, Corollary 3.2.9] that the category Cu has arbitrary
inductive limits and that the functor Cu is arbitrarily continuous (see also [9]).

2.3 A Cu-semigroup is said to have weak cancelation if x ≪ y whenever x + z ≪
y + z for some element z. Given a compact element z, that is, an element such that
z ≪ z, weak cancelation implies that x ≤ y whenever x + z ≤ y + z. Stable rank one
C∗-algebras have weakly cancellative Cuntz semigroups by [22, Theorem 4.3].
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It was also proved in [22] that the Cuntz semigroup of a C∗-algebra always satisfies
the following property: for every x′ ≪ x ≤ z, there exists c such that

x′ + c ≤ z ≤ x + c.

Moreover, it was shown in [3, Proposition 4.6] that a stronger property termed (O5)
was also satisfied in the Cuntz semigroup of any C∗-algebra:

(O5) Given x′ ≪ x, y′ ≪ y and x + y ≤ z, there exists an element c such that y′ ≪ c
and x′ + c ≤ z ≤ x + c.

Under the assumption of weak cancelation, (O5) and the weaker property from
[22] coincide.

We will say that a Cu-semigroup is countably based if there exists a countable subset
such that every element in the semigroup can be written as the supremum of an
increasing sequence of elements in the subset. It follows from [2, Lemma 1.3] that
Cuntz semigroups of separable C∗-algebras are countably based.

2.4 Recall that a C∗-algebra A is an AI-algebra if it is *-isomorphic to an inductive
limit of the form limn C[0, 1] ⊗ Fn with Fn finite-dimensional for every n.

By [24], every unital commutative AI-algebra is *-isomorphic to an inductive limit
of the form

C([0, 1])n1
φ2,1 �� C([0, 1])n2

φ3,2 �� C([0, 1])n3
φ4,3 �� ⋅⋅⋅

with n i ≤ n i+1 for each i and where all the homomorphisms are in standard form. That
is to say, for every i, we have

π j, i+1φ i+1, i( f1 , . . . , fn i ) = fr σ j, i ,

where π j, i+1∶C([0, 1])n i+1 → C([0, 1]) is the jth projection map, σ j, i ∶ [0, 1] → [0, 1] is
a continuous function, and r ≤ n i .

Thus, every unital commutative AI-algebra is isomorphic to C(X), where X
is an inverse limit of (possibly increasing) finite disjoint unions of unit intervals.
Conversely, it is easy to see that C(X) is an AI-algebra for such an inverse limit X.

Since the space X above will always have dimension at most one, we know by [20,
Theorem 1.1] that Cu(C(X)) ≅ Lsc(X ,N).

Moreover, note that, with the above notation, if there exists some i such that n i = n j
for every j ≥ i, we can write A ≅ ⊕n i

k=1C(Xk)with Xk an inverse limit of unit intervals.

3 Chainable and almost chainable spaces

In this section, we will prove that a compact metric space X is homeomorphic to an
inverse limit of finite disjoint copies of unit intervals (i.e., C(X) is an AI-algebra) if and
only if X satisfies an abstract property, which we call almost chainability (see Theorem
3.15). This is done in analogy to [17, Chapter 12], where it is shown that a continuum
is homeomorphic to the inverse limit of unit intervals if and only if it is chainable, as
defined below.
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3.1 Recall that a compactum is a compact metric space, and that a continuum is a
connected compactum. As in [17, Chapter 12], a chain in a continuum X will be a
finite nonempty indexed collection C = {C1 , . . . , Ck} of open subsets of X such that

C i ∩ C j ≠ ∅ if and only if ∣i − j∣ ≤ 1.

The mesh of a chain C = {C1 , . . . , Ck}, in symbols mesh(C), is defined as

mesh(C) =max{diam(C i)}.

A chain of mesh less than ε is called an ε-chain.

Following [17, Chapter 12], one can now define chainable continua.

Definition 3.1 A continuum X is said to be chainable if for every positive ε there
exists an ε-chain covering X.

We will say that a compactum is piecewise chainable if it can be written as the finite
disjoint union of closed chainable subspaces.

Chainability may also be defined in a general setting, and one can check that
the previous and following definitions coincide whenever X is a continuum (see
Lemma 3.5).

Definition 3.2 A topological space X is said to be topologically chainable if any finite
open cover of X can be refined by a chain, that is, an open cover C1 , . . . , Ck such that
C i ∩ C j ≠ ∅ if and only if ∣i − j∣ ≤ 1.

Remark 3.2 Note that both of the abovementioned definitions imply that the dimen-
sion of the space is at most one, and that the space is connected whenever it is compact.

The following proposition shows why we consider chainable continua. More on
chainable spaces can be found in [17, Chapter 12].

Proposition 3.3 A compactum is an inverse limit of unit intervals if and only if it is
chainable.

Proof Let X be the inverse limit of unit intervals. Since the unit interval is compact
and connected, X is connected and, consequently, a continuum.

If X is degenerate (i.e., a point), it is clearly chainable, so we may assume otherwise.
If X is nondegenerate, then [17, Theorems 12.11 and 12.19] and the comments

following Theorem 12.19 of [17] imply that X is chainable.
Conversely, if X is chainable, it can either be degenerate (in which case we are done)

or nondegenerate. By [17, Theorem 12.11], a nondegenerate chainable continuum is an
inverse limit of unit intervals, so the result follows. ∎

Definition 3.3 A unital AI-algebra A will be said to be block stable if it is isomorphic
to C(X)with X a compact metric piecewise chainable space, that is, if A ≅ ⊕n

k=1C(Xk)
with Xk a chainable continuum for each k.

3.1 Generalized arc-like spaces

We now generalize the previous results and characterize the topological spaces arising
from unital commutative AI-algebras in terms of a weaker property.
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3.4 Let X be a compactum. In analogy with the definition of chains, an almost chain
in X will be a finite nonempty indexed collection C = {C1 , . . . , Ck} of open subsets of
X such that

C i ∩ C j = ∅ whenever ∣i − j∣ ≥ 2.

The mesh of an almost chain will be mesh(C) =max{diam(C i)}, and an almost
chain of mesh less than ε will be called an ε-almost chain.

Definition 3.4 A compact metric space X will be said to be almost chainable if, for
every ε > 0, there exists an ε-almost chain covering X.

Definition 3.5 A topological space X will be said to be topologically almost chainable
if any finite open cover of X can be refined by an almost chain, that is, an open
refinement C1 , . . . , Ck such that C i ∩ C j = ∅ whenever ∣i − j∣ ≥ 2.

Lemma 3.5 Definitions 3.4 and 3.5 coincide whenever X is a compact metric space.
The same proof can be applied to chainability and topological chainability.

Proof If X is topologically almost chainable, let ε > 0 and take an open cover of
ε-balls in X. Since X is compact, there exist finitely many points x1 , . . . , xn such that
their ε-balls cover X.

By topological almost chainability, this finite open cover can be refined by open
subsets C1 , . . . , Ck such that C i ∩ C j = ∅whenever ∣i − j∣ ≥ 2. Since C i is contained in
some ε-ball, it follows that C1 , . . . , Ck is an ε-almost chain.

Conversely, assume that X is almost chainable and take a (finite) open cover
U1 , . . . , Un .

Since X is a compact metric space, the cover has a nonzero Lebesgue number δ.
That is, every subset of X having diameter less than δ is contained in some U j .

Set ε < δ and consider an ε-almost chain C = {C1 , . . . , Ck} covering X. Since
diam(C i) ≤ ε < δ for every i, it follows that each C i is contained in some U j .
Consequently, C1 , . . . , Ck is an open refinement of U1 , . . . , Un with the required
property. ∎

We now define the notion of (ε, δ)-maps and generalized arc-like spaces. This is
done in analogy with [17, Theorem 12.11].

Recall that a continuous map f ∶X → Y is an ε-map if diam( f −1(y)) ≤ ε for every
y ∈ Y , where diam(∅) = 0 by definition.

Definition 3.6 Let X , Y be metric spaces. Given ε, δ > 0, we will say that a con-
tinuous map f ∶X → Y is an (ε, δ)-map if diam( f −1(Z)) < ε for every Z ⊆ Y with
diam(Z) < δ.

Recall also that a continuum X is arc-like if, for every ε > 0, there exists an ε-map
from X onto [0, 1] (see [17, Definition 2.12]).

Definition 3.7 A compactum X is said to be a generalized arc-like space if, for every
ε > 0, there exists δ > 0 and an (ε, δ)-map f ∶X → I1 ⊔ ⋅⋅⋅ ⊔ In with I j = [0, 1] for each j.

Remark 3.6 Given a finite disjoint union of unit intervals I1 ⊔ ⋅⋅⋅ ⊔ In and some δ >
0, one can clearly construct a (δ, δ′)-map r∶ I1 ⊔ ⋅⋅⋅ ⊔ In → [0, 1] (by simply rescaling
I1 ⊔ ⋅⋅⋅ ⊔ In until it fits in [0, 1]).
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Thus, a compactum X is a generalized arc-like space if and only if, for every ε > 0,
there exists an (ε, δ)-map f ∶X → [0, 1] for some δ > 0.

Lemma 3.7 Inverse limits of finite disjoint unions of unit intervals are generalized arc-
like spaces.

Proof Let X be an inverse limit of finite disjoint unions of unit intervals, and let
([0, 1] ⊔ ⋅⋅⋅ ⊔ [0, 1], f i , j) be its associated inverse system.

Recall that the metric on X is defined to be

d((x i)∞i=1 , (y i)∞i=1) =
∞

∑
i=1

1
2i

di(x i , y i)
1 + di(x i , y i)

,

where di is the distance in the ith component of the inverse system.
Moreover, recall that the distance between two points x , y in [0, 1] ⊔ ⋅⋅⋅ ⊔ [0, 1] is

either the usual distance if x , y belong to the same connected component or 2 if they
do not.

Given ε > 0, let n be such that∑i>n 2/2i < ε/2.
Then, since for every fixed n the maps f i ,n are uniformly continuous for every i ≤ n,

there exists δ > 0 such that

di( f i ,n(x), f i ,n(y)) ≤ ε/2n

whenever dn(x , y) ≤ δ.
Let πn ∶X → [0, 1] ⊔ ⋅⋅⋅ ⊔ [0, 1] be the nth canonical projection map, and take Z ⊆

πn(X) with diamn(Z) ≤ δ,
Take x , y ∈ π−1

n (Z). Then, we have

d(x , y) =
n
∑
i=1

1
2i

di( f i ,n(xn), f i ,n(yn))
1 + di( f i ,n(xn), f i ,n(yn))

+ ∑
i>n

1
2i

di(x i , y i)
1 + di(x i , y i)

≤ n ε
2n
+∑

i>n

1
2i 2 ≤ ε,

since any pair of elements is at distance at most 2.
This shows that diam(π−1

n (Z)) ≤ ε, and so πn is an (ε, δ)-map, as required. ∎

Proposition 3.8 A compactum X is a generalized arc-like space if and only if it is almost
chainable.

Proof We follow the proof of [17, Theorem 12.11] while making some minor adjust-
ments.

Assume first that X is almost chainable and take ε > 0. Let C be an ε/2-almost chain
covering X, and decompose it as C = C1 ⊔ ⋅⋅⋅ ⊔ Cr with

C1 = {C i ,1}i , . . . , Cr = {C i ,r}i

ε/2-chains in X. Note that, for any i , l we have C i , j ∩ C l ,k = ∅ whenever j ≠ k and

X = ⊔
j
⋃

i
C i , j ,

because C covers X.
Take s ≤ r. If ∣Cs ∣ ≤ 2, consider the map fs ∶ ∪i C i ,s → [0, 1] sending every element to

0. Note that diam( f −1
s (Z)) < ε whenever diam(Z) < 1.
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If ∣Cs ∣ ≥ 3, use the techniques in [17, Theorem 12.11] to obtain an (ε, δs)-map
fs ∶ ∪i C i ,s → [0, 1].

Now, define f = f1 ⊔ ⋅⋅⋅ ⊔ fr ∶X → I1 ⊔ ⋅⋅⋅ ⊔ Ir , where I l = [0, 1] for every l. Note that
this is clearly continuous.

Setting δ <min{1, δs}, one gets that, if the diameter of Z ⊆ I1 ⊔ ⋅⋅⋅ ⊔ Ir is less than
δ, Z is a subset of some I l (since the distance between disjoint components is 2).

This implies that f −1(Z) = f −1
l (Z) has diameter at most ε, as required.

Conversely, if X is a generalized arc-like, then given any ε there exists δ with f ∶X →
I1 ⊔ ⋅⋅⋅ ⊔ Ir an (ε, δ)-map.

For each I l , consider a δ-chain C l . The inverse image of these chains through f
gives the desired ε-almost chain for X. ∎

Corollary 3.9 Inverse limits of disjoint unions of unit intervals are almost chainable.
In particular, each connected component is arc-like.
Proof This follows from our previous two results. Note, however, that only one
implication of Proposition 3.8 has been used. ∎

We will now show that the converse of Corollary 3.9 also holds, thus obtaining
a characterization of inverse limits of finite disjoint copies of unit intervals (see
Theorem 3.15).

