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The rupture of the thin film at the top of a bubble at a liquid—gas interface leads to an
axisymmetric collapse of the bubble cavity. We present scaling laws for such a cavity
collapse, established from experiments conducted with bubbles spanning a wide range of
Bond (1073 < Bo < 1) and Ohnesorge numbers (1073 < Oh < 107 1), defined with the
bubble radius R. The cavity collapse is a capillary-driven process, with a dependency
on viscosity and gravity, affecting respectively, precursory capillary waves on the cavity
boundary and the static bubble shape. The collapse is characterised by the normal interface
velocity (U,) and by the tangential wave propagation velocity of the kink (U;), defined by
the intersection of the concave cavity boundary formed after the rupture of the thin film
with the convex boundary of the bubble cavity. During the collapse, U, remains constant
and is shown to be U, = 4.5U Wk, where U_ is the capillary velocity and Wg(Oh, Bo) =
(1 — VJOhZL)~1/? is the wave resistance factor due to the precursory capillary waves,
with .2 (Bo) being the path correction of the kink motion. The movement of the kink
in the normal direction is part of the inward shrinkage of the whole cavity due to the
sudden reduction of gas pressure inside the bubble cavity after the thin film rupture. This
normal velocity is shown to scale as U, in the equatorial plane, while at the bottom of the
cavity Upp, = U (Z:/R)Wr/L), where Z.(Bo) is the static cavity depth. The filling rate
of the cavity, which remains a constant throughout the collapse, is shown to be entirely
determined by the shrinking velocity and scales as Q7 ~ 2nRZ.U.. From Q7 we recover
the jet velocity scaling, thereby relating the cavity collapse with the jet velocity scaling.
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Figure 1. Stages of bubble collapse at a liquid surface. (a) Static bubble in water with a radius R ~ 2 mm;
(b) rupturing of thin film; (c¢) beginning of the cavity collapse; (d) jet at the free surface. The time gaps between
the images are of the order of 10™*s.

1. Introduction

A bubble at a liquid—gas interface is characterised by a cavity, capped from above by a
spherical thin film, and joined at a circular rim, as shown in figure 1(a). The rupture of
the thin film leaves an unstable cavity at the interface, which collapses axisymmetrically
and generates a high-velocity jet (Woodcock et al. 1953; Kientzler et al. 1954); figure 1
shows an image sequence of a bubble bursting at the free surface. The bursting of these
free-surface bubbles is an important transport mechanism in mass transport from the liquid
surfaces to the ambient air in air—sea exchange and in the spread of pathogens (Blanchard
1963; Maclntyre 1972; Spiel 1995; Walls, Henaux & Bird 2015; Joung, Ge & Buie 2017,
Sampath et al. 2019; Yang et al. 2023). Bubble bursting has also been investigated in
connection with the reverse mass transport observed in the mixing of oil spills in the ocean
(Feng et al. 2014), and in the context of the creation of intense stress zones in bioreactors
(Boulton-Stone & Blake 1993; Walls et al. 2017).

Most of these studies on free-surface bubble collapse have focused on the dynamics of
the ensuing jetting. The general consensus on jetting is that, when Ohnesorge number
Oh = u/+/opR < 0.037, the jet velocity U; scales with the capillary velocity U, =
0 /pR (see table 1 for the definitions of symbols), provided, the bubbles are small, such
that Bond number Bo = ,ogR2 /o < 0.1. However, for larger bubbles, when Bo > 0.1, the
jet velocity can deviate substantially from the capillary velocity U, due to gravity effects
(Gafian Calvo 2017, 2018; Krishnan, Hopfinger & Puthenveettil 2017; Deike et al. 2018;
Gordillo & Rodriguez-Rodriguez 2019). A jet Weber number scaling, We; = ,onzR Jo ~
(Z./R)?, proposed by Krishnan er al. (2017), explains the effect of gravity on jet velocity
through the static depth of the bubble cavity Z. (see figure 1a), where Z. is a function
of Bond number, as given by Puthenveettil ez al. (2018). Significant progress has been
made recently towards the theoretical understanding of the jet dynamics (Lai, Eggers &
Deike 2018; Blanco-Rodriguez & Gordillo 2020; Ganan Calvo & Ldépez-Herrera 2021),
and accurate predictions have been made for the sizes of ejected first drops from the jets
for a wide range of bubble radii (Gafidn Calvo & Lopez-Herrera 2021; Gandn-Calvo 2023).

The cavity collapse dynamics associated with this jetting is complex, with the velocities
being at least an order of magnitude less than the jet velocity (Krishnan & Puthenveettil
2015; Ganan Calvo & Lopez-Herrera 2021). As seen in the images of surface bubble
cavity collapse (figure 1), after the thin surface film rupture, the hole expansion creates a
concave boundary (as seen from the liquid side), S1 in figure 1(c) (Krishnan, Puthenveettil
& Hopfinger 2020), with the formation of a kink at its intersection with the convex cavity
shape, S2 in figure 1(c). The kink propagates tangentially along the boundary with velocity
U;, while at the same time, the cavity shrinks with a velocity U, normal to the boundary
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% P o R Bo Oh te U,
mPas kgm™> Nm™! mm ms ms~!
Water 1.005 1000 0.072  0.175-4.1 0.004-2.27 0.0019-0.009 0.3-30.7 0.64-0.13
Ethanol 1.144 789 0.022  0.19-1.16  0.013-0.47  0.008-0.02 0.5-7.5  0.38-0.16
2-propanol 2.073 781 0.018  1.46-2.41 0.9-2.4 0.011-0.014  11.6-24.6  0.13-0.1
GW48 (30°C) 3.9 1115 0.068 0.42-34  0.029-19 0.0076-0.021 1.1-254  0.38-0.13
GW48 (20°C) 5.5 1120 0.068 0.81-1.96  0.1-0.62 0.014-0.022 3-11.1 0.27-0.18
GW55(20°C) 8 1140 0.067  0.71-23  0.08-0.88  0.019-0.035  2.5-144 0.29-0.16

