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1. Introduction. Let £ be a completely regular space, let C* denote the 
Banach algebra of continuous bounded real-valued functions on E, and let A* 
denote a Banach subalgebra which contains the constant function 1. Let 

L(A*) = lf\(f A X) V (-X) e A* for all X > 0}. 

The purpose of this note is to discuss some properties of the subsets L(A*) of 
the ring C of continuous real-valued functions on E. They arose out of an 
unsuccessful attempt to distinguish C* from its Banach subalgebras. 

The set L(C*) equals C, which is an algebra closed under inversion and uni­
form convergence, and hence under composition (2). The initial hope was 
that this was the only one of these sets possessing these properties. This turned 
out to be false. 

The subsets of C of the form L(A*) are completely characterized and it is 
shown that L(A*) is closed under addition (or multiplication) if and only if 
it is closed under composition. 

The sets L(A*) are closely related to certain rings of quotients R(A*). The 
homomorphism spaces of L(A*) and R(A*) are shown to be homeomorphic, 
even though in general L(A*) i£ R(A*). It is shown that L(A*) = R(A*) if 
and only if L(A*) is closed under composition. 

The relation between L(A*) and a certain closed equivalence relation 
r(Â*) on I3E is discussed and used to relate closure under composition to a 
property of r(Â*). 

2. Translation lattices. Shirota (3) defined a translation lattice to be a 
distributive lattice L, together with an action: L X R - > I (denoted by + ) 
such that: 

(TLi) x + 0 = x for all x £ L; 

(TL2) (x + X) + /x = x + (X + ii) for all x Ç L and X, M G R; 

(TLz) X > 0 implies x + X > x for all x G L; and 

(rZ,4) x > y implies x + X > y + X for all X G R. 
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Let E be an arbitrary set, and let S denote a subset of R^ which is closed 
under the usual lattice operations A and V, and which in addition is closed 
under the addition of constant functions. Then S is a translation lattice. 

Assume further that 5 contains the constant functions. Let 2o(S) denote 
the set of lattice homomorphisms /: S —> R for which I (J + X) = /(/) + X and 
1(0) = 0 (where 0 and X both denote constant functions and real numbers). 

Given any set S of real-valued functions on E, a map (the evaluation map) 
es: E—>RS is defined by setting (es(x))f = f(x). When 5 is a translation 
lattice, the usual argument with a product topology shows that esE is con­
tained in So (5). 

PROPOSITION 1. Let S be closed under multiplication by (—1). Then l Ç 2Q(S) 

is a point of esE if and only if l(—f) = —1(f) for allf G S. 

Proof. The homomorphism es(x) evaluates functions at x. It commutes 
with multiplication by ( — 1). The usual argument with a product topology then 
shows that if / is a point of esE, l(—f) = —1(f) for a l l / £ S. 

Assume l(—f) = —1(f) for a l l / 6 S and that / is not in esE. Then there are 
n functions/i, . . . ,fn in S and e > 0 such that, if x £ E, then for some value 
of i, \fiX - l(ft)\ > e. 

Let gt = ft — l(ft) and set 

gt1 = -lit A e] + e, gi* = [gt V ( - e ) ] + 6. 

Then 
Kgi1) = Kgi2) = e, i = 1, . . . , n. 

n 

g = A [gt1 A g*2]. 

If x € £ and \ftx — l(fi)\ > e, then 

(g*1 A g,2)x = 0. 

Since all the gt
j are positive, this implies that g = 0. Hence 1(g) = 0. However, 

from the definition of g, /(g) = e. 

Remark. If 5 is a Banach subalgebra of the Banach algebra of bounded 
real-valued functions on E, then the translation lattice homomorphisms that 
commute with multiplication by ( — 1) are just those algebra homomorphisms 
h for which h (I) = 1. 

Let S be a translation lattice of functions on a set E which contains the con­
stant functions and is closed under multiplication by ( — 1). Let S (S) denote 
the subspace esE of R5. It will be called the space of translation lattice homo­
morphisms of S. The evaluation map es: E —» R 5 can be considered as a function 
which maps E into S (S). 

Given any translation lattice of functions 5, the set of bounded functions 
in S is also a translation lattice. Let it be denoted by 5*. It contains the constant 
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functions and is closed under multiplication by (—1) whenever S has these 
properties. 

Let 5i and S2 be two translation lattices of functions which contain the 
constant functions and are closed under multiplication by (—1). Assume that 
Si C S2. 

Let t be the restriction to 8(S2) of the projection map of RS2 onto R51. 
Then t2(S2) Q 8(Si) and t o eS2 = eSl. 