We first recall the following result from [13], even though this particular formula-
tion is from [24, Lemma 2.14, p. 184].
Lemma 3.10 Let C be a closed nonempty subset of [0, 1], and let ε > 0. Then, there exist
a subset Y ⊆ C which is a finite disjoint union of closed intervals (possibly degenerate)
and a map α∶C → Y such that α(y) = y for every y ∈ Y and ∣α(x) − x∣ < ε for every
x ∈ C.
Remark 3.11 With the previous notation, note that α is an onto 2ε-map from C to Y.

Indeed, for any y ∈ Y and for any x ∈ C with α(x) = y, we must have ∣x − y∣ < ε.
Since y ∈ α−1(y), it follows that diam(α−1(y)) ≤ diam(Bε(y)) < 2ε.

From now on, by a closed interval, we will mean a possibly degenerate closed
interval (that is to say, either a point or a nondegenerate closed interval).
3.12 Given any (ε, δ)-map f ∶X → [0, 1], consider the induced onto ε-map f ∶X →
Im( f ).

Since X is compact, so is Im( f ). Using Lemma 3.10, we can find an onto δ-map
α∶ Im( f ) → Y with Y the finite disjoint union of closed intervals and, consequently,
we get an onto ε-map α f ∶X → Y .

This shows that given any generalized arc-like compactum X (equivalently, any
almost chainable compactum, by Proposition 3.8) and any ε > 0, there exists an onto
ε-map f ∶X → Y with Y a finite disjoint union of closed intervals. Indeed, given any
ε > 0, we know by Definition 3.7 and Remark 3.6 that there exists an (ε, δ)-map
f ∶X → Y . The conclusion now follows from the previous argument.

Using Paragraph 3.12, we will see that C(X) is a commutative AI-algebra for any
generalized arc-like compactum X. Since we already know that X is almost chainable
whenever C(X) is an AI-algebra (see Corollary 3.9), this will show that X is almost
chainable if and only if C(X) is a commutative AI-algebra.
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The following lemma is a natural generalization of [17, Lemma 12.17]. We follow
both the structure and the notation of the proof of said lemma.

Lemma 3.13 Let X be a compactum, let g1∶X → Y1 be an onto continuous map with
Y1 a finite disjoint union of closed intervals, and let η > 0.

Then, there exists ε > 0 such that, for any onto ε-map g2∶X → Y2 with Y2 a finite
disjoint union of closed intervals, there exists a continuous map φ∶Y2 → Y1 such that
∣g1(x) − φg2(x)∣ < η for every x ∈ X.

Proof First, write

Y1 = J1 ⊔ ⋅⋅⋅ ⊔ Jn1 ⊔ {q1} ⊔ ⋅⋅⋅ ⊔ {qm1}

with Jk closed nondegenerate intervals for every k.
Fix m ∈ N such that 1/m < η/2 and define s i = i/m for every 0 ≤ i ≤ m. Since g1 is

uniformly continuous, there exists some γ > 0 such that diam(g1(A)) < 1/m whenever
diam(A) < γ.

Set ε = γ/2 and fix an onto ε-map g2∶X → Y2 as in the statement of the lemma.
Recall that there exists δ > 0 such that diam(g−1

2 (Z)) < 2ε = γ whenever diam(Z) < δ.
Now, fix n ∈ N such that 1/n < δ/2 and define t j = j/n for every 0 ≤ j ≤ n.
As before, write Y2 as

Y2 = I1 ⊔ ⋅⋅⋅ ⊔ In2 ⊔ {p1} ⊔ ⋅⋅⋅ ⊔ {pm2}

with I l closed nondegenerate intervals for every l.
For each l , k, consider the subsets

Ak
1 = [s0 , s1) , Ak

i = (s i−1 , s i+1) , Ak
m = (sm−1 , sm] ⊆ Jk ,

B l
1 = [t0 , t1) , B l

j = (t j−1 , t j+1) , B l
n = (tn−1 , tn] ⊆ I l .

By construction, we know that diam(B l
j) < δ for every fixed j, l . This implies that

diam(g−1
2 (B l

j)) < γ and, consequently,

g1(g−1
2 (B l

j)) ⊆ Ak
i or g1(g−1

2 (B l
j)) ⊆ {qr′}

for some i , k, r′. Here, we have taken m large enough so that the distance between the
connected components of Y1 is greater than 1/m.

Note that, by the same argument, we also have that for every r ≤ m2 there exist i , k
with g1(g−1

2 (pr)) ⊆ Ak
i or g1(g−1

2 (pr)) ⊆ {qr′} for some r′.
Moreover, since for every fixed l and every j we have B l

j ∩ B l
j+1 ≠ ∅, we get

∅ ≠ g1(g−1
2 (B l

j)) ∩ g1(g−1
2 (B l

j+1))

because g2 is onto.
It follows that, for every fixed l, the sets g1(g−1

2 (B l
j)) belong to the same con-

nected component of Y1 for every j. Thus, for every l, there either exists k such that
g1(g−1

2 (I l)) ⊆ Jk or there exists r′ such that g1(g−1
2 (I l)) = {qr′}.

Given a connected component Y of Y2, we define the map φY ∶Y → Y1 as follows:
If g1(g−1

2 (Y)) = {qr′} for some r′, define φY ∶Y → {qr′} as the constant map.
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Else, there exists some k such that g1(g−1
2 (Y)) ⊆ Jk . If Y is degenerate, we can

find Ak
i ⊆ Jk such that g1(g−1

2 (Y)) ⊆ Ak
i for some i , k. Define φY ∶Y → Ak

i ⊆ Jk as the
constant map φY ≡ s i .

Finally, if Y is nondegenerate, it is of the form Y = I l . Then, for every j, fix i( j) such
that g1(g−1

2 (B l
j)) ⊆ Ak

i( j), and recall that

∅ ≠ g1(g−1
2 (B l

j)) ∩ g1(g−1
2 (B l

j+1))

for every j. This shows that ∣i( j) − i( j + 1)∣ ≤ 1.
Define φI l ∶ I l → Jk as φI l (t j) = s i( j) and extend it linearly.
Let φ ∶= φI1 ⊔ ⋅⋅⋅ ⊔ φIn2

⊔ φp1 ⊔ ⋅⋅⋅ ⊔ φpm2
∶Y2 → Y1, which is clearly continuous. We

will now see that ∣g1(x) − φg2(x)∣ < η.
Thus, let x ∈ X and let B ⊆ Y2 such that g2(x) ∈ B with B being either B l

j for some
l , j or {pr} for some r. Note that g1(x) ∈ g1(g−1

2 (B)).
Thus, if g1(g−1

2 (B)) = {qr′} for some r′, we have g1(x) = qr′ and, consequently,

∣g1(x) − φg2(x)∣ = ∣qr′ − qr′ ∣ = 0

by the definition of φ.
Finally, if g1(g−1

2 (B)) ⊆ Ak
i , we have that g1(x) ∈ Ak

i . Therefore, one gets ∣g1(x) −
s i ∣ < 1/m. There are now two different situations:

If B = {pr} for some r, we have defined φpr as the constant map s i . Thus, one gets

∣g1(x) − φg2(x)∣ = ∣g1(x) − s i ∣ < 1/m < η/2.

Else, if B = B l
j for some l and j, let i( j) be the previously fixed integer such that

g1(g−1
2 (B)) ⊆ Ak

i( j).
Then, since g2(x) ∈ B, we either have t j−1 ≤ g2(x) ≤ t j or t j ≤ g2(x) ≤ t j+1. This

implies that φ(g2(x)) is either between s i( j−1) and s i( j) or between s i( j) and s i( j+1).
Since ∣i( j) − i( j + 1)∣ ≤ 1, the triangle inequality implies that

∣g1(x) − φg2(x)∣ ≤ ∣g1(x) − s i( j)∣ + ∣s i( j) − φg2(x)∣ ≤ 2/m < η,

as required. ∎

In order to prove our next result, we will need the following proposition, a proof of
which can be found in [17, Proposition 12.18].

Proposition 3.14 Let (X , d) be a compactum, and let Y = lim←#(Yi , f i) be an inverse
limit of compacta (Yi , d i) with f i ∶Yi+1 → Yi .

Assume that there exist two sequences of strictly positive real numbers (δ i), (ε i)with
lim ε i = 0 and a family of onto ε i -maps g i ∶X → Yi such that the following conditions
hold:

(i) For every pair i < j, we have diam( f i , j(A)) ≤ δ i/2 j−i for any A ⊆ Yj with
diam(A) ≤ δ j .

(ii) d i(g i(x), g i(y)) > 2δ i whenever d(x , y) ≥ 2ε i .
(iii) d i(g i , f i g i+1) ≤ δ i/2.

Then, X ≅ Y.
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We summarize our results in the following.

Theorem 3.15 Let X be a compactum. The following are equivalent:

(i) X is almost chainable.
(ii) X is a generalized arc-like space.
(iii) X is homeomorphic to an inverse limit of finite disjoint copies of unit intervals.
(iv) C(X) is an AI-algebra.

Proof Conditions (i) and (ii) are equivalent by Proposition 3.8, whereas (iii) is
equivalent to (iv) by the arguments in Paragraph 2.4. Furthermore, that (iii) implies
(i) follows from Corollary 3.9. Thus, we are left to prove that (i) implies (iii).

Let X be an almost chainable compactum. Then, for every ε > 0, there exists an onto
ε-map f ∶X → Y with Y a finite disjoint union of closed intervals.

As in [17, Theorem 12.19], we will inductively construct sequences of maps and real
numbers satisfying the conditions of Proposition 3.14. We give the proof here for the
sake of completeness, although the only difference with the original proof is that we
replace [0, 1] with Y.

Let 0 < ε1 ≤ 1, and consider an onto ε1-map g1 from X to a finite disjoint union of
closed intervals Y1.

Note that, in particular, we must have g1(x) ≠ g1(y) whenever d(x , y) ≥ 2ε1. By
compactness of X, this implies that there exists some δ1 > 0 such that ∣g1(x) − g1(y)∣ >
2δ1 whenever d(x , y) ≥ 2ε1.

Setting η = δ1/2, let ε > 0 be as in our previous lemma and set ε2 =min{1/2, ε}.
Then, let g2∶X → Y2 be an onto ε2-map given by the almost chainability of X.

By our choice of ε2, there exists some f1∶Y2 → Y1 such that

∣g1(x) − f1 g2(x)∣ < η = δ1/2

for every x ∈ X.
As before, there exists δ2 > 0 such that ∣g2(x) − g2(y)∣ > 2δ2 whenever d(x , y) ≥

2ε2. Furthermore, by the uniform continuity of f1, we can choose δ2 > 0 so that
diam( f1(A)) ≤ η whenever diam(A) ≤ δ2.

This shows that g1 , g2 satisfy conditions (i)–(iii) of Proposition 3.14.
Proceeding as in [17, Theorem 12.19], one can now inductively find ε i , δ i > 0 and

maps g i ∶X → Yi , f i ∶Yi+1 → Yi satisfying conditions (i)–(iii) of Proposition 3.14.
Applying Proposition 3.14, we have X ≅ lim(Yk , fk) with Yk finite disjoint unions

of closed intervals. Clearly, this implies that C(X) is an AI-algebra, as required. ∎

4 Lsc-like Cu-semigroups

In this section, we introduce Lsc-like Cu-semigroups (Definition 4.3) and prove some
of their main properties. As we shall prove in Theorem 6.4, such Cu-semigroups are
exactly those that are Cu-isomorphic to the Cu-semigroup of lower-semicontinuous
functions Lsc(X ,N) for some T1 topological space.

Using Lemma 4.18, we also prove that the semigroup Lsc(X ,N) is a Cu-semigroup
whenever X is compact and metric (see Corollary 4.19).
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Definition 4.1 A Cu-semigroup S will be called distributively lattice ordered if S is
a distributive lattice such that, given any pair of elements x , y ∈ S, we have x + y =
(x ∨ y) + (x ∧ y).

We will say that a distributively lattice ordered Cu-semigroup is complete if suprema
of arbitrary sets exist.

Remark 4.1 Given two increasing sequences (xn)n and (yn)n in a complete
distributively lattice ordered Cu-semigroup, we have that (supn xn) ∨ (supn yn) =
supn(xn ∨ yn).

Indeed, by definition, we know that supn xn = ∨∞n=1xn and the equality

(∨∞n=1xn) ∨ (∨∞n=1 yn) = ∨∞n=1(xn ∨ yn)

holds in any complete lattice.

Throughout the paper, we will say that a sum of finitely many indexed elements
x1 + ⋅⋅⋅ + xn is ordered if the sequence (x i)n

i=1 is increasing or decreasing.

Lemma 4.2 Let S be a distributively lattice ordered Cu-semigroup. Given two finite
decreasing sequences (x i)m

i=1 , (y i)m
i=1, the following equality holds:

m
∑
i=1
(x i + y i) =

2m
∑
i=1
∨m

j=0(x j ∧ y i− j),

where, on the right-hand side, xi ∧ yk = x i , and xk ∧ y i = y i whenever k ≤ m and yk =
xk = 0 whenever k > m.

Note that the sum on the right-hand side is decreasingly ordered.

Proof This is a generalization of the equality x + y = (x ∨ y) + (x ∧ y) and is proved
by induction. ∎

Remark 4.3 Given any finite sum x1 + ⋅⋅⋅ + xn , we can apply Lemma 4.2 iteratively
(first to x1 + x2, then to ((x1 ∨ x2) + (x1 ∧ x2)) + x3, etc.) to obtain an ordered sum.