GW68 (20°C) 12.414 1170 0.066 0.48-2.3  0.04-0.89 0.03-0.064 1.4-147  0.34-0.16
GW72(20°C) 16.616 1181 0.064 0.6-3.6 0.063-2.4  0.032-0.079 2-29.3 0.3-0.12
GW89 (20°C) 185.3 1232 0.064 1.7 0.54 0.52 9.6 0.18

Table 1. The properties of the fluids used in the experiments and the corresponding dimensionless parameters.
The fluid properties of surface tension, density and dynamic viscosity are denoted by o, p and pu, respectively,
while g is the acceleration due to gravity. The Bond number Bo = pgR?/o, the Ohnesorge number Oh =

1/+/opR, the capillary time scale 7. = v/pR?/o and the capillary velocity scale U, = /o /pR.

due to the excess capillary pressure after the gas pressure drops when the cavity opens.
Capillary waves, similar to the waves observed earlier in steep gravity waves (Perlin, Lin
& Ting 1993) and Faraday waves (Das & Hopfinger 2008; Puthenveettil & Hopfinger
2009), move ahead of the main (kink) capillary wave (see figure 3). Viscous damping of
these precursory capillary waves is proportional to Oh'/?, which is valid till the complete
suppression of the waves (Krishnan et al. 2017; Gordillo & Rodriguez-Rodriguez 2019).
Such progressive viscous damping of these waves results in an increase in the jet velocity
up to Oh =~ 0.02, beyond which the jet velocity decreases (Ghabache et al. 2014). This
complex dependence of jet velocity on Oh for a broad range of Oh and Bo, including the
critical Oh ~ 0.03, after which viscosity acts on the cavity size, was first explained by
Ganan Calvo & Lopez-Herrera (2021) as a nonlinear smooth transition.

While the stages of collapse described above, and shown in figure 1, have been well
identified (Maclntyre 1972; Duchemin et al. 2002; Lee et al. 2011; Brasz et al. 2018),
quantitative information and scaling laws for the velocities of collapse, and the related
mass fluxes are not available. The two-dimensionality of the moving kink, and the lack
of top-down symmetry of the interface during flow convergence prevent the use of
one-dimensional, Rayleigh—Plesset equation based models, often used to study the cavities
at the free surface formed by impacting objects (Oguz & Prosperetti 1993; Burton, Waldrep
& Taborek 2005; Bartolo, Josserand & Bonn 2006; Bergmann et al. 2006; Duclaux et al.
2007). Even though it has been found that the kink moves with a constant velocity,
proportional to the capillary velocity (Krishnan & Puthenveettil 2015; Krishnan et al.
2017; Gordillo & Rodriguez-Rodriguez 2019), its dependency on O#h, through precursor
capillary waves, and on Bo through the total path length, has not been addressed in any
detail. The effect of precursory capillary waves on jet velocity has been extensively studied
(Ghabache et al. 2014; Gainan Calvo 2017; Krishnan et al. 2017; Deike et al. 2018; Ganan
Calvo 2018; Gafian Calvo & Lopez-Herrera 2021; Gordillo & Rodriguez-Rodriguez 2019;
Blanco-Rodriguez & Gordillo 2021). However, the effect of these waves on the collapsing
cavity surface has not been addressed.

Most other studies (Gafan Calvo 2017, 2018; Ismail er al. 2018; Lai et al. 2018;
Blanco-Rodriguez & Gordillo 2021) consider only the dynamics of flow convergence in a
small region at the cavity bottom, where viscosity also dictates the length scale. Gordillo
& Rodriguez-Rodriguez (2019), Blanco-Rodriguez & Gordillo (2021) and Gordillo &
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Blanco-Rodriguez (2023) assumed a purely horizontal and radially inward inertial flow
during the flow convergence at the cavity bottom and modelled the flow using a vertical
array of sinks placed along the meridian centre line, with the length of the array being
determined by the size of the bubble and the wavelength of the capillary waves moving
ahead of the kink. Lai ef al. (2018) showed that the shapes of the collapsing cavity are
self-similar, with a capillary—inertial |, — #|>/3 scaling, where f; — ¢ is the time to the
singularity and #; being the instant of fluid convergence at the cavity bottom. This is similar
to the scaling of Zeff et al. (2000) in Faraday wave collapse. However, such a self-similarity
only holds for 0.014 < Oh < 0.04 and small Bond numbers (Bo <« 0.1), when precursory
capillary waves are absent.

An important exception to these local convergence studies is the analysis of streamlines
for the entire fluid domain by Gafidn Calvo & Ldépez-Herrera (2021), wherein the
authors show why a global analysis of cavity collapse is necessary for the complete
understanding of the focusing zone and jet formation. Gafidn Calvo & Loépez-Herrera
(2021) proposed the spherically averaged velocity during the flow convergence to scale
as W ~ (V,,/Ohp)yr(Oh, Ohy, Bo), where V,, = o/ut, and Ohy, is the Ohnesorge number
based on the length scale at the bottom of the cavity at flow convergence; in the limit
Oh < 0.04, W tends to the capillary velocity U, (Ganan Calvo 2017, 2018). These fluid
flow velocity based scalings may not match with the scalings based on the interface
velocities, which we study here in the present work, to determine explicit relations for the
normal velocity at the bottom of the cavity as a function of Oh and Bo. As we mentioned
above, and discuss in detail later, we show that the cavity surface during flow convergence
at the bottom has both radial (spherical) and tangential velocities, an aspect also inferred
by Gafidn Calvo & Loépez-Herrera (2021) from their analysis of streamlines of the liquid
flow, which actually scale differently since they are based on fluid velocities, while we
present interface velocities.