PROPOSITION 2. Let S\ C S2 be as above. If Si* = S2*, then t is an embedding. 

Proof. Let h and l2 be elements of 8(S2) for which t(h) = t(l2). Then, if 
/ G Si*, hif) = hif). 

Let g G S2. Then (g A n) V ( — ft) is in S2* = 5i*. Hence 

(/i(g) An) V ( - » ) = /x((g A ») V ( - n ) ) = /2((g A n) V (-w)) -
(h(g) An) V ( -» ) . 

Since this is true for all natural numbers n, h(g) = l2(g). Hence h = h-

The topology for 8(5) is the weak topology defined by {/|/ G 5}, where 
JXO = ^(f)- This is the same as the weak topology defined by {/|/G 5*}. 
Hence, the fact that t is an embedding now follows from the observation that 
if / G Si, t h e n / o £ is the function on 8(S2) corresponding t o / (considered as 
an element of S2). 

3. The translation lattices L(A*). Let £ be a completely regular space, 
and let C denote the algebra of continuous real-valued functions on E. Then C 
is also a translation lattice, as is C*, the Banach algebra of bounded continuous 
real-valued functions on E. 

Denote by A* a Banach subalgebra of C* which contains the constant func­
tion 1. Let L(A*) = {/!(/• A A) V (-A) G A*, for all X > 0}. 

THEOREM 1. For any A*, L(A*) has the following properties: 

(L\) It is a translation lattice containing the constants and is closed under 
multiplication by real numbers. 

(L2) It is uniformly closed. 

(Z,3) It is closed under positive inversion (i.e. if f G L(A*) and fx > 0 for all 
x G E, then 1/ / G L(A*)). 

(LA) f G L(A*) if and only if /+, / - G L(A*). 

Conversely, if S C C satisfies (Lx), (L2), (L3), and (L4), then S* w a Banach 
subalgebra of C* and 5 = L(S*). 

Proof. The distributivity of the lattice R and the fact that 4̂ * is a sublattice 
of C* imply that L(^4*) is a sublattice of C. Clearly, it contains the constant 
functions. 
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If a > 0 is a real number, then 

(«/ A X) V (-X) = a[(f A A/a) V ( -A/a ) ] . 

Hence af £ L(A*) ii f £ L(A*). Since 

( ( - / ) A A) V (-A) = - [ ( / A A) V (-X)] , 

it then follows that L(A*) is closed under multiplication by real numbers. 
Let / e L{A*) and let a Ç R. Then (/ + a) A X = [/ A (X - a)} + a and 

(f + a ) V / * = [ /V ( / * - < * ) ] + « . Therefore 

[ ( f + a ) A X] V (-X) = [f A (X -a)] V ( -X - a) + a. 

Since this last function is in L(A*) and bounded, it is in A*. Hence 

Let (/n) be a sequence of functions in L(A*) that converge uniformly to f. 
Then for any X > 0, ((fn A X) V ( — X)) converges uniformly to (/ A X) V ( — X). 
H e n c e / 6 i ( 4 * ) . 

Assume / Ç I ( i * ) is such that fx > 0 for all x ^ E. For any two real 
numbers a, # > 0, the function (/ A a) V /3 is in 4* . Since it is bounded 
below by fi, its inverse is in A*. This is the function ((1//) V (1/a)) A 1/0. 
Consequently, (1//) V (1/a) is in L(4*). The sequence ((1/7) V (1/w)) 
converges uniformly to 1//. Hence 1/ / £ Z(^4*). 

If / is in L(A*), then /+ = / V 0 and / - = ( - / ) V 0 are both in L(A*). 
Conversely, if/+ a n d / - are in L(A*), t h e n / Ç L(A*), since 

l(f+ - / " ) A X] V (-A) = (/•+ A A) + ( - / " ) V ( -X) . 

To prove the converse, first note that, when extended to /3E, S* (since it 
satisfies (Li) and (L2)) corresponds to a Banach subalgebra of the algebra 
corresponding to C*. Hence 5* itself is a Banach subalgebra of C*. 

Clearly, 5 C L(5*). In view of (£4), it suffices to show that every positive 
/ in L(5*) is also in 5. Consider / V 1/n. It is in L(S*) and its inverse is in S*. 
Since S* Ç 5, taking inverses once again shows t h a t / V 1/n £ 5. 5 uniformly 
closed implies t h a t / 6 5. 