Therefore, every sum in a distributively lattice ordered semigroup can be written
as an ordered sum.

Definition 4.2 Let S be a Cu-semigroup, and let H be a subset of S. We say that H is
topological if, given two finite increasing sequences (x i)m

i=1 , (y i)m
i=1 in H, we have

m
∑
i=1

x i ≤
m
∑
i=1

y i

if and only if x i ≤ y i for every i.

Similar notions to that of topological order appear in other contexts, such as in [6,
Definition 4.1].

Given any element r in partially ordered set P, we denote by ↓ r the set {s ∈ P ∣ s ≤ r}
(see, for example, [14, Definition O-1.3]).

Notation 4.4 Given a Cu-semigroup S and an element y ∈ S, we write ∞y ∶=
supn ny. Furthermore, if S has a greatest element, we denote it by∞.
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Definition 4.3 A Cu-semigroup S will be said to be Lsc-like if it is a complete
distributively lattice ordered Cu-semigroup such that the following conditions hold:
(C1) For every pair of idempotent elements y, z in S, y ≥ z if and only if

{x < ∞ ∣ x maximal idempotent, x ≥ y}
⊆ {x < ∞ ∣ x maximal idempotent, x ≥ z}.

(C2) There exists a topological subset of the form ↓ e such that the finite sums of
elements in ↓ e are sup-dense in S.

The following example justifies our terminology.
Example 4.5 Any Cu-semigroup of the form Lsc(X ,N)with X a T1-space is Lsc-like.
Indeed, Lsc(X ,N) is clearly a complete distributively lattice ordered semigroup.

Furthermore, the maximal idempotent elements s < ∞ are of the form s =
∞χX/{x}, and given any pair of elements∞ f = ∞χsupp( f ) and∞g = ∞χsupp(g), we
know that ∞χsupp( f ) ≤ ∞χsupp(g) if and only if supp( f ) ⊆ supp(g). That is, if and
only if for every x ∈ X such that supp(g) ⊆ X/{x} we have supp( f ) ⊆ X/{x}. This
shows that Lsc(X ,N) satisfies (C1).

To see (C2), consider the subset ↓ 1. One can see that the order is topological, and
it clearly generates a semigroup that is dense in Lsc(X ,N).

Recall that by an order unit we mean an element e such that x ≤ ∞e for every x ∈ S.
Remark 4.6 Let S be an Lsc-like Cu-semigroup. Since the semigroup generated by
↓ e is dense in S, e is an order unit.

Furthermore, let f be another order unit, and let ( fm)m be an increasing sequence
of ordered finite sums of elements below e such that f = supm fm (the sums can be
assumed to be ordered by Remark 4.3). Write fm = ∑rm

i=1 g i ,m with e ≥ g i ,m ≥ g i+1,m
for each i < rm .

Moreover, consider a≪-increasing (en)n whose supremum is e.
Then, since e ≤ ∞ f , one has that for every n ∈ N there exist some k, m ∈ N with

en ≤ k fm = ∑rm
i=1 kg i ,m . Thus, since the order in ↓ e is topological and∑rm

i=1 kg i ,m is an
ordered sum of elements below e (the first k greatest elements are g1,m , the next k are
g2,m , etc.), it follows that en ≤ g1,m ≤ f .

This shows e ≤ f and, consequently, e is the least order unit of S.
4.7 Note that an Lsc-like Cu-semigroup S has no maximal idempotent elements
x < ∞ if and only if S = {0}. Indeed, if S has no maximal idempotents, then every
idempotent z satisfies z ≤ 0 by condition (C1). This implies that every idempotent
element is zero and, since for every s ∈ S the element∞s is idempotent and∞s ≥ s,
we get s = 0 for every s, as desired. The converse is trivial.

Similarly, an element s ∈ S satisfies ∞s = ∞ if and only if there are no maximal
idempotents x < ∞ with∞s ≤ x.
Lemma 4.8 Let S be an Lsc-like Cu-semigroup, and let y ≤ ne, where e is the least
order unit of S and n ∈ N. Then, y can be written as an ordered sum of at most n nonzero
terms in ↓ e.
Proof Write y as y = supr yr , where each yr is a finite ordered sum of elements in ↓ e
(see Lemma 4.2 and Remark 4.3).
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As yr ≤ ne for each r and ↓ e is topological, each yr has at most n nonzero
summands.

Furthermore, since yr ≤ yr+1, the kth summands of (yr)r form an increasing
sequence for every k.

Taking their suprema, this shows that y is an ordered sum of at most n elements
in ↓ e. ∎

Corollary 4.9 Let S be an Lsc-like Cu-semigroup. Given y1 , . . . , yn ∈ S such that y1 +
⋅⋅⋅ + yn ≥ s for some s ≤ e, we have y1 ∨ ⋅⋅⋅ ∨ yn ≥ s.

Proof Take any s′ ≪ s, and let y′i ≪ y i be such that y′1 + ⋅⋅⋅ + y′n ≥ s′. Since ∞e ≥
y1 + ⋅⋅⋅ + yn ≫ y′1 + ⋅⋅⋅ + y′n , there exists some k ∈ N such that ke ≥ y′1 + ⋅⋅⋅ + y′n .

By Lemma 4.8, each y′i can be written as an ordered sum of at most k elements
below e. That is, we can write y′i = ∑

k
j=1 y j, i with e ≥ y j, i ≥ y j+1, i for each j < k.

Applying Lemma 4.2 iteratively, we have that y′1 + ⋅⋅⋅ + y′n can be written as a finite
ordered sum of elements below e, and that the greatest summand of the sum is y1,1 ∨
⋅⋅⋅ ∨ y1,n .

Since the order in ↓ e is topological, we get y1,1 ∨ ⋅⋅⋅ ∨ y1,n ≥ s′. It follows that

s′ ≤ y1,1 ∨ ⋅⋅⋅ ∨ y1,n ≤ y′1 ∨ ⋅⋅⋅ ∨ y′n ≤ y1 ∨ ⋅⋅⋅ ∨ yn .

Since this holds for every s′ ≪ s, we have s ≤ y1 ∨ ⋅⋅⋅ ∨ yn as required. ∎

The next two lemmas will be of particular importance when working with the
induced topology of an Lsc-like Cu-semigroup (see Paragraph 5.1). In particular,
Lemma 4.11 gives an alternative version of (C1) in Definition 4.3.

Lemma 4.10 Let S be an Lsc-like Cu-semigroup with least order unit e, and let x ∈ S.
Then,∞x = ∞(x ∧ e) and (∞x) ∧ e = x ∧ e.

In particular, if x < ∞ is a maximal idempotent, we must have x ∧ e ≠ e.

Proof By Lemma 4.8 and condition (C2) in Definition 4.3, x can be written as the
supremum of finite ordered sums of elements in ↓ e. Moreover, using that the order in
↓ e is topological, it follows that the sequence formed by the greatest element of each
ordered sum is increasing. Let x′ be the supremum of such a sequence.

Then, it is clear that∞x = ∞x′ and x ∧ e = x′. Therefore, we have

∞x = ∞x′ = ∞(x ∧ e), and (∞x) ∧ e = (∞x′) ∧ e = x′ = x ∧ e ,

as desired. ∎

Lemma 4.11 Let S be an Lsc-like Cu-semigroup with least order unit e. Let y, z ≤ e. If
z ≤ x for every maximal element x < e such that y ≤ x, then z ≤ y.

Proof If there are no maximal idempotent elements x < ∞, we know that S = {0},
so we may assume otherwise.

We claim that the maximal idempotent elements x < ∞ are precisely the elements
∞s with s < e maximal.

To see this, let x < ∞ be a maximal idempotent and take s = x ∧ e. By Lemma 4.10,
we have∞s = ∞(x ∧ e) = ∞x = x. Let us check that s is maximal, and thus take t ∈ S
with s ≤ t ≤ e.
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By maximality of x, we either have ∞t = ∞ or ∞t = x. Using Lemma 4.10 once
again, it follows that we have t = (∞t) ∧ e = ∞∧ e = e or t = x ∧ e = s, as required.

Conversely, let s < e be maximal and consider the element∞s = supn ns. Let (sk)k
be a≪-increasing sequence with supremum s.

Given an idempotent element x such that∞s ≤ x ≤ ∞, we know by Lemma 4.8 that
there exists a≪-increasing sequence (xm)m with supremum x such that each xm can
be written as a finite increasing sum of elements in ↓ e.

Let (mk)k be an increasing sequence of integers such that ksk ≤ xmk for every k.
Using that ↓ e is topological, each sk is less than or equal to each of the first k

summands of xmk . As in the proof of Lemma 4.10, note that the largest summands
of each sum form an increasing sequence of elements below e. Letting x′ be the
supremum of this sequence, we get s ≤ x′ ≤ e.

By maximality of s, we either have s = x′ or x′ = e. Thus, it follows from Lemma
4.10 that ∞s = x or x = ∞x′ = ∞. This proves that ∞s is a maximal idempotent, as
desired.

A similar argument shows that for any y, z ≤ e we have y ≤ z ≤ e if and only if∞y ≤
∞z. Consequently, if z ≤ s for every maximal element s < e such that y ≤ s, we know
that∞z ≤ ∞y. Taking the infimum with e, one gets z = (∞z) ∧ e ≤ (∞y) ∧ e = y, as
required. ∎

Remark 4.12 Note that the previous lemma implies that y < e if and only if there
exists a maximal element x < e with y ≤ x.

Recall that a complete lattice (P, ≤) is said to be a complete Heyting algebra if, for
every element s ∈ P and every subset T ⊆ P, the following holds:

s ∧ (∨t∈T t) = ∨t∈T(s ∧ t).

Lemma 4.13 Let S be an Lsc-like Cu-semigroup with least order unit e. The subset
↓ e ⊆ S is a complete Heyting algebra.

Proof By definition, we have to see that for every subset T ⊆↓ e, one has s ∧
(∨t∈T t) = ∨t∈T(s ∧ t) for every s ∈↓ e. Thus, let x < e be maximal with x ≥ ∨t∈T(s ∧ t),
which happens if and only if x ≥ s ∧ t for every t ∈ T . Since x ≠ e and x ∨ x ≥ x ∨ (s ∧
t) = (x ∨ s) ∧ (x ∨ t), we either have x ∨ s = x or x ∨ t = x (since otherwise both of
these unions would be equal to e and then x ≥ e, a contradiction).

If x = x ∨ s ≥ s, we have x ≥ s ∧ (∨t∈T t). Else, x ≥ t for each t ∈ T , so we also get
x ≥ s ∧ (∨t∈T t).

By Lemma 4.11, this shows that s ∧ (∨t∈T t) ≤ ∨t∈T(s ∧ t).
The other inequality holds in any lattice. ∎

Let S be a Cu-semigroup, and let y, z ∈ S be a pair of elements such that y ≤ z. We
say that an element u is the almost complement of z by y if, for every x ∈ S, we have
x + y ≤ z if and only if x ≤ u. If it exists, the almost complement is unique, and we
denote by y/z.

Given a Cu-semigroup S where every pair of elements has a supremum, we say
that S is sup-semilattice ordered if for every x , y, z ∈ S we have x + (y ∨ z) = (x + y)
∨ (x + z).
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A natural question to ask about Lsc-like Cu-semigroups is if they satisfy such a
property. This is indeed the case.

Lemma 4.14 Let S be an Lsc-like Cu-semigroup, and let e be its least order unit. Given
y ≤ z with y ≤ ne for some n, the almost complement y/z exists.

In particular, given x , y, z ∈ S, we have x + (y ∨ z) = (x + y) ∨ (x + z).

Proof We will construct our almost complement y/z in three steps.
Step 1. Let e be the least order unit of S and assume that y ≤ z ≤ e. Then, consider

the subset T ∶= {x ∈ S ∣ y + x ≤ z} and, since arbitrary suprema exist in S, we define

y/z ∶= ∨{x ∈ S ∣ y + x ≤ z} = ∨x∈T x .

Furthermore, note that, for x ∈ T , y + x = (y ∨ x) + (y ∧ x) and, as z ≤ e and ↓ e
is topological, we have y ∨ x ≤ z and y ∧ x = 0.

Using that ↓ e is a complete Heyting algebra, we get (∨x∈T x) ∨ y = ∨x∈T(x ∨ y) ≤ z
and (∨x∈T x) ∧ y = ∨x∈T(x ∧ y) = 0. Consequently, we get

y + (y/z) = y ∨ (y/z) + y ∧ (y/z) = y ∨ (y/z) ≤ z.

This shows that x ≤ y/z if and only if y + x ≤ z.
Step 2. Now, given any pair of elements y ≤ z ≤ ne for some n ∈ N, write them as

finite ordered sums of elements in ↓ e, say y = ∑n
i=1 y i and z = ∑n

j=1 z j .
Since ↓ e is topological, y i ≤ z i ≤ e for every i, so we can define y/z ∶= ∑n

i=1 y i/z i .
Note that, given any element x such that y + x ≤ z ≤ ne, we have x ≤ ne and so, by

Lemma 4.8, x can be written as a finite ordered sum ∑n
i=1 x i with x i ≤ e for every i.