In the present paper we present experimental results concerning the dynamics of cavity
collapse of a free-surface bubble. Scaling laws for the duration of collapse, the various
velocities of collapse and the volume fluxes involved in the collapse are established.
We show that precursory capillary waves reduce the velocity of the moving kink in the
tangential and the normal directions. Since the kink movement is a wave propagation
velocity, the volume fluxes are shown to be entirely due to shrinkage of the cavity walls
in the normal direction, with a direct dependency on the cavity depth Z.. The observed
jet velocity scaling is also retrieved from the scaling of this normal flux. The effects of
viscosity and gravity on cavity collapse are quantified using three parameters: the path
correction .Z(Bo), the wave resistance factor Wgr(Oh, Bo) and the aspect ratio of the
cavity Z.(Bo)/R. These aspects of cavity collapse are essential for the understanding of
the effects of viscosity and gravity on jetting.

The paper is organised as follows. In § 2 the experimental set-up and conditions are
presented. Then, in § 3, different aspects of cavity collapse, namely the tangential kink
velocities, the normal interface velocities of the collapsing cavity boundary and the total
time of cavity collapse, are discussed. Scaling relations that explain the effect of gravity
and viscosity on these quantities are established in this section. In § 4, the volume influxes
related with the interface velocities are determined, with concluding discussions presented
in §5.

2. Experimental conditions

The experiments were conducted in two transparent containers of cross-sectional areas
of 5x 5cm? and 3.5 x 5cm?, filled with various fluids, viz., distilled water, various
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glycerol-water mixtures with weight of glycerine of 48 %, 55 %, 68 % and 72 %,
(hereinafter referred to as GW48, GW55, GW68 and GW72), ethanol and 2-propanol.
Table 1 shows the properties of these fluids. In order to avoid meniscus effects, the
containers were filled with the desired liquids up to the brim. Fine capillaries of various
sizes, connected to a constant discharge syringe pump, were kept immersed in the working
fluid to create bubbles of different, equivalent, spherical radii R. Low discharge rates were
maintained, so that the bubbles were in the periodic discharge regime (Oguz & Prosperetti
1993). To prevent variation in bubble sizes from each capillary, the orientations of the
capillaries were maintained the same throughout the experiments (Doshi et al. 2003). The
bubble occupied the centre of the container. We used La Vision ProHS (frame rate <
19 000 Hz) and Photron SA4 (frame rate < 100 000 Hz) cameras for high-speed imaging of
the side views of the dynamics of the cavities. A high-intensity green LED array was used
for back lighting. The image acquisition rates met the condition that #; < 1/| dUs/ds|,
where #; = 1/(frame rate) and dUgps/ds =~ (Ugps(t2) — Ugps(t1))/(d(22) — d(21)) is the
spatial gradient of the absolute velocity of the kink along the cavity, where U, are the
absolute velocities, and d the linear displacements, of the kink at the two successive times
t1 and 1. The spatial resolution was such that AZ; < Ugps texp, Where AZ; is the size of
each pixel and 7.y, is the exposure time. The lowest and the highest resolutions for the
imaging were 27 wm pix ! and 3.4 pmpix !, respectively.

The following length measurements were done by counting the pixels between the
appropriate liquid—gas interfaces seen in the images. The equivalent spherical bubble radii
(R) were measured from the images of the rising bubbles generated at the capillaries.
The cavity shrinking lengths along the equatorial plane D,, and along the vertical plane
D,,;, were measured as a function of time from the instantaneous images of the collapsing
cavity. The time ¢ corresponding to each image was estimated from the frame rate of
recording, with the zero time being the time of thin film rupture. The total time of cavity
collapse 75, was measured by counting the number of images starting from the thin film
rupture till the cavity becomes conical (see figure 2d). The times corresponding to the
lengths D, and D,,;, were measured similarly. The bottom diameter of each conical cavity
2r, was measured as the horizontal distance between the kinks seen on either sides of the
vertical centre line of the bubble, at the instant of flow convergence t = 1. (see figure 2d),
beyond which the cavity bottom underwent a significant upward movement (see figure 3i, j)
due to jet formation.

We consider the kink propagation and the precursor capillary waves as two different
physical phenomena. The precursory capillary waves act as deformations on the convex
bubble cavity boundary (S2), whereas the kink is defined as the intersection of the concave
cavity opening (S1) with the convex bubble cavity boundary (S2), independent of the
presence or the absence of these precursor capillary waves (see figure 2a). Velocities of
the moving kink, in directions tangential and normal to the cavity surface (U; and U,),
were estimated by resolving the absolute velocities of the kink Upgp,s in two mutually
orthogonal directions, as shown in figure 2(c). The absolute displacements of the kink
were measured by finding its coordinates at various instances, with U,y at each instant
being obtained by dividing these absolute displacements by the corresponding time gap
between the images. The angle y at each instant (see figure 2¢) was measured throughout
the collapse duration by finding tany by vectorial decomposition of the corresponding
absolute velocity along the tangential and the normal directions. Polynomial fits of the
progressive displacements in the tangential direction (d;) as a function of time, similar to
that shown in the inset (a) of figure 5, were used to calculate U,(¢) by taking the time
derivative of the fits. The curve fits were carried out for the complete time sequence of d;
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Equatorial plane

Figure 2. Schematics depicting the parameters and terminologies describing the cavity collapse. (a) The actual
cavity contours at two time instances, extracted from experiments with a bubble of R = 0.175 mm in water
showing the kink. S1 and S2 denote the concave and the convex boundaries of the cavity (also see figure 3e).
(b) The side volume flux Qg and the bottom volume flux Q) due to the difference between the side and the
bottom cavity contours at two successive time instances. Similarly, Q, is the volume outflux at the top, estimated
as the difference between the cavity contours at the free surface, FS. (¢) Schematic of the collapsing cavity
contours at two time instances, with the position of the kink at the different times marked as (I) and ). The
absolute, tangential and normal velocities of the kink are shown in the associated vector triangle. (d) Schematic
of the cavity contours at the following times: (i) # = 0 (black); the initial cavity contour when the thin film is
ruptured, (ii) # = 1, (blue); the cavity contour when the kink has arrived at the equatorial plane of the cavity
(denoted by the horizontal line) showing the equatorial cavity shrinkage Dy, (iii) ¢ = #5. (red); the cavity
contour when the kink has arrived at the bottom when the cavity has the form of a smooth funnel with bottom
radius r, and vertical cavity retraction Dpy.