4. Closed equivalence relations on /3E and the lattices £ ( 4 * ) . Given 
any compact space K, there is a 1-1 correspondence between the Banach 
subalgebras A* of C(K) and the closed equivalence relations r on i£. To each 
algebra A* corresponds the relation r = r(A*) defined by: x r y if fx = fy for 
a l l / in A*. It is well known t h a t / Ç ^4* if and only if/ is in C* and compatible 
with rC4*). 

If / G C, let / denote its unique extension to /3E as a continuous function 
valued in R (the two-point compactification of R). If A* is a Banach sub­
algebra of C*, then I * = {/|/ G A*) is a Banach subalgebra of C* = C(0£). 
The correspondence which associates r(A*) with A* is a 1-1 correspondence 
between the Banach subalgebras of C* and the closed equivalence relations 
on pE. 
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PROPOSITION 3. / G L(A*) if and only if xr(Â*)y implies fx = fy. 

Proof. L e t / G L(A*) and let/» = (/A n) V ( - » ) . Since/ , G A*, xr(A*)y 
implies fnx= fn y. Now 

fx = lim fn x, 
n->oo 

and so fx = /y. 
Assume t h a t / $ L(4*). Then for sufficiently large n, say w > n0, fn (? A*. 

This means that there exist x, y G E with xr(Â*)y and fm x ^ fno y. Since 
(fn+i A n) V (~n) = /„, it follows t h a t / , x 9e fny for all n > w0. This implies 
that fx ?£ fy. 

COROLLARY. Let / , g G L(4*). Then f + g £ L(A*), if either / , g > 0 or 
g G 4* . 

Proc/. If / > 0, then /x > 0 for all x G PE. Hence if / , g > 0, / + f is 
defined. I t is compatible with r(À*). Since / + g = f + g, f + g G Z(^4*). 

If g is bounded, then / + g is defined and compatible with r(Â*). As before, 
this implies/ + g G L(A*). 

Remark. In view of the proposition, the functions / on f3E corresponding to 
the functions/ in L(A*) can be identified with functions/ on the quotient 
space /3E/r(Â*). It can be seen that {/(/ G L(A*)} is precisely the set of con­
tinuous ^-valued functions on fiE/r(A*) whose restriction to the image of E 
under w o i is real-valued (where T is the canonical map of /3E on @E/r(A*) 
and i is the inclusion of E in fiE). 

5. The space of translation lattice homomorphisms of L(A*). Let S 
be a translation lattice of functions on E closed under multiplication by (—1) 
and for which i * Ç 5 Ç I ( i * ) . Then since 5* = L(A*)* = A*, it follows 
from Proposition 2 that: 2(L(A*)) can be embedded in 2(S) by a map t\\ 8(5) 
can in turn be embedded in 2(A*) by a map /2; and, further, that 2(L(A*)) 
can be embedded in 2(A*) by a map /. 

Now t oeL(A*) = eA* = t2 o es = t2 o ti oeL(A*). Since eL(A*)E is dense in 
2 (L(,4*)), it follows that t = t2 o h. 

THEOREM 2. The subset XofZ (A*) corresponding to 2 (S) is the complement of a 
union of G$-sets disjoint from eA* E. Conversely, if Y is a union of Gs-subsets 
of S (A*) which are disjoint from eA*E, then there exists a translation lattice S 
for which: 

(1) A*QSQL(A*);and 

(2) the corresponding subset X of 2(A*) is the complement of Y. 

Hence, the subset of 2(A*) corresponding to 2(L(A*)) is the complement of the 
union of all the Gs-subsets of 2 (A*) disjoint from eA* E. 
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Proof. It is well known that there is a homeomorphism 

h: PE/r(I*) -> 8(4*), such that how oi = eA*, 

where T and i are as in the last remark. 
To prove the first assertion, it suffices to show that the complement Z of 

(h o 7r)-1 X is a union of Gg-sets, each of which is a countable intersection of 
r(Â*)-saturated open sets. 

By considering {f\f G S], it can be seen that Z = \u £ f$E\ for some / G S, 
\fu\ = co }. If / Ç 5 and |/w| = co, then 

« G n {» e )8£||/»w| > ( » - i)î c z . 

Clearly, {v G j&E||/wz;| > (w — 1)} is an r(4*)-saturated open set. 
To prove the converse, let Z = (h o ir)~lY and let S be the set of functions 

f G £(4*) for which/|0&E — Z) is real-valued. Then S is a translation lattice 
which contains 4 * and is closed under multiplication by (—1). 

Since F is a union of GVsets, 

fiE - Z = [u G pE\\fu\ < co, for a l l / G S}. 

As a result, it can be seen that the subset X of 8(4*) corresponding to 8(5) is 
TT(/3E - Z) = 8(4*) - F. 