Moreover, we also have
n
∑
i=1

y i ∨ x i ≤ y + x ≤
n
∑
i=1

z i

and so y i ∨ x i ≤ z i , which happens if and only if x i ≤ y i/z i .
This shows that x + y ≤ z ≤ ne for some n if and only if x ≤ y/z.
Step 3. Given y ≤ z ∧ ne for some n, we have that y ≤ z ∧me for every m ≥ n.
Thus, we can consider the element y/(z ∧me). Furthermore, it is easy to check

that y/(z ∧me) ≤ y/(z ∧ (m + 1)e) for every m. We define y/z ∶= supm y/(z ∧me),
which has the required property.

Finally, to see that x + (y ∨ z) = (x + y) ∨ (x + z) for any given x , y, z, note that
“≥” is clear. To prove “≤,” let x′ ≪ x and let s be such that x′ + (y ∨ z) ≤ s.

Since x′ ≪ x ≤ ∞e, there exists some n with x′ ≤ ne, so we can consider the
element x′/s.

Thus, we know that x′ + (y ∨ z) ≤ s holds if and only if y ∨ z ≤ x′/s, which in turn
holds if and only if x′ + y, x′ + z ≤ s. Consequently, we get

x′ + (y ∨ z) = (x′ + y) ∨ (x′ + z).

Since the equality holds for every x′ ≪ x, it also holds for x. ∎

Lemma 4.15 Let S be an Lsc-like Cu-semigroup with least order unit e, and let x , y, z ≤
e with x + y ≤ x + z. Then, y ≤ z.
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Proof First, note that y ≤ x ∨ y ≤ x ∨ z. Indeed, since x , y, z ≤ e and we know
that x + y = (x ∨ y) + (x ∧ y) and x + z = (x ∨ z) + (x ∧ z), we have that (x ∨ y) +
(x ∧ y) ≤ (x ∨ z) + (x ∧ z).

Since the right- and left-hand sides of the previous inequality are ordered sums of
elements below e, we can use that the order in ↓ e is topological to get x ∨ y ≤ x ∨ z,
as desired.

Therefore, the sum (z ∨ x) + y is ordered, as we have y ≤ z ∨ x.
Using Lemma 4.14 at the first and third steps, the inequality x + y ≤ x + z at the

second step, and that S is distributively lattice ordered at the last step, one obtains

(z ∨ x) + y = (y + z) ∨ (y + x) ≤ (y + z) ∨ (z + x) = z + (y ∨ x)
= (z ∨ y ∨ x) + z ∧ (y ∨ x).

Using once again that the order in ↓ e is topological, it follows that y ≤ z ∧ (y ∨ x) ≤
z, as required. ∎

By extending the previous proof, one can check that whenever y, z ∈ S and x ≤ ne
for some n, the same cancelation property holds. In particular, it follows that every
Lsc-like Cu-semigroup has weak cancelation.

Remark 4.16 Using the previous form of cancelation and the equality

((x + y) ∨ (x + z)) + (x + (y ∧ z)) = x + y + x + z
= ((x + y) ∨ (x + z)) + ((x + y) ∧ (x + z)),

one can check that S is inf-semilattice ordered, that is to say, x + y ∧ z = (x + y) ∧
(x + z) for every x , y, z (see [1]). For elements x , y, z ≤ ne for some n, note that this
simply follows by canceling the term ((x + y) ∨ (x + z)).

Using that every element in S is the supremum of a≪-increasing sequence of finite
sums of elements below e, one can then prove that the equality x + (y ∧ z) = (x + y) ∧
(x + z) is always satisfied.

As one might expect, having a topological order also affects the way below relation.

Lemma 4.17 Let S be an Lsc-like Cu-semigroup with least order unit e. If y, z, y′ , z′ ≤ e
are such that

y + z ≪ y′ + z′

with y ≥ z and y′ ≥ z′, we have that y ≪ y′ and z ≪ z′.
The same holds for any pair of finite sums (i.e., with more than two summands).

Proof Write y′ = supn y′n and z′ = supn z′n with (y′n)n and (z′n)n ≪-increasing.
Since y + z ≪ y′ + z′, we have y + z ≤ y′n + z′n for some n.

Moreover, as we have that z′n ≪ z′ ≤ y′, there exists a k such that z′n ≤ y′k . This
implies that

y + z ≤ y′n + z′n ≤ y′max{n ,k} + z′n ,

and, since the order is topological, we obtain y ≤ y′max{n ,k} ≪ y′ and z ≤ z′n ≪ z′. ∎

Even though the following lemma is probably well known, we prove it here for the
sake of completeness. For second countable finite-dimensional compact Hausdorff
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spaces, it follows from a much more general result that Lsc(X ,N) ∈ Cu (see [2,
Theorem 5.15]). As a consequence of Lemma 4.18, we will have that Lsc(X ,N) is a
Cu-semigroup whenever X is a compact metric space (see Corollary 4.19). Recently,
this result has been further generalized by Elliott and Im (see [12, Proposition 1.16]).

Given f ∈ Lsc(X ,N) and n ∈ N, we write { f ≥ n} to denote the open set
f −1([n,∞]). For an open set U ⊆ X, we denote by χU the indicator function of U.

Lemma 4.18 For any topological space X and any pair f , g ∈ Lsc(X ,N), one has f ≪ g
if and only if

χ{ f≥n} ≪ χ{g≥n} for every n and sup( f ) < ∞.

Proof First, let us assume that f ≪ g. Fix n ∈ N and consider an increasing sequence
(hk)k such that

χ{g≥n} ≤ sup
k

hk ,

which happens if and only if χ{g≥n} ≤ χ∪k supp(hk).
Define the increasing sequence of functions

Gk ∶= (n − 1) + χsupp(hk)

∞

∑
r=0

χ{g≥n+r} ,

and note that g ≤ supk Gk .
Since f ≪ g, we get that f ≤ Gk for some k and, consequently,

{ f ≥ n} ⊆ {Gk ≥ n} = supp(hk) ∩ {g ≥ n} ⊆ supp(hk).

This in turn implies χ{ f≥n} ≤ χsupp(hk) ≤ hk , so it follows that χ{ f≥n} ≪ χ{g≥n}.
That sup( f ) < ∞ is clear.

Conversely, if sup( f ) < ∞, we know that f = ∑m
i=1 χ{ f≥i} for some m < ∞. Fur-

thermore, given an increasing sequence (hk)k with g ≤ supk hk , it follows that

{g ≥ n} ⊆ ⋃
k
{hk ≥ n},

so χ{g≥n} ≤ supk χ{hk≥n}. Since χ{ f≥n} ≪ χ{g≥n} for every n, we get that for each i
there exists an integer k i with

χ{ f≥i} ≤ χ{hki ≥i} .

Taking k =maxi=1, . . . ,m{k i}, we have

f ≤
m
∑
i=1

χ{hk≥i} ≤ hk ,

as desired. ∎

Corollary 4.19 Let X be a compact metric space. Then Lsc(X ,N) is a Cu-semigroup
with pointwise order and addition.

Proof Axioms (O1) and (O4) are always satisfied in Lsc(X ,N), so we only need to
prove (O2) and (O3).
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Let U , V be open subsets of X, and note that χU ≪ χV if and only if U is compactly
contained in V. Indeed, if χU ≪ χV , we can write V as a countable increasing union
of open sets Vn such that Vn is compactly contained in Vn+1 for every n. Thus, one
gets χU ≪ supn χVn , which implies that U is contained in Vn for some n. Conversely,
if U ⊆ V and (Wn)n is an increasing sequence of open sets with V = ∪nWn , it is clear
that U ⊆Wn for some n. This shows χU ≪ χV , as required.

In particular, it follows that every indicator function can be written as the supre-
mum of a≪-increasing sequence. Since every element in S = Lsc(X ,N) is the supre-
mum of finite sums of indicator functions, one can check that S satisfies (O2).

Now, let f ′ ≪ f and g′ ≪ g in S, which by Lemma 4.18 implies that
sup( f ), sup(g) < m ≤ ∞ and { f ′ ≥ n}, {g′ ≥ n} are compactly contained in { f ≥
n}, {g ≥ n}, respectively. Thus, we have

m
⋃
k=0
({ f ′ ≥ k} ∩ {g′ ≥ n − k}) ⊆

m
⋃
k=0
({ f ≥ k} ∩ {g ≥ n − k})

for every n ≤ sup( f ) + sup(g), where note that the left-hand side is equal to
{ f ′ + g′ ≥ n} and the right-hand side is contained in { f + g ≥ n}. By Lemma 4.18,
we have f ′ + g′ ≪ f + g, which shows that S satisfies (O3). ∎

5 The topological space of an Lsc-like Cu-semigroup

In this section, we associate with each Lsc-like Cu-semigroup S a topological space
XS . In Proposition 5.3, we prove some of the properties that such a topological space
must satisfy and, using these, we show that Lsc(XS ,N) is always a Cu-semigroup
(see Theorem 5.9). In Theorem 6.4, we will see that S and Lsc(XS ,N) are in fact
Cu-isomorphic.

We also introduce notions for Cu-semigroups that have a topological equivalent
when the semigroup is Lsc-like. More explicitly, given an Lsc-like Cu-semigroup S, we
characterize when XS is second countable, normal, and metric in terms of algebraic
properties of S (see Proposition 5.6).

5.1 Let S be an Lsc-like Cu-semigroup with least order unit e. The topological space
XS of S is defined as

XS ∶= {x ∈ S ∣ x < e maximal},

with closed subsets

Cy ∶= {x ∈ XS ∣ x ≥ y}, y ≤ e .

We check that this is indeed a topology for XS .

Lemma 5.2 Let S be an Lsc-like Cu-semigroup. Then, {XS/Cy ∣ y ≤ e} is a T1-topology
for XS .

Proof First, note that C0 = XS and that Ce = ∅. Moreover, Cx = {x} for every x ∈
XS . Thus, our topology is T1.
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To see that arbitrary intersections of Cy ’s are of the form Cz for some z ≤ e, simply
note that

⋂
i

Cy i = C∨i y i .

Furthermore, one also has that
n
⋃
i=1

Cy i = C∧n
i=1 y i .

Indeed, given x ∈ XS with x ≥ ∧n
i=1 y i , we have

x = x ∨ x ≥ x ∨ (∧n
i=1 y i) = (x ∨ y1) ∧ ⋅⋅⋅ ∧ (x ∨ yn).

Since x is maximal, for each i, we either have x ∨ y i = x or x ∨ y i = e.
However, note that the previous inequality implies that we cannot have x ∨ y i = e

for every i, so x = x ∨ y j ≥ y j for some j.
The other inclusion is clear. ∎

Retaining the above notation, for every y ≤ e, we will denote by Uy its associated
open subset. That is, Uy = X/Cy .

We list some properties of these sets. Recall that, for every pair of elements y ≤
z ≤ e, the element y/z denotes the almost complement of z by y, as constructed in
Lemma 4.14.

Proposition 5.3 Let S be an Lsc-like Cu-semigroup with least order unit e. Then:
(i) For every y, z ≤ e, Cy ⊆ Cz if and only if y ≥ z.

(ii) For every y ≤ e, Uy = {x ∈ XS ∣ y ∨ x = e}.
(iii) Given y, z ≤ e such that Uy ⊆ Cz , we have y ∧ z = 0.
(iv) The closure of Uy , denoted by Uy , is Cy/e for every y ≤ e.
(v) Given y ≤ e, we have Int(Cy) = XS/(XS/Cy) = Uy/e , where Int(Cy) stands for

the interior of Cy .
(vi) For every y, z ≤ e, Cy ⊆ Uz if and only if y ∨ z = e.

Proof To see (i), recall that, by definition, Cy ⊆ Cz if and only if x ≥ z for every x ≥ y
with x < e maximal. Using Lemma 4.11, we see that this is equivalent to y ≥ z.

For (ii), let y ≤ e and take x < e be maximal. Thus, we have x ≤ y ∨ x ≤ e. Since x is
maximal, we either have x = y ∨ x ≥ y (i.e., x ∈ Cy) or y ∨ x = e. Thus, Uy = {x ∈ XS ∶
y ∨ x = e}.

To prove (iii), let us assume, for the sake of contradiction, that y ∧ z ≠ 0. Then, Uy∧z
is nonempty and we can consider a maximal element x ∈ Uy∧z .

By (ii), we have x ∨ (y ∧ z) = e. Thus, one gets x ∨ y = e and, consequently, x ≥ z
from our assumption that Uy ⊆ Cz . However, we also have

e = x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) = e ∧ x = x ,

which is a contradiction, as required.
Let us now prove (iv) and, consequently, (v). First, note that, if y ∨ x = e, we have

y + x = (y ∨ x) + (y ∧ x) ≥ e ≥ y/e + y.
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Canceling y (see Lemma 4.15), we have that x ≥ y/e. This shows Uy ⊆ Cy/e .
Conversely, let z be such that Uy ⊆ Cz . By (iii), we know that this implies y ∧ z = 0

and, consequently, y + z ≤ e. Thus, z ≤ y/e or, equivalently, Cy/e ⊆ Cz .
Finally, for (vi), assume first that Cy ⊆ Uz . Furthermore, assume for the sake of

contradiction that y ∨ z ≠ e. Then, there exists x ∈ XS with x ≥ y ∨ z. This implies x ≥
y and, consequently, x ∨ z = e from Cy ⊆ Uz . However, we have

x = x ∨ y ∨ z ≥ x ∨ z = e ,

which is a contradiction.
Conversely, if y ∨ z = e, take x ≥ y, which implies that x ∨ z ≥ y ∨ z = e. In partic-

ular, x ∈ Uz . ∎

Example 5.4 Let X be a T1 topological space. Recall from Example 4.5 that S =
Lsc(X ,N) is an Lsc-like Cu-semigroup with least order unit 1. Then, the topological
space of S is homeomorphic to X.