and the typical degree of the polynomial fit was 8. The root mean square error for all the
curve fits for displacements in our study were extremely small, approximately of the order

of 1073 mm, hence, the polynomial fits that we used does not affect the accuracy of the
results. In the same way, the normal velocities U,, were estimated from the corresponding
progressive normal displacements.
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We define three volume fluxes related with the cavity boundary movement: the side
(tangential) volume influx Qy, the bottom (normal) influx Qp and the side volume outflux
Q,, with the total filling rate being Or = Qg + Qp. The area ABF shown in figure 2(b) is
the area swept by two successive positions of the kink as it travels along the cavity surface
and inwards, with the corresponding side (tangential) volume influx being Q. Similarly,
the area BCGF is the area swept by the normal motion of the bottom regions of the cavity,
with corresponding volume influx being Q5. The volume outflux Q,, corresponding to the
area DA, was only measured for a single bubble since it was time invariant and hence
was not a dynamic quantity. All the volumes were measured as follows: the edges of
the collapsing cavity were extracted from images using Canny or Sobel edge detection
criteria, depending on the noise levels in the image sequence. Two successive contours
were superimposed to produce a sequence of edge pairs (see figure 2a) with time. Within
two successive contours, the radial distance (r,) of each pixel and the total number of
pixels 77, were measured at each time. The volume contributed by a square pixel inside the
two edges, 27r, AZ;?, was estimated. This process was repeated for all the pixels inside
the contours, and the volume contributions from each pixel were added. The value of this
cumulative volume was then divided by the time gap between the two frames to find the
volume flux. The same method was continued for the entire sequence of contour pairs to
obtain the volume fluxes as a function of time.

3. Cavity collapse

Figure 3 shows a sequence of the stages of the collapse of a bubble at the free surface for
a low-viscosity fluid (water, Oh = 0.0055). The corresponding stages for a high-viscosity
fluid (GWS5, Oh = 0.034) are shown in figure 4. In both cases, an axisymmetric kink
(figure 3e) is seen travelling from the cavity top to the bottom-most part of the cavity,
where the cavity boundary converges. For the low-viscosity case (figure 3), precursor
capillary waves (see B in figure 3/) are seen moving ahead of the main (kink) wave. We
observe these capillary waves throughout the collapse, only when Oh < 0.02, as it is the
case in figure 3, resulting in a sharp front edge of the kink, as can be seen in figure 3. When
Oh > 0.02, as shown in figure 4, these precursory capillary waves are fully damped by the
viscous effects before they reach the cavity bottom, resulting in a more rounded front edge
of the kink. As can be seen from figures 3 and 4, the kink travels along the cavity surface,
while the cavity itself is shrinking normal to its surface. Thus, at any instant, the kink has
velocities tangential and normal to the cavity surface, up to the flow convergence at the
cavity bottom. It is noteworthy to mention that only the radial interface velocity is equal to
the fluid velocity. We analyse these velocities in detail in the following sections.

3.1. Tangential wave propagation velocity of the kink

The tangential wave propagation velocity U, of the kink (herein after simply the tangential
velocity) has been measured as discussed in § 2. Inset (b) in figure 5 shows the variation
of the dimensionless tangential velocity (U;/U,) with the dimensionless time (¢/t.), where
tc = v/ pR3 /o is the capillary time scale, for bubbles of similar Bo in GW72, Oh = 0.0427
(red circle), and in water, Oh = 0.0028 (yellow square). The value of U; is observed to be
constant, except at the beginning and the end of the collapse, and scales with the capillary
velocity U, = /o /pR, in a way similar to the observations of Krishnan & Puthenveettil
(2015), Krishnan et al. (2017) and Gordillo & Rodriguez-Rodriguez (2019). However, for
Oh = 0.0028, where precursor capillary waves occur ahead of the main kink wave, as
shown in figure 3, the values of U;/U, are around 40 % lower compared with those at
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Figure 3. Image sequence showing the stages of cavity collapse in a low-viscosity fluid, showing the presence
of precursory capillary waves. The bubble is of radius R = 0.47 mm in water (Bo = 0.03, Oh = 0.0055).
Bubble pinch-off from wave focusing, creating a downward gas jet of radius 8.6 um, is also seen in (h—i).
The width of each image is 0.97 mm. Movie 1 is available at https://doi.org/10.1017/jfm.2024.26.

e

0.7 0.85

Figure 4. Image sequence showing the stages of cavity collapse due to a R = 0.7 mm bubble (Bo = 0.08) in
a high-viscosity fluid (GWS55, Oh = 0.034) that is relatively free of the precursory capillary waves. The image
width is 1.7 mm. See movie 2.

Oh = 0.0427, where the precursor capillary waves are fully damped (figure 4). We observe
this behaviour with all the bubbles when Oh < 0.02. Similar decreasing velocity of the
kink in the presence of precursor capillary waves is clearly seen in the velocity data of Ji,
Yang & Feng (2021) (see Ji et al. 2021, figure 5) for the bursting of bubbles in oil covered
water surface, where the oil layer covering the kink enhances the damping of precursor
capillary waves. Thus the capillary velocity scale alone does not collapse the tangential
velocity data for different viscosity fluids, possibly due to the effect of precursor capillary
waves on U;. A new scaling relation for U; is therefore needed to account for the effect
of viscous damping of the precursor capillary waves, and a possible (weak) gravity effect.
Using an energy balance at the kink, we now obtain such a scaling relation that collapses
the tangential velocity data.
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Figure 5. Normalised tangential velocity of the kink, accounting for the wave resistance of precursory
capillary waves, Wg(Oh, Bo), and the path correction due to gravity effects, .Z'(Bo), as in (3.13), plotted
as a function of the dimensionless time ¢/#., for bubbles of 0.001 < Bo <1 and 0.001 < Oh < 0.05.
Symbols: A, yellow, R = 0.175mm (Bo = 4.2 x 1073, Oh = 0.0099); «, yellow, R =0.47mm (Bo =3 x
1072, Oh = 0.0055); A, yellow, R = 1.74mm (Bo = 4.1 x 10~', Oh = 0.0028) and ¢, yellow, R = 2.15mm
(Bo=6.3 x 1071, Oh = 0.00255). Aforementioned data are from water. Data with GW72 are: B, red,
R=1.59mm (Bo =4.8 x 10~!, Oh = 0.0481); e, red, R = 2.02mm (Bo = 7.7 x 10~!, Oh = 0.0427). —,