The last assertion follows automatically, since the subset of 8(4*) corres­
ponding to 8(L(4*)) is a subset of the subsets corresponding to the spaces 
8(5), 4 * C 5 Ç L ( n 

Remark. The translation lattice S determines the subset Z of $E, which in 
turn determines a translation lattice. This new lattice contains 5 and is in 
general not equal to 5. 

6. The ring of quotients R(A*). Let 4 * be a Banach subalgebra of C*. 
Then the set 

M (A*) = {/ G A*\fx > 0 for all x f £ ) 

is multiplicatively closed. None of these functions is a zero divisor. Therefore 
4 * can be embedded in its ring of quotients with respect to M(4*). Let R(A*) 
denote this ring. Then every element of R(A*) is a continuous function h on E 
which can be written as h = f/g,f £ A* and g G M (A*). 

The ring R(A*) is a sublattice of C since for h G i?(4*) and h = f/g, 
\h\ = l/l/g. 

i?(4*) is closed under positive inversion. If h = f/g, and hx > 0 for all 
x G £ , t h e n / G M(4*). 

Consequently, i£(4*) satisfies (Li), (£2), a n d (£4). It is related to L(4*) as 
shown by 

PROPOSITION 4. 4 * C L(4*) C i?(4*). L(4*) is a se* 0/ multiplicative 
generators for R(A*). 
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Proof. L e t / > 0 be in L(A*), and let g = f + 1. Then A = 1/g is in M (A*), 
and so g is in R(A*). Consequently, / = g — 1 is in R(A*). As a result, 
L(A*) QR(A*). 

If / 6 M(4*), then 1/ / G £(4*) , and so L(A*) generates i?(,4*) multi-
plica tively. 

R(A*) is an algebra of functions. The real-valued algebra homomorphisms 
h on R(A*), for which h(l) = 1, define a subset of Rfl<A*) in the usual way. 
Since R(A*) is closed under positive inversion, it is also closed under bounded 
inversion. Isbell (2) showed that this implies that the set of points in R72^*) 
which are algebra homomorphisms is eR(A*)E. Let &(R(A*)) denote this 
subspace. 

PROPOSITION 5. There is a homeomorphism c: &(R(A*)) —>2(L(A*)) such 
that c o eR(A*) = eL(A*). 

Proof. Let p: RR(A*> —* RL(A*) denote the projection obtained by dropping 
the co-ordinates corresponding to the functions that are in R(A*) but not in 
L(A*). Clearly, p o eRU^ = ^ u * } . Hence p$(R(A*)) C 2(L(A*)). 

Define q: %(L(A*)) —> Rfl<A*> by setting q(u) = v, where 

iuh heL(A*), 
Vh \u,/ua h = f/gjand geA*. 

If h = / / g = f'/gr, then /g ' = g/'. Since a translation lattice homomorphism 
of A* that commutes with multiplication by ( — 1) is also an algebra homo­
morphism, it follows that ufug> = uguf>. This shows that q is well defined. 
I t is clear that it is continuous. 

Now p o q o eL(A*) = p o eR(A*) = eLU*) and 

q o p o eR(A*) = q o eLU*) — eB(A*). 

Hence c = p\$(R(A*)) is a homeomorphism of §(R(A*)) with 8(L(^*)). 

Although the homomorphism spaces of L(A*) and R(A*) coincide, in general 
L(A*) 9* R(A*). 

Example. Let E be a non-compact real-compact space, let x 7̂  y be two 
points in f$E — is, and let A* = {/ 6 C*|/x = fy). There is a function f0 > 0 
in ^4*, with no zeros in E, for which f0x = Joy = 0 . Consequently, l / /0 is in 
^4*. By Proposition 3, if g £ C*, then l / /0 + ^ i ( i * ) (and/0 £ 6 4*). From 
this it follows that L(A*) is not closed under either addition or multiplication. 
In particular, L(A*) 9* R(A*) = C. 

7. WhenisZ( ,4*) = R(A*)1 

THEOREM 3. Let E be a locally compact space which is countable at infinity, 
and let A* CI C* be a Banach subalgebra whose weak topology is the topology of E. 
The following statements are equivalent: 
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(1) L(A*) is closed under addition. 

(2) L(A*) is closed under multiplication. 

(3) L{A*) = C,i.e.A* = C*. 

Hence, under these conditions, L(A*) = R(A*) if and only if A* — C*. 

Proof. E is locally compact if and only if @E — E is closed. This can be 
seen to be equivalent to the existence of a smallest Banach subalgebra Ao* 
whose weak topology is the topology of E. This algebra corresponds to the 
equivalence relation whose only non-trivial equivalence class is @E — E. 