Indeed, note that the maximal elements below 1 are the characteristic functions
χX/{x}. Thus, we have

XS = {χX/{x} ∣ x ∈ X}

and
UχU = XS/CχU = XS/{χX/{x} ∣ χX/{x} ≥ χU}

= XS/{χX/{x} ∣ x ∈ X/U} = {χX/{x} ∣ x ∈ U}

for every open subset U ⊆ X.
It should now be clear that φ∶XS → X defined as χX/{x} ↦ x is a homeomorphism

between X and XS .

The following characterizes compact containment under certain conditions.

Lemma 5.5 Let S be an Lsc-like Cu-semigroup with least order unit e. Assume that e
is compact and that S satisfies (O5). Then XS is normal.

Furthermore, given y, z ≤ e, we have Uy ⊆ Uz if and only if y ≪ z.

Proof Let x , y < e be two elements such that Cx ∩ Cy = Ce = ∅. In terms of the
elements in S, this is equivalent to x + y ≥ e ≫ e. Then, we can take x′ ≪ x and y′ ≪ y
such that x′ + y′ ≫ e.

Using (O5), there exist c, d ≤ e such that

x′ + c ≤ e ≤ x + c, y′ + d ≤ e ≤ y + d .

Consequently, we also have x′ + c + y′ + d ≤ e + e with x′ + y′ ≫ e. Since every
Lsc-like Cu-semigroup has weak cancelation, it follows that c + d ≤ e.

Since our order is topological, we get c ∧ d = 0, x ∨ c = e, and y ∨ d = e.
Using the properties listed in Proposition 5.3, the previous inequalities imply that

Cx ⊆ Uc , Cy ⊆ Ud , and Uc ∩Ud = Uc∧d = ∅. Thus, XS is normal.
Now, let y, z ≤ e and assume that Uy ⊆ Uz , which by (iv) in Proposition 5.3 happens

if and only if (y/e) ∨ z = e. Furthermore, since y/e + z ≥ e, we have y/e + z ≥ e ≫ e ≥
y/e + y. As elements below e have cancelation (see Lemma 4.15), one gets z ≫ y.
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Conversely, assume that e ≥ z ≫ y. Then, by (O5), there exists an element x such
that y + x ≤ e and e ≤ z + x.

From the first inequality, it follows that x ≤ y/e, so e ≤ z + x ≤ z + y/e as
required. ∎

In Proposition 5.6, we study notions for Cu-semigroups that have a topological
equivalent when the semigroup is Lsc-like. Recall from Paragraph 2.3 that a Cu-
semigroup is said to be countably based if it has a countable sup-dense subset.

Definition 5.1 We say that an inf-semilattice ordered Cu-semigroup S is normal if
there exists an order unit z ∈ S such that, whenever x + y ≥ z for some x , y ∈ S, there
exist s, t ∈ S with

x + s ≥ z, y + t ≥ z, s ∧ t = 0.

Proposition 5.6 Let S be an Lsc-like Cu-semigroup, and let XS be its associated
topological space. Then:

(i) XS is second countable if and only if S is countably based.
(ii) XS is countably compact if and only if S has a compact order unit.
(iii) XS is normal if and only if S is normal.
(iv) XS is a metric space whenever S is countably based and normal.
(v) XS is a compact metric space whenever S is countably based, has a compact order

unit, and satisfies (O5).

Proof Let e ∈ S be the least order unit of S. To show (i), assume first that S is
countably based with a countable basis B, and let∑′(↓ e) denote the set of finite sums
of elements in ↓ e. Naturally, the set B′ ∶= B ∩∑′(↓ e) is also a countable basis for S.

Given an open set Uy with y ≤ e, write y = supn yn with yn ∈ B′. We have ∪nUyn =
Uy , and so XS is second countable.

Conversely, assume that XS is second countable with basis C = {Uzn}n . Note that
the family C′ consisting of all the finite unions of sets in C is also countable.

Then, any open subset Uy can be written as the countable union of increasing open
subsets Uz′n of C′. We know that this is equivalent to y = supn z′n . This implies that
the set∑′{z′n}n of finite sums from {z′n}n is a countable basis for∑′(↓ e) and, since
∑′(↓ e) is dense in S,∑′{z′n}n is a countable basis for S.

To prove (ii), note that it is easy to check that e ∈ S is compact if and only if XS is
countably compact. Therefore, we are left to prove that, if there exists a compact order
unit in S, then e must also be compact.

To see this, let p be a compact order unit in S, which implies that p ≤ ne for some
n ∈ N. Since we know that p can be written as a finite ordered sum of elements below
e, there exist m ∈ N and elements qm ≤ ⋅⋅⋅ ≤ q1 ≤ e such that p = q1 + ⋅⋅⋅ + qm .

By weak cancelation applied to q1 + ⋅⋅⋅ + qm ≪ q1 + ⋅⋅⋅ + qm , the element q1 is
compact and satisfies ∞q1 = ∞p = ∞. Thus, q1 is a compact order unit with e ≥ q1.
By minimality of e, one gets e = q1 compact as required.

Let us now show (iii). First, assume that S is normal, and let z be the associated
order unit. Let Cx , Cy be closed subsets of XS with x , y ≤ e, and recall that Cx , Cy are
disjoint if and only if x ∨ y = e.
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Since e is an order unit, we have ∞x +∞y = ∞ ≥ z. Thus, we get s, t such that
∞x + s ≥ z,∞y + t ≥ z, and s ∧ t = 0. As z ≥ e, we know by Corollary 4.9 that∞x ∨
s ≥ e and∞y ∨ t ≥ e.

Since x , y ≤ e, taking the infimum with e and using Lemma 4.10, we have e =
(∞x ∧ e) ∨ (s ∧ e) = x ∨ (s ∧ e), y ∨ (t ∧ e) = e, and (s ∧ e) ∧ (t ∧ e) = 0. By (vi) in
Proposition 5.3, it follows that Cx ⊆ Us∧e , Cy ⊆ Ut∧e , and Us∧e ∩Ut∧e = ∅. This
implies that XS is normal.

Conversely, if XS is normal, it is easy to see that S is normal by setting z = e in the
definition of normality.

To prove (iv), we have that XS is second countable and normal by (i) and (iii),
and that Cx = {x} for any x ∈ XS . Thus, points are closed in our topology, so XS is
Hausdorff. We can now use Urysohn’s metrization theorem to conclude that XS is
metric (see, e.g., [16, Theorem 34.1]).

For (v), note that e ≪ e. Thus, Lemma 5.5 implies that XS is normal. Following the
arguments above, one gets that XS is metric. Moreover, we also know that XS is second
countable and countably compact by (i) and (ii) above. Thus, XS is compact. ∎

We will now show that Lsc(XS ,N) is a Cu-semigroup with the usual way-below
relation for every Lsc-like Cu-semigroup S. Note that (O1) and (O4) are always
satisfied, so we are left to prove (O2) and (O3).

Lemma 5.7 Let S be an Lsc-like Cu-semigroup with least order unit e. Given y, z ≤ e,
we have χUy ≪ χUz in Lsc(XS ,N) if and only if y ≪ z in S.

Proof Assume y ≪ z, and let ( fn)n be an increasing sequence in Lsc(XS ,N) such
that χUz ≤ supn fn . In particular, note that this holds if and only if χUz ≤ χ∪n supp( fn)

or, equivalently, if

⋂
n
(XS/supp( fn)) ⊆ Cz .

Denote by zn the elements in ↓ e with Czn = XS/supp( fn). Given that supp( fn) ⊆
supp( fn+1), (i) in Proposition 5.3 implies that zn is increasing.

Using the proof of Lemma 5.2 in the first step, we can rewrite the previous
inclusion as

Csupn(zn) = ⋂
n

Czn ⊆ Cz .

Applying (i) in Proposition 5.3 once again, one gets z ≤ supn(zn) and, conse-
quently, y ≤ zn for some n. This implies that Uy ⊆ Uzn or, equivalently, that χUy ≤
χUzn
= χsupp( fn) ≤ fn . This shows χUy ≪ χUz .

Now, let y, z ≤ e be such that χUy ≪ χUz , and consider an increasing sequence
(hn)n in S such that z ≤ supn(hn). Note that, by taking z ∧ hn instead of hn , we can
assume hn ≤ e for every n.

Applying again (the proof of) Lemma 5.2, one gets

⋂
n

Chn = Csupn(hn) ⊆ Cz ,
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and, consequently, we have supn χUhn
≥ χUz since χUy ≪ χUz , there exists some n with

χUy ≤ χUhn
; i.e., Chn ⊆ Cy .

Using (i) in Proposition 5.3 one last time, one sees that y ≤ hn as required. ∎

Proposition 5.8 Let S be a Cu-semigroup. If S is Lsc-like, then Lsc(XS ,N) satisfies
(O2).

Proof Take f ∈ Lsc(XS ,N), and let (y i)i be the sequence on ↓ e such that

{ f ≥ i} = Uy i ,

where recall that the sequence is decreasing as a consequence of (i) in Proposition 5.3.
Since S satisfies (O2), we have y i = supn y i ,n with y i ,n ≪ y i ,n+1 for every n.
For every fixed k, we have

y1 ≥ ⋅⋅⋅ ≥ yk ≫ yk ,n for all n.

Thus, for every i, one can choose inductively n i ,k with k ≥ i such that

y i ,n i ,k ≪ y i ,n i ,k+1 , and y1,n1,k ≥ ⋅⋅⋅ ≥ yk ,nk ,k .

Indeed, we begin by setting n1,1 = 1 (i.e., y1,n1,1 = y1,1). Then, assuming that we
have defined n i ,k for every i , k ≤ m − 1 (and k ≥ i) for some fixed m, we set nm ,m = 1,
that is, ym ,nm ,m = ym ,1. We then set nm−1,m large enough so that ym−1,nm−1,m ≥ ym ,nm ,m

and nm−1,m ≥ nm−1,m−1. Similarly, we set nm−2,m ≥ nm−2,m−1 such that ym−2,nm−2,m ≥
ym−1,nm−1,m and define n i ,m for every i ≤ m − 2 in the same fashion.

Now, consider the sums fk = ∑k
i=1 χUyi ,ni ,k

, which are ordered by construction.
Thus, one has Uy i ,ni ,k

= { fk ≥ i} for every i. Since y i ,n i ,k ≪ y i ,n i ,k+1 for every i, it follows
from Lemmas 4.18 and 5.7 that

fk =
k
∑
i=1

χUyi ,ni ,k
≪

k
∑
i=1

χUyi ,ni ,k+1
≤ fk+1 .

It is now easy to check that supk fk = f . ∎

Theorem 5.9 Let S be a Cu-semigroup. If S is Lsc-like, the monoid Lsc(XS ,N) is a
Cu-semigroup.

Proof Note that the semigroup Lsc(XS ,N) always satisfies (O1) and (O4). Moreover,
we already know that (O2) is also satisfied by Proposition 5.8. Thus, we are left to prove
(O3).

Let f ≪ f ′ and g ≪ g′. By Lemma 4.18, this implies that

χ{ f≥i} ≪ χ{ f ′≥i} and χ{g≥i} ≪ χ{g′≥i}

for every i. We also know that there exists m < ∞ such that sup( f ), sup(g) ≤ m.
Let y i , y′i , z i , and z′i be elements in ↓ e such that

Uy i = { f ≥ i}, Uy′i = { f ′ ≥ i}, Uz i = {g ≥ i}, and Uz′i = {g′ ≥ i}.
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By Lemma 5.7, we have y i ≪ y′i and z i ≪ z′i for every i and, since S satisfies (O3),
one gets

m
∑
i=1
(y i + z i) ≪

m
∑
i=1
(y′i + z′i).

By Lemma 4.2, these sums can be rewritten as

2m
∑
i=1
∨m

j=0(y j ∧ z i− j) ≪
2m
∑
i=1
∨m

j=0(y′j ∧ z′i− j)

and, since both the right- and left-hand sides of the previous inequality are ordered,
we can use Lemma 4.17 to obtain

∨m
j=0(y j ∧ z i− j) ≪ ∨m

j=0(y′j ∧ z′i− j)

for every i.
Note that

{ f + g ≥ i} =
m
⋃
j=0
({ f ≥ j} ∩ {g ≥ i − j}),

so, by the equalities in the proof of Lemma 5.2, one gets

XS/{ f + g ≥ i} =
m
⋂
j=0
((XS/{ f ≥ j}) ∪ (XS/{g ≥ i − j})) =

m
⋂
j=0
(Cy j∧z i− j)

= C∨m
j=0(y j∧z i− j)

and, consequently, χ{ f+g≥i} = χU∨m
j=0(y j∧zi− j)

.
The same argument also shows that χ{ f ′+g′≥i} ≥ χU∨m

j=0(y′j∧z′i− j)
.