UV 1—+~OhZ U, =4.5. In inset (a), the cumulative distance, d;, travelled by the kink in the tangential
direction is plotted versus time for a bubble of R = 2.14 mm in water, with — the polynomial fit used for
calculating U;. The inset (b) shows the offset between the dimensionless tangential velocities of the kink in
water and GW72, when precursory capillary wave effects are not taken into account.

3.1.1. Energy balance at the kink

The retraction of the rim right after the film rupture provides the kinetic energy associated
with the kink movement. Since the kink moves with constant velocity U;, as seen in
§ 3.1 and figure 5, we assume a steady state balance of the energy of the kink movement.
Consider the area corresponding to the side flux AFB as shown in figure 2(a), with 2ntR
and R being the characteristic lengths along azimuthal and vertical directions, respectively.
The characteristic volume of the kink then scales as 2wR*8, with 8 being the length
scale of the kink, where the velocity is the tangential velocity U;. Note that the kink
is identified as a small region (the intersection of S1 and S2 as shown in figure 2a)
where the characteristic velocity is U;, and the movement of the surface above the kink
of lesser velocities is neglected. We assume that § is directly related to the amplitude
of the precursory capillary wave 8 =~ a. Hence, the characteristic volume of the kink is
27R?a, and the corresponding kinetic energy is KE = (1/2)p2maR? Utz.

The precursory capillary waves are driven by the sudden movement of the kink.
Consequently, a part of the kinetic energy of the kink is utilised for the creation of these
waves (KEj,ss) and a part of the kinetic energy is converted to surface energy SE (i.e. due
to the creation of the kink area), where 27R and a are the characteristic lengths along
azimuthal and vertical directions, respectively, of the precursory capillary wave. Since
the motion is felt over a length scale of wavelength A, the characteristics volume of the
precursory capillary wave for one cycle is chosen as 2mRaAd. The corresponding kinetic
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energy is KEj,ss = (1/2) paZTER/lU,z, as these waves move with the same velocity that of
the kink.

The surface energy corresponding to the creation of the kink area is SE = o2nRa,
where o is the surface tension. Balancing the energy terms KE = KEj,s + SE, gives

1 2772 1 2
EpaR U; =a1§paR/lUt + aroaR, 3.1

where 1, oy are constant prefactors. Rearranging (3.1), we obtain the Weber number of
cavity collapse in the form

We, = (3.2)

pUR (U 2

o \U.) 1—ad/R
The expression (3.2) quantifies the reduction in U;/U,, shown in the inset (») of figure 5,
due to the presence of precursory capillary waves. The dimensionless wavelength A/R
of the dominant precursory capillary wave in (3.2) depends on the total time of cavity
collapse, which, as we show later in § 3.1.3, depends on Oh and Bo. Then, (3.2) can be
written as

U; = a3U-Wg(Oh, Bo), (3.3)

Wg(Oh, Bo) = 1/3/1 — a1 A/R, (3.4)

is the wave resistance factor that accounts for the reduction in U; due to the precursory
capillary waves. Here, Wgr(Oh, Bo) depends on A/R, which in turn depends on the total
time of cavity collapse, 7., since viscous damping during f5. affects A/R. The above
analysis did not consider the overall complexities of the flow, especially in the region
away from the interface. However, with the use of appropriate prefactors, as we show later,
(3.3) does capture the kinematics of the kink motion along the tangential direction. We
now discuss the dependency of #,. on Oh and Bo, which allows us to get the dependency
of A/R on Oh and Bo, and thereby, an expression for YWg(Oh, Bo).

where a3 = /20 and

3.1.2. Total time of cavity collapse tp,

Since the time taken for the disintegration of the thin film at the top of the bubble is
negligible (Duchemin ez al. 2002), we consider the time at which the retracting rim has
reached the outer edge of the film, at R, (see figure 2d), to be the reference time ¢t = 0. The
time from ¢ = 0 to the stage where the cavity has become conical, just before jet initiation
(figure 3i), is measured as the total time of cavity collapse, f.. In figure 6, #., normalised

by the capillary time scale #. = \/pR3 /o, is plotted as a function of Bo. The experimental
data indicate a gravity dependency of 7. /7. in the form

i,
e — 02680701, (3.5)

Ie
This Bond number dependence of 7. can be physically explained by evaluating the time
taken by the kink to travel along the cavity boundary. The length of the path travelled
by the kink (sp.) along the cavity surface, from the rim till the bottom of the cavity (see
figure 2d), is a function of Bo because the static shape of the free-surface bubble depends
on Bo. For Bo < 1

She = (TR — s7)Oh" ~ (nR — R,)Oh", (3.6)

where sy = RO (see figure 2d), with 6 = R,/R for small 6 and R, is the rim radius (see
figure 1a), which is a function of Bo (Puthenveettil et al. 2018). The factor Oh", where
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Figure 6. The effect of Bond number on the dimensionless total time of cavity collapse #;./t., where ¢, is
the capillary time scale. —, 5,0/t = 0.26Bo~%!. In the inset, the dimensionless total time of cavity collapse,
accounting for the path correction due to gravity, 7./ (1..Z), is plotted as a function of Bo. —, ty./(t.-£) = 0.13
(3.10). A, water; <, ethanol; A, GW48 (30 °C); *, GW68; {, GW72; +, 2-propanol; [J, GWS55.