A locally compact space E is countable at infinity if and only if there is a 
function/o G C*,0 < / 0 < 1, with Z(fQ) = (3E - E. Clearly,/o G AQ* C L(A*). 

If g € C*, then by Proposition 3, g + l / / 0 G £(4*) and g/0 G L(A*). 
Since l / / 0 € £04*), it follows that (1) implies (3) and (2) implies (3). The 
converses are clear. 

Remark. It is tempting to conjecture that this theorem holds if E is not 
countable at infinity. This is not so. Isbell pointed out to the author that the 
set B of Baire functions on the real line satisfy (Li), (£2), (£3), and (L4), the 
weak topology is the discrete topology, the set is certainly closed under addition, 
but B 7* KR. He also pointed out that Lemma 5.3 of Henriksen and Johnson 
(1) implies that for E a Lindelof space, the theorem is still true. 

Theorem 3 is very similar to I shell's Theorem 1.13 (2) which he used to 
show that a function algebra A is closed under composition if it is uniformly 
closed and inversion closed. A set S of real-valued functions is said to be closed 
under composition, if for each n and fi, . . . ,fn (z Sy g: Rn —> R continuous 
implies g(/i, . . . ,fn) G S. Isbell's argument is applied in the proof of the next 
theorem. 

THEOREM 4. Let A* Œ C* be a Banach subalgebra. The following statements 
are equivalent: 

(1) L(A*) is closed under addition. 

(2) L(A*) is closed under multiplication. 

(3) L(A*) is closed under composition. 

Hence L(A*) = R(A*) if and only if L(A*) is closed under composition. 

Proof. Obviously, (3) implies (1) and (2). Given the equivalence of (2) and 
(3), the last assertion follows immediately. 

Pick/ i , . . . , /n e L(A*), and let X be the closure in Rn of 

{(fix, . . . Jnx)\x e E}. 

Then, as a subspace, X is locally compact and countable at infinity. 
Let S = {g e C(X)\g(fu . . . ,/„) G L(A*)}. The set S inherits properties 

(Li), (L2), (L3), and (L4) from L(A*). Therefore, by Theorem 1, S = L(Ai*), 
where A1* is a Banach subalgebra of C* (X). S contains the restrictions to X 
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of the co-ordinate projections, and hence the weak topology defined by Ai* is 
the subspace topology. 

If L(A*) satisfies (1) or (2), S inherits the corresponding property. Applying 
Theorem 3, it follows that (1) implies S = C{X) and that (2) implies S = C(X). 

8. Composit ion and closed equivalence relations. The algebra A* is 
determined by the equivalence relation r(À*) on E. The example of Section 6 
suggests that properties of the relation r(Â*) should determine when L(A*) is 
closed under composition. 

A subset X of /3E will be said to determine the algebra A* if, for any g £ C*, 
g\X compatible with r(Â*)\X implies that g Ç A*. In other words, the restric­
tions imposed by r(Â*)\X are severe enough to define A*. 

THEOREM 5. Let i * C C * be a Banach subalgebra. The following assertions 
are equivalent: 

(1) L(A*) is closed under composition. 

(2) R(A*)* = A*. 

(3) For all J £ M(A*),fg e A* and g £ C* implies g £ A*. 

(4) For allf € M (A*), {3E - ZQ) determines A*. 

Proof. By the previous theorem, (1) implies (2). If / Ç M (A*) and/g Ç A*, 
then g =fg/f £ R(A*). Hence (2) implies (3). 

L e t / 6 M (A*) and let g G C* be such that g\QE - ZQ) is compatible with 
r(A*)\/3E — Z. Then fg £ A*, since fg = fg is compatible with r(Â*). Hence 
(3) implies (4). 

Let / , g 6 L(A*). Since / + g = (f+ + g+) - (/" + g~), to show that 
/ + g £ L(y4*), it suffices (in view of the corollary to Proposition 3) to consider 
the case where / > 0 and g < 0. 

Let / i = / + 1 and let gi = g — 1. Then, l / / i and 1/gi are in A*. Hence 
h = -1/figie M (A*). 

Z(h) = {u € 0 E | j U = + <»} U {v e m\giv = - « > } . 

Consequently, if fe = / + g, fcn|j&E — Z(/ï) is compatible with r (Â*)|j8E — Z(Â). 
Hence &w £ .4* for all ». This implies & = / + g £ L(4*). 

Hence, Theorem 4 shows that (4) implies (1). 
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