By using Lemma 5.7, we get χ{ f+g≥i} ≪ χ{ f ′+g′≥i} for every i. Lemma 4.18 then
implies that f + g ≪ f ′ + g′, as desired. ∎

6 An abstract characterization of Lsc(X,N)

In this section, we prove that every Lsc-like Cu-semigroup S is Cu-isomorphic to
the semigroup of lower-semicontinuous functions Lsc(XS ,N) (see Theorem 6.4).
To do so, we first define a map φ′∶Lsc(XS ,N) f s → S, where Lsc(XS ,N) f s is the
subsemigroup of functions with finite supremum.

We then extend this map to a Cu-morphism φ∶Lsc(XS ,N) → S. Finally, the fol-
lowing (probably well-known) lemma will be used to complete the proof.

Lemma 6.1 Let S , H be Cu-semigroups, and let φ∶ S → H be a Cu-morphism such that:
(i) φ is an order embedding on a basis of S.

(ii) φ(S) is a basis for H.
Then, φ is a Cu-isomorphism

Proof It is easy to see that φ is a global order embedding.
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To prove surjectivity, let h ∈ H. Since φ(S) is a basis for H, we can write h =
supn φ(sn) for some sn ∈ S. Furthermore, as we know that φ is an order embedding,
the sequence (sn)n is increasing in S, so supn φ(sn) = φ(s) for s = supn sn . ∎

Definition 6.1 Let S be an Lsc-like Cu-semigroup. Given f ∈ Lsc(XS ,N) f s , there
exists m < ∞ such that we can write

f =
m
∑
i=1

χ{ f≥i} .

We define the map φ′∶Lsc(XS ,N) f s → S as φ′( f ) = ∑m
i=1 z i , where { f ≥ i} = Uz i .

Lemma 6.2 φ′ is a positively ordered monoid morphism and an order embedding.

Proof Let f = ∑m
i=1 χUzi

as above and take g = ∑n
j=1 χUy j

. We will first prove by
induction on m that φ′( f + g) = φ′( f ) + φ′(g).

For m = 1, f is simply χUz for some open subset Uz . Since Lsc(XS ,N) is distribu-
tively lattice ordered and 0 ≤ 0 ≤ ⋅⋅⋅ ≤ 0 ≤ f is an increasing sequence, we can apply
Lemma 4.2 to get

f +
n
∑
j=1

χUy j
= χUz∪Uy1

+ χ(Uz∩Uy1 )∪Uy2
+ ⋅⋅⋅ + χUz∩(∩ j Uy j )

.

Applying φ′ and the equalities in the proof of Lemma 5.2 at the first step, and
Lemma 4.2 at the second step, one gets

φ′( f + g) = (z ∨ y1) + ((z ∧ y1) ∨ y2) + ⋅⋅⋅ + (z ∧ y1 ∧ ⋅⋅⋅ ∧ yn)
= z + (y1 + ⋅⋅⋅ + yn) = φ′( f ) + φ′(g).

Now, fix any finite m and assume that the result has been proved for any k ≤ m − 1.
Then, using the induction hypothesis at the second step, and the case m = 1 at the third
and fourth steps, we have

φ′( f + g) = φ′(( f − χUzm
) + (g + χUzm

)) = φ′( f − χUzm
) + φ′(g + χUzm

)
= φ′( f − χUzm

) + φ′(g) + φ′(χUzm
) = φ′( f − χUzm

+ χUzm
) + φ′(g)

= φ′( f ) + φ′(g),

as desired.
Note that this could have also been proved using Lemma 4.2.
To see that φ′ is an order embedding, let f ≤ g in Lsc(XS ,N) f s and note that f ≤ g

if and only if { f ≥ i} ⊆ {g ≥ i} for every i. Let z i , y i ∈ S be such that Uz i = { f ≥ i} and
Uy i = {g ≥ i}

By (i) in Proposition 5.3, Uz i ⊆ Uy i if and only if z i ≤ y i for every i. Furthermore,
note that the sequences (z i)m

i=1 , (y i)m
i=1 are both decreasing. Since we have a topolog-

ical order, z i ≤ y i for every i if and only if
m
∑
i=1

z i ≤
m
∑
i=1

y i ,
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where note that the right- and left-hand sides correspond to φ′( f ) and φ′(g),
respectively. ∎

Using φ′, one can now construct a Cu-isomorphism.

Theorem 6.3 Let S be an Lsc-like Cu-semigroup. Then, the Cu-morphism φ′ extends
to a Cu-isomorphism.

Proof We will need the following claims.

Claim 1 Let ( fn)n and (gn)n be two≪-increasing sequences with the same supre-
mum in Lsc(XS ,N). Then, supn φ′( fn) = supn φ′(gn).

Since ( fn)n and (gn)n have the same supremum, we know that for every n there
exist k, m such that fn ≤ gm and gn ≤ fk .

Applying φ′, we get

φ′( fn) ≤ φ′(gm) ≤ sup
m

φ′(gm), and φ′(gn) ≤ φ′( fk) ≤ sup
k

φ′( fk),

and so supk φ′( fk) = supm φ′(gm) as desired.
By Claim 1, we can define the map φ∶Lsc(XS ,N) → S as φ( f ) = supn φ′( fn), where

( fn)n is a ≪-increasing sequence with supremum f. We will see that φ is a Cu-
morphism that extends φ′ and that it satisfies the conditions in Lemma 6.1 (i.e., φ
is a Cu-isomorphism).

Claim 2 Let ( fn)n be an increasing sequence in Lsc(XS ,N) f s with supremum f =
sup fn ∈ Lsc(XS ,N) f s . Then, we have φ′( f ) = supn φ′( fn).

To prove the claim, let fn = χUzn
for every n, and recall that supn χUzn

= χUsupn(zn)
.

This is equivalent to

φ′(sup
n

fn) = sup
n
(zn) = sup

n
φ′( fn).

Now, given any increasing sequence as in the statement of the lemma with supremum
f, we know that sup( f ) < ∞, say sup( f ) = m ∈ N.

Thus, given U i ,n = { fn ≥ i} for 1 ≤ i ≤ m, we can write

fn =
m
∑
i=1

χU i ,n

with some possibly empty U i ,n ’s.
We have

f = sup
n
( fn) =

m
∑
i=1

χ∪n U i ,n ,

where ∪nU i ,n = { f ≥ i}.
Using that φ′ preserves suprema of indicator functions, we have

φ′( f ) =
m
∑
i=1

φ′(χ∪n U i ,n) = sup
n

φ′(
m
∑
i=1

χU i ,n) = sup
n

φ′( fn),

as required.
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Since φ′ preserves addition and S is a Cu-semigroup, it is clear that φ also preserves
addition. Note that the proof of Claim 2 also shows that φ extends φ′ and that φ is
order-preserving.

To see that φ preserves suprema, let φ( f ) = supn φ′( fn) with ( fn)n ≪-increasing
with supremum f and consider an increasing sequence (gn)n whose supremum is
also f.

Then, for every n, there exists an m with fn ≤ gm and, consequently, φ′( fn) =
φ( fn) ≤ φ(gm). It follows that φ( f ) = supn φ′( fn) ≤ supm φ(gm).

On the other hand, f ≥ gm for every m, so φ( f ) = supm φ(gm).
Now, let f , g ∈ Lsc(XS ,N) be such that f ≪ g. Then, we know by Lemma 4.18 that

this happens if and only if

χ{ f≥i} ≪ χ{g≥i} for every i and sup( f ) = m < ∞.

Letting y i , z i ∈ S such that Uy i = { f ≥ i} and Uz i = {g ≥ i}, we know that

φ( f ) = φ′( f ) = y1 + ⋅⋅⋅ + ym ≪ z1 + ⋅⋅⋅ + zm ≤ sup
n

n
∑
i=1

z i = φ(g).

Finally, note that the image of φ is clearly dense in S, since φ′ is surjective on ↓ e.
Furthermore, φ is an order embedding in Lsc(XS ,N) f s , since φ coincides with φ′ in
this basis of Lsc(XS ,N).

Thus, since the conditions in Lemma 6.1 are satisfied, it follows that φ is a Cu-
isomorphism. ∎

Theorem 6.4 Let S be a Cu-semigroup. Then, S is Lsc-like if and only if S is Cu-
isomorphic to Lsc(X ,N) for a T1 topological space X.

Proof We already know that Lsc(X ,N) is Lsc-like whenever it is a Cu-semigroup
(see Example 4.5), and the converse follows from Theorem 6.3. ∎

In [23], a notion of covering dimension for Cu-semigroups is introduced. This
dimension satisfies many of the expected permanence properties [23, Proposition
3.10], and is related to other dimensions, such as the nuclear dimension of C∗-algebras
[23, Theorem 4.1] and the Lebesgue covering dimension (see [23, Proposition 4.3 and
Corollary 4.4]).

Using such a notion, one can prove the following.

Theorem 6.5 Let S be a Cu-semigroup satisfying (O5), and let n ∈ N ∪ {∞}. Then, S
is Cu-isomorphic to Lsc(X ,N) with X a compact metric space such that dim(X) = n if
and only if S is Lsc-like, countably based, has a compact order unit, and dim(S) = n.

In particular, a Cu-semigroup S is Cu-isomorphic to the Cuntz semigroup of C(X)
with X compact metric and dim(X) ≤ 1 if and only if S is Lsc-like, countably based,
satisfies (O5), has a compact order unit, and dim(S) ≤ 1.

Proof The forward implication follows from Examples 4.5 and 5.4, Proposition 5.6,
and [23, Corollary 4.4].

To prove the converse, use Theorem 6.4 and (v) in Proposition 5.6 to deduce that
S ≅ Lsc(XS ,N)with XS compact metric. Then, it follows from [23, Corollary 4.4] that
dim(XS) = dim(S) = n, as required.
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Now, assume that S is Cu-isomorphic to the Cuntz semigroup of C(X) with X
compact metric and dim(X) ≤ 1. By [20, Theorem 1.1] we know that Cu(C(X)) ≅
Lsc(X ,N). In particular, S satisfies (O5) (e.g., [22]).

Thus, it now follows from our previous argument that S is Lsc-like, countably based,
satisfies (O5), has a compact order unit, and dim(S) ≤ 1.

Conversely, if S satisfies the list of properties in the second part of the statement,
note that S ≅ Lsc(XS ,N)with dim(XS) ≤ 1 again by Theorem 6.4. Using [20, Theorem
1.1] a second time, it follows that Lsc(XS ,N) ≅ Cu(C(XS)), as desired. ∎

7 Chain conditions and the Cuntz semigroup of commutative
AI-algebras

In this section, we introduce the notions of piecewise chainable and weakly chain-
able Cu-semigroups and prove that, together with some additional properties, these
notions give a characterization of when S is Cu-isomorphic to the Cuntz semigroup
of a unital commutative block stable AI-algebra and a unital commutative AI-algebra,
respectively (see Theorems 7.4 and 7.11).

We also show that the Cuntz semigroup of any AI-algebra is weakly chainable, thus
uncovering a new property that the Cuntz semigroup of any AI-algebra satisfies (see
Corollary 7.9).

We first prove the following categorical proposition, which summarizes the results
of the above sections. We denote by Top the category of topological spaces, and by TCu

1
the subcategory of Top whose objects X are the T1 spaces such that Lsc(X ,N) ∈ Cu.
Note that, by Corollary 4.19, this includes all compact, metric spaces.

Proposition 7.1 Let Lsc be the subcategory of Cu consisting of Lsc-like Cu-semigroups.
There exists a faithful and essentially surjective contravariant functor T ∶TCu

1 → Lsc
that is full on isomorphisms.

Proof For every topological space X ∈ TCu
1 , define T(X) = Lsc(X ,N).

Furthermore, given any continuous map f ∶X → Y , set T( f )∶Lsc(Y ,N) →
Lsc(X ,N) as the unique Cu-morphism such that T( f )(χU) = χ f −1(U) for every open
subset U of Y.

Note that, given f ∶X → Y and g∶Y → Z in TCu
1 , we have

T(g ○ f )(χU) = χ(g○ f )−1(U) = χ f −1 g−1(U) = (T( f ) ○ T(g))(χU).

Thus, T is a contravariant functor, which is clearly faithful by construction.
Moreover, we know by Theorem 6.4 that for every Lsc-like Cu-semigroup S there

exists a T1-space XS with S ≅ Lsc(XS ,N). Therefore, T is essentially surjective.
Now, let φ∶ S → T be a Cu-isomorphism of Lsc-like Cu-semigroups. Using Theo-

rem 6.4, we get a Cu-isomorphism of the form ϕ∶Lsc(XS ,N) → Lsc(XT ,N).
Since ϕ(1) = 1, indicator functions must map to indicator functions. Since ϕ is a

Cu-isomorphism, maximal elements below 1 must map to maximal elements below 1.
More explicitly, for every x ∈ XS , there exists y ∈ XT such that ϕ(χXS/{x}) = χXT/{y}.

We define the map f ∶XT → XS as y ↦ x, which is bijective because ϕ is a Cu-
isomorphism.
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To see that it is continuous, let U be an open subset of XS and let V ⊆ XT be such
that ϕ(χU) = χV . Then, given y ∈ XT , we have that y ∈ V if and only if

1 ≤ χXT/{y} + χV = ϕ(χXS/{ f (y)} + χU).