n is a positive exponent, appears in (3.6) because the bottom radius of the conical cavity
rp at the time ¢ = 5. (see figure 2d) depends on Oh (see figure 14). This dependence
of r, on Oh arises since the occurrence of capillary waves, which increase r; (Gordillo
& Rodriguez-Rodriguez 2019), depends on Oh. After substituting sp. from (3.6) in t. ~
spe/ Uy, with Uy given by (3.3), we obtain

1
Ipe =~ _tcgé‘a (3-7)
a3

where ¢ = OW™ /Wg, with Wk given by (3.4) and
Z(Bo) =7 —R,/R (3.8)

is the path correction term that accounts for the gravity dependence of the path length sy,
travelled by the kink. In (3.8), the dimensionless rim radius

R./R = \/4/3 —2(1/Bo + 1/Bo?) + \/—4/3302 +8/Bo®+4/Bo*, (3.9

when Bo < 1 (Puthenveettil ez al. 2018).

Equation (3.7) delineates the capillary effects on the total time of cavity collapse through
t., while the gravity and the viscous effects enter through % (Bo) and ¢, respectively. The
inset in figure 6 shows that the measured values of . /(¢.-£) collapse onto

the ~ 0.131..%Z, (3.10)

for bubbles of various diameters with 0.001 < Bo < 1 and fluids of various viscosity with
0.001 < Oh < 0.1. The deviation of the data from (3.10), when Bo > 1, occurs because
spe starts to deviate from (3.6) and R,/R from (3.9) due to increasing deviations of the
shape of the cavity from that of a truncated sphere. Equations (3.7) and (3.10) imply
that Oh" /(a3Wg) = 0.13 for the present range of 0.001 < Bo < 1 and 0.001 < Oh < 0.1.
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Then, the increase in sp. at larger Oh due to decreasing rp, (see (3.6) and figure 14) seems to
be offset by increasing velocities due to increased damping of precursory capillary waves
(see (3.2)), so that 7, becomes independent of Oh, as given by (3.10). The total time of
cavity collapse then follows a capillary time scale z., modified by the term .Z, which
depends on Bo through (3.8) and (3.9), with negligible dependence on viscosity.

3.1.3. Wavelength of precursor capillary waves and scaling of U,

The Bo dependence of #5. given by (3.10) necessitates the modification of the wave
damping scaling relation A/R oc /Oh presented in Krishnan et al. (2017), which was based
on tp, & 0.3t., proposed by Krishnan & Puthenveettil (2015). It has been shown that the
amplitudes of the capillary waves fall off exponentially in the form a/ag = ¢!, where aq
and a are, respectively, an initial and a later wave amplitude, with k = 87?1 /pA? being
the wave damping coefficient (Lighthill 1978). The waves can be considered fully damped
at the end of the cavity collapse time 7., when

Kipe = - — 4, (3.11)

as presented in Krishnan et al. (2017). Substituting (3.10) for #,. in (3.11) and rearranging,
we obtain the dimensionless wavelength that is damped in the time 7. as

2 = eonZ, (3.12)

where ¢ = 0.57. The relation (3.12) gives the largest damped wavelength at the bottom of
the cavity for a given Oh and Bo. It also predicts the Oh at which a given wavelength will
be damped at the bottom of the cavity for a specified Bo. For example, the experimental
values corresponding to Bo ~ 0.37 are typically 4/R ~ 0.4, which, according to (3.12),
when .Z ~ 2.5, requires Oh ~ 0.02, the value below which precursory capillary waves
are observed at the cavity bottom. Precursory capillary waves are formed at all Oh. These
precursory capillary waves impart wave resistance to the moving kink before they are fully
damped. However, the spatial location ahead of the kink at which the precursory capillary
waves are fully damped depends on the value of Oh. Since 4/R >~ 0.4, when Oh >~ 0.03
precursor capillary waves are damped before arrival of the kink at the cavity bottom when
Oh > 0.03. Practically, no precursor waves exist when Oh > 0.04.

The gravity dependency of the path correction .Z is given by (3.8) and (3.9). Since R, /R
increases with increasing Bo, as given by (3.9), .Z decreases when Bo is increased. Thus,
when Bo is large, Oh needs to be larger for the waves to be damped in the time #,.

Substituting A/R from (3.12) in (3.3) and rearranging, we get

azUe

U, = . (3.13)
\/1 — a1V OhY

In figure 5, the dimensionless tangential velocity U,\/ 1 — coa1vVOhZL /U, is plotted
against the dimensionless time /¢, for bubbles in water (yellow symbols) and GW72 (red
symbols) in the range 2 x 1073 < Bo < 1 and 0.001 < Oh < 0.05, with the upper value
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of Oh being somewhat larger than 0.03 obtained above from (3.12). The data collapse onto

UvV1—~OhZ

U

for 0.05 < t/t, < 0.3, the uniform phase of tangential motion, implying that o1 = 1/¢2
and oz = 4.5. In the limit Oh — 0, the relation (3.14) matches with the relation for the
absolute velocity (see figure 2¢) of the dominant capillary wave, U,ps > SU,, proposed
by Gordillo & Rodriguez-Rodriguez (2019), based on their numerical simulation in the
vanishing Bond number limit Bo < 0.1. At finite Bo and Oh, (3.14) captures the complex
dependence of the kink velocity on Oh and Bo that occurs through the damping of the
precursory capillary waves.

Comparing (3.14) with (3.3), shows that the wave resistance factor in (3.3) is of the form

=4.5, (3.14)

Wg(Oh, Bo) = ; (3.15)
1 —-VOohy
Then, the final scaling of the tangential velocity of the kink is U; ~ 4.5U Wk, where Wk
is given by (3.15).
The constancy of U, with respect to time, seen in figure 5, could also be understood in
terms of the phase velocity of the precursory capillary waves. The kink produces a wave
disturbance, of wavelength A, at the cavity surface, which propagates like a capillary wave

with a phase velocity ¢, = (2m)'/2 /o /pA. Substituting A from (3.12) in this relation gives
¢p =2.8U.(0hL)~ 4, (3.16)

which is close to (3.14), although the dependency on viscosity and gravity shown by (3.14)
is not fully captured by c,. However, the important point is that the phase velocity of the
precursory capillary wave does give an argument for U, being constant in time, as seen in
figure 5.