Since ϕ is a Cu-isomorphism, this in turn holds if and only if (XS/{ f (y)}) ∪U =
XS or, equivalently, if f (y) ∈ U .

This shows that f −1(U) = V and, consequently, that f is continuous.
Finally, let V ⊆ XT be open. Since ϕ is an isomorphism, there exists some open

subset U ⊆ XS such that χV = ϕ(χU).
By the argument above, one has V = f −1(U) and, since f is bijective, it follows that

f (V) = f ( f −1(U)) = U . This shows that f is open.
Thus, f is a homeomorphism between XS and XT , as required. ∎

We now introduce chainable and piecewise chainable inf-semilattice ordered Cu-
semigroups.

Definition 7.1 Let S be an inf-semilattice ordered Cu-semigroup. An element x ∈ S
is said to be chainable if for every sum y1 + ⋅⋅⋅ + yn ≥ x, there exist elements z1 , ⋅⋅⋅, zm
such that:

(i) For every i, there exists some k with z i ≤ yk .
(ii) z i ∧ z j ≠ 0 if and only if ∣i − j∣ ≤ 1.

(iii) z1 + ⋅⋅⋅ + zm ≥ x.
S will be called chainable if it has a chainable order unit.
Moreover, we will say that S is piecewise chainable if there exist chainable elements

s1 , . . . , sn such that s1 + ⋅⋅⋅ + sn is an order unit and s i ∧ s j = 0 whenever i ≠ j.

Lemma 7.2 Given an Lsc-like Cu-semigroup S with least order unit e and an element
y ≤ e, Uy is topologically chainable if and only if y is chainable.

In particular, S is chainable if and only if XS is topologically chainable.

Proof If y is chainable, take a finite cover Uy1 ∪ ⋅⋅⋅ ∪Uyn = Uy . We have that y =
y1 ∨ ⋅⋅⋅ ∨ yn ≤ y1 + ⋅⋅⋅ + yn . Thus, applying the chainability of y, one gets elements
z1 , . . . , zm such that for every i there exists k with z i ≤ yk ≤ y. This shows that z1 ∨
⋅⋅⋅ ∨ zm ≤ y.

By Corollary 4.9 and (iii) in Definition 7.1, we have z1 ∨ ⋅⋅⋅ ∨ zm ≥ y and, conse-
quently, z1 ∨ ⋅⋅⋅ ∨ zm = y. This shows that Uz1 , . . . , Uzm is a cover for Uy .

Using the equalities in the proof of Lemma 5.2 and conditions (i)–(iii) in Definition
7.1, one sees that Uz1 , . . . , Uzm is a chain that refines our original cover in the sense of
Definition 3.1.

Conversely, if Uy is topologically chainable and we have a sum y1 + ⋅⋅⋅ + yn ≥ y, we
can apply Corollary 4.9 once again to obtain

(y1 ∧ y) ∨ ⋅⋅⋅ ∨ (yn ∧ y) = y.

This shows that Uy1∧y ∪ ⋅⋅⋅ ∪Uyn∧y = Uy , and we can use the chainability of Uy to
obtain a chain refining this cover. Using Lemma 5.2, it is easy to check that the elements
below e corresponding to the open subsets of the chain satisfy conditions (i)–(iii) in
Definition 7.1.
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In particular, the previous argument shows that e is chainable whenever XS is
topologically chainable. By definition, this implies that S is chainable.

Conversely, if S is chainable, we have a chainable order unit s. Let us now show
that e is also chainable, which by the above arguments will imply that Ue = XS is
topologically chainable.

Thus, let y1 + ⋅⋅⋅ + yn ≥ e, which by Corollary 4.9 implies that y1 ∨ ⋅⋅⋅ ∨ yn ≥ e. Since
s is an order unit, one has

∞y1 ∨ ⋅⋅⋅ ∨∞yn ≥ ∞e = ∞ = ∞s ≥ s.

Using that s is chainable, we obtain elements z1 , . . . , zm satisfying (i)–(iii) in
Definition 7.1. In particular, since for every i there exists k with z i ≤ ∞yk , one can
use Lemma 4.10 in the second step to get

z i ∧ e ≤ (∞yk) ∧ e = yk ∧ e ≤ yk .

Furthermore, since e is the least order unit in S and z1 + ⋅⋅⋅ + zm ≥ s ≥ e, it follows
from Corollary 4.9 that z1 ∨ ⋅⋅⋅ ∨ zm ≥ e. Taking the infimum by e and using Corollary
4.9 once again, we get z1 ∧ e + ⋅⋅⋅ + zm ∧ e ≥ e.

This shows that the elements z i ∧ e satisfy conditions (i)–(iii) in Definition 7.1 for
y1 ∨ ⋅⋅⋅ ∨ yn ≥ e, as desired. ∎

Lemma 7.3 A countably based Lsc-like Cu-semigroup S with a compact order unit is
piecewise chainable if and only if XS is.

Proof If XS is piecewise chainable, there exist chainable components Y1 , . . . , Yn such
that XS = Y1 ⊔ ⋅⋅⋅ ⊔ Yn . Since chainability implies connectedness (whenever the space
is compact), there is a finite number of connected components, and so these are
clopen.

By Lemma 7.2, the disjoint chainable components correspond to disjoint chainable
elements, so S is piecewise chainable by definition.

Conversely, if S is piecewise chainable, each element s i in the definition of chainable
corresponds to a chainable open subset of XS , which is disjoint from the other
chainable open subsets by construction. ∎

Theorem 7.4 Let S be a Cu-semigroup. Then, S is Cu-isomorphic to the Cuntz semi-
group of a unital block stable commutative AI-algebra if and only if S is countably based,
Lsc-like, piecewise chainable, has a compact order unit, and satisfies (O5).

Proof Let S be Cu-isomorphic to the Cuntz semigroup of a unital commutative
block stable AI-algebra. Then, we know from [20, Theorem 1.1] and Definition 3.3
that S ≅ Lsc(X ,N)with X a compact, metric, piecewise chainable space. In particular,
S satisfies (O5), has a compact order unit, is countably based, and is Lsc-like. Using
Lemma 7.3, it also follows that S is piecewise chainable.

Conversely, assume that S satisfies all the conditions in the list. By Theorem 6.4 and
(v) in Proposition 5.6, we have S ≅ Lsc(X ,N) with X a compact metric space.

Then, it follows from Example 5.4 and Lemma 7.3 that X is piecewise chainable.
In particular, it has dimension less than or equal to one by Remark 3.2. Thus,
Cu(C(X)) ≅ Lsc(X ,N) by [20, Theorem 1.1], so S is isomorphic to the Cuntz semi-
group of a unital commutative block stable AI-algebra. ∎
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We now define weak chainability for any Cu-semigroup and prove that every Cu-
semigroup of an AI-algebra satisfies such a condition. Moreover, we also show that an
Lsc-like Cu-semigroup is weakly chainable if and only if its associated space is almost
chainable.

Given two elements x , y in a Cu-semigroup, we write x ∝ y if there exists n ∈ N
with x ≤ ny.

Definition 7.2 We will say that a Cu-semigroup S is weakly chainable, or that it
satisfies the weak chainability condition if, for any x , y, y1 , . . . , yn such that

x ≪ y ≪ y1 + ⋅⋅⋅ + yn ,

there exist x′ , z1 , . . . , zm ∈ S such that x′ ≤ y, x ∝ x′ and:

(i) For any i, there exists j such that z i ≤ y j .
(ii) z i + z j ≤ x′ whenever ∣i − j∣ ≥ 2.

(iii) z1 + ⋅⋅⋅ + zm ≥ x′.

Lemma 7.5 Let X be a compact metric space. Then, Lsc(X ,N) is weakly chainable if
and only if X is almost chainable.

Proof First, recall that S = Lsc(X ,N) is a Cu-semigroup whenever X is compact and
metric by Corollary 4.19. Furthermore, also recall from Example 4.5 that S is an Lsc-
like Cu-semigroup with least order unit 1, and that X ≅ XS by Example 5.4.

Now, assume that S is weakly chainable, and let Uy1 , . . . , Uyn be a cover of XS . Then,
the elements y1 , . . . , yn ≤ 1 satisfy y1 ∨ ⋅⋅⋅ ∨ yn ≥ 1 and, consequently, y1 + ⋅⋅⋅ + yn ≥ 1.

Set x = y = 1, and apply Definition 7.2 to obtain elements x′ , z1 , . . . , zm satisfying
the conditions in the definition. Note that, since x′ satisfies x′ ≤ 1 ≤ kx′ for some k ∈ N,
it follows from the second inequality that x′ ≥ 1 and, therefore, x′ = 1. Let Uz1 , . . . , Uzm

be the open subsets of XS corresponding to z1 , . . . , zm , respectively. Using (i)–(iii) in
Definition 7.2, it is easy to see that such sets form an almost chain refining the original
cover. This implies that XS is almost chainable and, since X ≅ XS , so is X.

Conversely, assume that X is almost chainable and let x , y, y1 , . . . , yn ∈ S be as in
Definition 7.2. Set x′ = x ∧ 1. Then, we know by Corollary 4.9 that y1 ∨ ⋅⋅⋅ ∨ yn ≥ y ≫
x′. Taking the infimum with 1, one has (y1 ∧ 1) ∨ ⋅⋅⋅ ∨ (yn ∧ 1) ≫ x′.

Moreover, note that x′ satisfies x′ ≤ y and x ∝ x′. Since X is compact, metric,
and almost chainable, we know by Remark 3.2 that its dimension is less than 2. This
implies by [20, Theorem 1.1] that Cu(C(X)) ≅ Lsc(X ,N) and, in particular, that S
satisfies (O5).

Thus, by the proof of Lemmas 5.2 and 5.5, (y1 ∧ 1) ∨ ⋅⋅⋅ ∨ (yn ∧ 1) ≫ x′
corresponds to a cover Ux′ ⊆ Uy1 ∪ ⋅⋅⋅ ∪Uyn . In particular, the open sets
X/Ux′ , Uy1 , . . . , Uyn form a cover of X and, since X is almost chainable, there
exists an almost chain C1 , . . . , Cm covering X and refining X/Ux′ , Uy1 , . . . , Uyn .

Now, take the almost chain C1 ∩Ux′ , . . . , Cm ∩Ux′ , which clearly covers Ux′ . For
each i, let z i ∈ S be the associated element to C i ∩Ux′ . These elements satisfy the
desired conditions in Definition 7.2.

Indeed, to see condition (ii), note that z i ≤ x′ for every i, so it follows that
z i + z j ≤ x′ if and only if z i ∧ z j = 0. By the proof of Lemma 5.2, this is equivalent to

https://doi.org/10.4153/S0008414X22000542 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000542


The Cuntz semigroup of unital commutative AI-algebras 1863

(C i ∩Ux′) ∩ (C i ∩Ux′) = ∅. Since {C i ∩Ux′}i is an almost chain, this condition is
satisfied.

Conditions (i) and (iii) follow similarly using that {C i ∩Ux′}i is a cover of Ux′

refining {Uy j} j . ∎

Using Remark 3.2, one gets the following result.

Corollary 7.6 Given X compact, metric, and connected, the Cu-semigroup Lsc(X ,N)
is weakly chainable if and only if X is chainable.

It would be interesting to know whether a general Lsc-like Cu-semigroup S is
weakly chainable if XS is almost chainable.

Lemma 7.7 Given two weakly chainable Cu-semigroups S and T, their direct sum S ⊕
T is also weakly chainable.

Proof Take x , y, y1 , . . . , yn ∈ S ⊕ T as in Definition 7.2. Write x = (x1 , x2), y =
(y1 , y2), and y j = (y j,1 , y j,2) with x1 , y1 , y j,1 ∈ S and x2 , y2 , y j,2 ∈ T .

Since S and T are weakly chainable, one gets elements x′1, z1,1, . . ., zm ,1 ∈ S and x′2,
z1,2, . . ., zm′ ,2 ∈ T satisfying the conditions in Definition 7.2. Define x′ = (x′1 , x′2) and
note that x′ ≤ y and that there exists some k ∈ N with x ≤ kx′.

Now, set z i = (z i ,1 , 0) for i ≤ m and z i = (0, z i−m+1,2) for i > m. We have that

z1 + ⋅⋅⋅ + zm+m′−1 = ((z1,1 , 0) + ⋅⋅⋅ + (zm ,1 , 0)) + ((0, z1,2) + ⋅⋅⋅ + (0, zm′ ,2))
≥ (x′1 , 0) + (0, x′2) = x′ .

As expected, we also get that for every i there exists a j such that z i ≤ (y j,1 , 0) ≤ y j
or z i ≤ (0, y j,2) ≤ y j .

Now, take z i , z j with ∣i − j∣ ≥ 2. If i , j ≤ m, we have z i + z j ≤ (x′1 , 0) ≤ x′. Similarly,
z i + z j ≤ (0, x′2) ≤ x′ whenever i , j > m.

Moreover, if i ≤ m and j > m, we know that z i = (z i ,1 , 0) ≤ (x′1 , 0) and z j =
(0, z j−m+1,2) ≤ (0, x′2). This implies z i + z j ≤ (x′1 , 0) + (0, x′2) = x′.