3.2. Shrinking of the cavity boundary in the normal direction

In figure 7(a) the initial cavity boundary (the bubble boundary) at t = 0 is compared
with that at a later instant (f = 0.15 ms) for a bubble of R = 0.5 mm in water. The cavity
contours clearly indicate the retraction of the cavity in the normal direction everywhere
below the kink rim, as indicated by the arrows. This cavity shrinkage is due to the sudden
reduction of the gas pressure in the cavity after rupture of the surface film, leading to an
imbalance with the surface tension force, which scales as o /R.

In figure 7(b,c), the trajectories of the kink are indicated by the continuous (red) lines in
the images of a bubble of R = 2.15 mm in water and of a bubble of R = 2mm in GW72,
respectively. It is seen that the extent of shrinkage, i.e. the gap between the initial cavity
contour and the red line, is larger for the bubble in the viscous fluid GW72 than it is
in water. It is also seen that in the water bubble in figure 7(b) that the kink undergoes
a sudden jump towards the end, while the trajectory of the kink in GW72 (figure 7c¢) is
smooth throughout the collapse. A corresponding rise in the normal velocity of the kink
in bubbles in water towards the end of the collapse is seen in figure 8, which shows the
velocity of the kink in the direction normal to the cavity boundary, U,, normalised with
the capillary velocity, U, plotted as a function of the dimensionless time #/¢.. The velocity
data also show a slow increase with time, indicating a weak acceleration, except in water,
where toward flow convergence, U, /U, values increase abruptly due to the presence of
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Figure 7. Shrinking of the cavity in the normal direction. (a) Contours of the cavity at two time instances,
t = 0ms and ¢ = 0.15 ms, superimposed for a bubble of R = 0.5 mm in water. Arrows show the shrinking of
the cavity boundary below the kink rim. The (red) lines superimposed over the static shapes of the bubbles
in (b,c) indicate the trajectories of the kinks extracted from their cavity collapse. The bubbles in (b,c) are of
similar size but differ significantly in Oh; (b) R = 2.15 mm, Bo = 0.63, Oh = 0.00255 in water; (¢) R = 2 mm,
Bo = 0.77, and Oh = 0.0427 in GW72. The widths of the images are 5.43 mm and 2.85 mm.
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Figure 8. The dimensionless normal velocity of the leading edge U, /U, as a function of the dimensionless
time /1. The symbols are the same as those in figure 5, namely: A, yellow, R = 0.175mm (Bo = 4.2 x 1073,
Oh = 0.0099); «, yellow, R =0.47mm (Bo =3 x 1072, Oh = 0.0055); W, yellow, R = 1.74mm (Bo =
4.1 x 10!, Oh = 0.0028) and ¢, yellow R = 2.14mm (Bo = 6.3 x 10~1, Oh = 0.00255). Aforementioned
data are from water. Data with GW72 are: B, red R = 1.59 mm (Bo = 4.8 x 107!, Oh = 0.0481); e, red
R =2.02mm (Bo = 7.7 x 10, Oh = 0.0427).

precursory waves, discussed in § 3.1. This sudden rise in velocity of the kink, by an order
of magnitude, is a feature observed for bubbles in low-viscosity fluids of Oh < 0.02, where
precursory capillary waves are present. We show in Appendix B that the higher values of
the normal velocity towards the end of the cavity collapse is of the order of the velocity
scale 2,/0/pA. Figure 8 shows that the scaled normal velocities of the kink in the viscous
fluid (GW72, Oh > 0.02) are higher than those in water (Oh < 0.02); clearly, a capillary
velocity scaling alone, as in the figure, does not collapse the normal velocities.

It needs to be noted that a Wk correction of U, /U,, as applied to the dimensionless
tangential velocity U,/ U, earlier (see (3.3)) to account for the precursor capillary wave

980 A36-14


https://doi.org/10.1017/jfm.2024.26

https://doi.org/10.1017/jfm.2024.26 Published online by Cambridge University Press

Dynamics of cavity collapse

(a) ' ' (b)

100,

0.5

Une/ Uc
>
»
by
[m]
b
>
Dyp/(RWp)

107!

102 107! 100 1072 107! 100
Bo Bo
Figure 9. (a) Variation of the dimensionless average shrinkage velocity at the equatorial plane (Upe JU¢)
with Bo. — , U,./U. = 0.37. (b) Dimensionless shrinkage of the cavity bottom, D,;/(RVWg), plotted as a
function of Bo. —, Dy, /(RWg) = 0.14(Z./R). A, water; A, GW48 (30°C); [, GW55; x, GW68; O, GW72;
+, 2-propanol; <, ethanol.

effects, does not collapse the normal velocity data. To address this scaling problem, we
now analyse the average velocity of shrinkage of the cavity in two mutually perpendicular
directions, viz., (i) in the equatorial plane in the horizontal direction, where the local radius
of the cavity from its vertical axis of symmetry is maximum, and (ii) in the meridional
plane along the vertical axis of symmetry (see figure 2d).

3.2.1. Average normal shrinkage velocity in the equatorial plane and along the vertical
axis

Figure 9(a) shows the average shrinkage velocity normal to the cavity boundary in the
equatorial plane U,, = D,./t., scaled with the capillary velocity scale, as a function of
Bo. Here, Dy, is the average normal displacement of the cavity surface in the equatorial
plane over a time 7,, where 7, is the time taken for the kink to reach the equatorial plane;
these are shown in figure 2(d). It is seen in figure 9(a) that U,./U. is independent of Bo
and scales as

Upe = 0.35U,. (3.17)

Thus, in the equatorial plane, where there is symmetry in the azimuthal direction, the
velocity of shrinking scales with the capillary velocity U,, devoid of any viscous and
gravity effects.