Since z1 , . . . , zm+m′−1 satisfy all the required properties, S satisfies the weak chain-
ability condition. ∎

Proposition 7.8 Let S = limn Sn be a sequential inductive limit of Cu-semigroups.
Assume that Sn is weakly chainable for each n. Then, S is also weakly chainable.

Proof Let S = lim Sn with Sn weakly chainable for every n. Given an element x ∈ Sn ,
let us denote its image through the canonical map Sn → S by [x].

Let x , y, y1 , . . . , yn ∈ S be as in Definition 7.2. Then, let m ∈ N be such that there
exist elements u, v, and v j in Sm with [v j] ≪ y j ,

x ≪ [u] ≪ [v] ≪ y ≪ [v1] + ⋅⋅⋅ + [vn] ≪ y1 + ⋅⋅⋅ + yn ,

and u ≪ v ≪ v1 + ⋅⋅⋅ + vn .
Since Sm is weakly chainable, we obtain elements u′ , z1 , . . . , zm ∈ Sm satisfying the

conditions in Definition 7.2. We have:
(i) u′ ≤ v , u ≤ ku′ for some k ∈ N. This implies [u′] ≤ [v] ≤ y and x ≤ [u] ≤ k[u′].

(ii) For any i, there exists j such that z i ≤ v j , which shows that [z i] ≤ [v j] ≤ y j .
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(iii) z i + z j ≤ u′ whenever ∣i − j∣ ≥ 2. Consequently, [z i] + [z j] ≤ [u′] whenever ∣i −
j∣ ≥ 2.

Since z1 + ⋅⋅⋅ + zm ≥ u′, one also gets [u′] ≤ [z1] + ⋅⋅⋅ + [zm]. Thus, S is weakly chain-
able, as desired. ∎

Corollary 7.9 The Cuntz semigroup of any AI-algebra is weakly chainable.

Example 7.10 The Cu-semigroups Lsc(T,N) and Lsc([0, 1]2 ,N) do not satisfy the
weak chainability condition.

Indeed, this follows clearly from Corollary 7.6, as T and [0, 1]2 are not chainable
continua.

Using the results developed thus far, one can now use an analogous proof to that of
Theorem 7.4 to prove the following theorem.

Theorem 7.11 Let S be a Cu-semigroup. Then, S is Cu-isomorphic to the Cuntz
semigroup of a unital commutative AI-algebra if and only if S is countably based, Lsc-
like, weakly chainable, has a compact order unit, and satisfies (O5).

8 New properties of the Cuntz semigroup of an AI-algebra

Inspired by the abstract characterization obtained above, in this section, we introduce
properties that are satisfied by the Cuntz semigroups of all AI-algebras and that are
not satisfied by other well-known Cu-semigroups. In Definition 7.2, we have already
introduced one such property, which is not satisfied by Lsc(T,N) (see Example 7.10).
We now introduce the conditions of Cu-semigroups with refinable sums and almost
ordered sums, and show that the Cuntz semigroups of all AI-algebras satisfy these
properties. We also prove that Z, the Cuntz semigroup of the Jiang–Su algebra Z, does
not have refinable sums (see Example 8.2).

Definition 8.1 We say that a Cu-semigroup S has refinable sums if, given a finite
≪-increasing sequence

x1 ≪ ⋅⋅⋅ ≪ xn

and elements x′1 , . . . , x′n such that x i ∝ x′i for every i, there exist finite decreasing
sequences (y i

j)
l
j=1 such that:

(i) x′i+1 ≥ y i
1 for every i.

(ii) y i
j ≪ y i+1

j for every i and j.
(iii) x i ≪ y i

1 + ⋅⋅⋅ + y i
l ≪ x i+1.

Example 8.1 Any Cu-semigroup S of the form Lsc(X ,N) has refinable sums.
To see this, let x i , x′i as in Definition 8.1, and let x̃ i be such that

x1 ≪ x̃1 ≪ x2 ≪ x̃2 ≪ x3 ≪ ⋅⋅⋅ ≪ xn .

Since x̃ i ∈ S≪ for each i, they can all be written as ordered finite sum of elements
below one. Furthermore, by possibly adding some zeros, we may assume that all x̃ i ’s
have the same amount of summands. That is to say, we have

x1 ≪ x̃1 = y1
1 + ⋅⋅⋅ + y1

l ≪ x2 ≪ x̃2 = y2
1 + ⋅⋅⋅ + y2

l ≪ x3 ≪ ⋅⋅⋅ ≪ xn .
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Thus, we know by Lemma 4.17 that y i
j ≪ y i+1

j for every i , j. Moreover, since we
have x̃ i ≪ x i+1 ∝ x′i+1, one can find x′′i+1 ≪ x′i+1 such that x̃ i ∝ x′′i+1.

Since x′′i+1 ∈ S≪, we have that x̃ i ∝ x′′i+1 ∝ x′′i+1 ∧ 1. Applying the topological order
in S, we obtain y i

1 ≤ x′′i+1 ∧ 1 ≤ x′i+1, as required.

Example 8.2 Let Z = (0,∞] ⊔N, and denote by n♮ ∈ (0,∞] the associated element
to n ∈ N. Order and addition in Z are defined normally in each component, and given
x ∈ (0,∞] and n ∈ N, we set x ≤ n if and only if x ≤ n♮ in (0,∞]; n ≤ x if and only if
n♮ < x; and x + n = x + n♮. It was proved in [18, Theorem 3.1] that Z is Cu-isomorphic
to the Cuntz semigroup of the Jiang–Su algebra Z, as defined in [15].

We claim that Z does not have refinable sums. Indeed, assume for the sake of
contradiction that it does, and consider the elements x1 = x′1 = x2 = 1 and x′2 = 0.5 in
Z. These satisfy

x1 ≪ x2 , x1 ∝ x′1 , and x2 ∝ x′2 .

Thus, applying Definition 8.1, we obtain a finite decreasing sequence (y1
j)

l
j=1 such

that

1 = x1 ≪ y1
1 + ⋅⋅⋅ + y1

l ≪ x2 = 1.

Since (y1
j)

l
j=1 is decreasing, one must have y1

1 = 1 and y1
i = 0 whenever i ≥ 2.

However, it follows from (i) in Definition 8.1 that

1 = y1
1 ≤ x′2 = 0.5,

which is a clear contradiction.

Proposition 8.3 Let S be a Cu-semigroup that can be written as a sequential inductive
limit lim Sk of Cu-semigroups Sk that have refinable sums. Then, S also has refinable
sums.

Proof Let S = lim Sk where each Sk has refinable sums. As in the proof of Propo-
sition 7.8, let us denote the image through the canonical map Sk → S of an element
x ∈ Sk by [x].

Let x1 , . . . , xn and x′1 , . . . , x′n be elements in S as in Definition 8.1. Let k ∈ N such
that, for every i ≤ n − 1, there exist elements u2i−1 , u2i , v2i−1 , v2i ∈ Sk satisfying

x i ≪ [u2i−1] ≪ [u2i] ≪ x i+1 , [v2i] ≤ x′i+1 ,

and

u1 ≪ ⋅⋅⋅ ≪ u2n−2 , and u i ∝ v i .

Since Sk has refinable sums, we obtain decreasing sequences (y i
j)

l
j=1 for i ≤ 2n − 2

satisfying the properties of Definition 8.1. In particular, we get

x i ≪ [u2i−1] ≪ [y2i−1
1 ] + ⋅⋅⋅ + [y2i−1

1 ] ≪ [u2i] ≪ x i+1 ,

and [y2i−1
1 ] ≤ [v i+1] ≤ x′i+1.

It follows that S has refinable sums. ∎
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Definition 8.2 A Cu-semigroup S is said to have almost ordered sums if for any finite
set of elements x1 , . . . , xn in S there exist elements y j, i in S such that

x1 + ⋅⋅⋅ + xn = sup
i
(y1, i + ⋅⋅⋅ + yn , i)

and such that:
(i) y1, i ≥ ⋅⋅⋅ ≥ yn , i .

(ii) (yn , i)i is increasing and bounded by x1 , . . . , xn .
(iii) If x′ ≪ x j1 , . . . , x jr ≤ z for j1 , . . . , jr pairwise different, we have x′ ≤ yr , i and

yn+1−r , i ≤ z for every sufficiently large i.

Example 8.4 If S is a distributively lattice ordered Cu-semigroup, S has almost
ordered sums. This applies, in particular, to Cu-semigroups such that S ≅ Lsc(X ,N)
for some X.

Indeed, given x1 , . . . , xn , set

y1, i = x1 ∨ ⋅⋅⋅ ∨ xn , y2, i = (x1 ∧ x2) ∨ ⋅⋅⋅ ∨ (xn−1 ∧ xn), . . . , and
yn , i = x1 ∧ ⋅⋅⋅ ∧ xn ,

for every i, and note that by Lemma 4.2 we have

x1 + ⋅⋅⋅ + xn = y1, i + ⋅⋅⋅ + yn , i .

This implies that S has almost ordered sums.

Example 8.5 Let Z′ = Z ∪ {1′′} with 1′′ a compact element not comparable with 1
such that 1 + x = 1′′ + x for every x ∈ Z/{0} and k1′′ = k for every k ∈ N. Then, Z′ does
not have almost ordered sums.

To see this, consider the sum 1 + 1′′ and assume, for the sake of contradiction,
that Z′ has refinable sums. Then, there exist elements y1, i , y2, i such that 1 + 1′′ =
supi y1, i + y2, i .

Since 1 + 1′′ = 2 is compact, for every sufficiently large i, we have 1 + 1′′ = y1, i + y2, i .
This implies that y1, i = 2 and y2, i = 0, since we know that 1, 1′′ ≤ y1, i and that 1, 1′′

are not comparable.
However, we also have 1, 1′′ ≤ 1.5, so we get 2 = y1, i ≤ 1.5, a contradiction.

Proposition 8.6 Sequential inductive limits of distributively lattice ordered Cu-
semigroups have almost ordered sums.

Proof Let S = limk(Sk , φk+1,k) be the inductive limit of distributively lattice ordered
Cu-semigroups Sk . As before, given an element x ∈ Sk , let us denote its image through
the canonical map Sk → S by [x].

Let x1 , . . . , xn be elements in S. One can check that there exists an increasing
sequence of integers (k l) and elements take x l

1 , . . . , x l
n ∈ Sk l such that ([x l

j])l are
≪-increasing sequences in S with suprema x j for every j ≤ n, in such a way that
φk l+1 ,k l (x l

j) ≪ x l+1
j for every j and l.

Since each Sk is distributively lattice ordered, for every l, there exist elements
y l

1 , . . . , y l
n in Sk l with

x l
1 + ⋅⋅⋅ + x l

n = y l
1 + ⋅⋅⋅ + y l

n ,
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satisfying the properties of Definition 8.2 (see Example 8.4). This implies, in particular,
supl([y l

1] + ⋅⋅⋅ + [y l
n]) = x1 + ⋅⋅⋅ + xn .

We will now check that the elements [y l
1], . . . , [y l

n] satisfy conditions (i)–(iii) in
Definition 8.2.

By construction, one has y l
1 ≥ ⋅⋅⋅ ≥ y l

n for every l, so condition (i) is satisfied. For
condition (ii), let l ∈ N. Then, applying condition (ii) in Sk l , we have

φk l+1 ,k l (y
l
n) ≤ φk l+1 ,k l (x

l
1 ), . . . , φk l+1 ,k l (x

l
n) ≪ x l+1

1 , . . . , x l+1
n ,

and, by condition (iii) in Sk l+1 , we get φk l+1 ,k l (y l
n) ≤ y l+1

n . It follows that condition (ii)
is satisfied.

To prove (iii), take x′ , z ∈ S such that x′ ≪ x j1 , . . . , x jr ≤ z for some pairwise
different j1 , . . . , jr ≤ n. For a large enough l, there exist u such that

u ≪ x l
j1

, . . . , x l
jr

and x′ ≪ [u] in S.
This implies that, for every l ′ ≥ l , one has

φk l′ ,k l (u) ≪ φk l′ ,k l (x
l
j1
) + ⋅⋅⋅ + φk l′ ,k l (x

l
jr
)

in Sk l′
.

Consequently, we have φk l′ ,k l (u) ≤ d l ′
r and so x ≪ [u] ≪ [d l ′

r ] in S for every l ′ ≥ l .
Furthermore, since x j1 , . . . , x jr ≤ z, for every l, there exists some z l ∈ Sk l with [z l ] ≪ z
and

x l
j1

, . . . , x l
jr
≤ z l .

Therefore, one gets y l
n+1−r ≤ z l . This implies [y l

n+1−r] ≤ [z l ] ≪ z for every l, as
required. ∎

Theorem 8.7 Let A be an AI-algebra. Then, its Cuntz semigroup Cu(A) is weakly
chainable and has refinable sums and almost ordered sums.

Proof The Cuntz semigroup Cu(A) is weakly chainable by Corollary 7.9. Further-
more, using the same arguments as in Lemma 7.7, it is easy to see that finite direct
sums of Cu-semigroups having refinable sums or almost ordered sums have refinable
sums or almost ordered sums, respectively. Thus, it follows from Example 8.1 and
Proposition 8.3 that S has refinable sums.

By Example 8.4 and Proposition 8.6, Cu(A) also has almost ordered sums. ∎
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