On the contrary, the normal shrinkage at the cavity bottom is strongly dependent on
Bo, as is seen in figure 9(b), where the dimensionless normal distance of shrinking at the
bottom of the cavity D,;/R over a time fp., corrected by Wg, similar to that in figure 5,
is plotted as a function of Bo. The variation of the data in the figure is well represented
by the variation of the normalised cavity depth Z./R with Bo, obtained using the closed
form solution for Z./R in terms of Bo, given by Puthenveettil ef al. (2018) as (C1); this
representation reveals the dependence of D, on Z.. Thus, the expression of the best fit of
the data in figure 9(b) is

Dyup/(RWR) = 0.14(Z./R). (3.18)
980 A36-15
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The average velocity of cavity shrinking at the bottom is Unp = Dy /tpe. Using (3.18) and
tpe from (3.10), the average vertical shrinking rate of the cavity bottom then becomes

) (3.19)

§|
=| N
N

S

where Z./R is the static aspect ratio of the cavity, given by (C1). Equation (3.19) shows
that the precursory capillary waves act as deformations on the cavity surface, reducing
cavity shrinking velocity at the bottom of the cavity, when Oh < 0.02. This reduced
shrinking velocity of the cavity in low-viscosity fluids can also be seen in figure 8. The

resulting capillary velocity scaling of U,y is in agreement with the radial velocity scaling
of the cavity in the inviscid limit, proposed by Gafidn Calvo & Lopez-Herrera (2021) for
Oh « 0.04. However, the present U, differs from the viscous—capillary velocity (V)
dependence of radial velocity proposed by Gafidn Calvo & Lopez-Herrera (2021), for the
final stage of collapse at around Oh = 0.04. This difference is possibly due to the fact that
U,p 1s the velocity averaged over tp,., which may not capture the sharp changes in velocities
near the flow convergence. In fact, a direct comparison of our results (both tangential and
normal velocities of the interface) with Gafidn Calvo & Lépez-Herrera (2021) is difficult
because the scalings presented in Gafidn Calvo & Lopez-Herrera (2021) are based on the
liquid motion, whereas ours are based on the interface movement.

In any case, it is clear from (3.19) and (3.14) that the bottom interface of the cavity, prior
to the flow convergence, closes with two different velocity scales, originating from two
different physical mechanisms. As we discuss in Appendix A, the velocities normal to the
cavity need to be considered while modelling the jet, so as to correctly balance the mass
flux associated with the cavity collapse. We show in § 4 that the mass flux, which is entirely
due to the radial shrinking of the cavity with normal velocity U, is capillary—gravity
dependent, and thus is the reason for the unusual gravity dependence of jet velocity for
Bo > 0.1, reported earlier (Krishnan et al. 2017). It is also of interest to note that the
cavity shrinking velocity at the equatorial plane Uy, (3.17) is independent of Oh. This is
in contrast with that of Uy, (3.19), which has a dependence on viscosity through Wk, the
wave resistance factor, due to the presence of precursory capillary waves. This difference
is expected to be because the precursory capillary waves affect the cavity collapse only
after the kink crosses the equatorial plane. In the final phase of cavity collapse, i.e. at the
arrival of the kink at the cavity bottom, the rise in the normal velocity in low-viscosity
fluids is almost an order of magnitude higher (see figure 8) than that in fluids of high
viscosity. This rise in U, occurs when the capillary waves converge at the cavity bottom
(see Appendix B).

Finally, to demonstrate the overall shrinking of the cavity, irrespective of the tangentially
moving kink, a free-surface bubble of radius R = 1.7 mm was produced in a highly viscous
fluid (GW89; Oh = 0.52). Since the retraction of the rim is fully damped for Oh > 0.24
(see Krishnan et al. 2020), we expect the rim retraction, and consequently the kink, to be
fully suppressed in this case. Figure 10 shows an image sequence of such a clean spherical
shrinking of the cavity surface in the absence of a kink (or tangential movement). This
image sequence gives an additional confirmation for the existence of two independent
interface dynamics associated with free-surface bubble collapse, viz. (i) a tangential wave
propagation velocity of the kink driven by the retraction of the rim, and (ii) an overall
spherical shrinking of the bubble cavity due to the sudden reduction of gas pressure.
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(a) ®) (©) (d) (e)

Figure 10. Collapse of a bubble of radius R = 1.7mm (Bo = 0.54) in a high viscous fluid (GW89, Oh =
0.52). The times corresponding to each image are r = 0, 2, 3.25, 4.75 and 6 ms. Width of each image is
3.84 mm.

z(?)

Figure 11. (a) Superimposed contours of collapsing cavity at different time instances of bubble R = 0.175 mm
in water, starting from the static shape at 7 = 0 until the conical cavity shape is reached. The successive contours
are separated by 10 pus. See movie 3. (b) Contours of initial static cavity configuration, at r = 0, and at a later
time ¢ > 0. The figure shows the various parameters related with the moving kink; the free surface is indicated
by FS.

4. The cavity filling rate

Three volume fluxes can be identified in relation with the movement of the cavity
boundary, as indicated in figure 2(b), and measured, as discussed in § 2. Figure 11(a)
shows the contours of the collapsing cavity of a bubble of radius R = 0.175 mm in water,
at different time instances, starting from the static shape of the cavity at t = 0 until a
conical shape is reached. The volume fluxes that can be identified from the figure, and
marked by arrows in the figure, are (i) the side (tangential) volume influx Qy, (ii) the
bottom (normal) influx Qp and (iii) the side volume outflux Q,, with the total filling
rate being Or = Qs + Qp. Figure 12 shows the variation of the side volume influx Qg
(denoted by hollow symbols) and the total volume influx Q7 (solid symbols) as a function
of time, for different size bubbles, in water and GW48. The horizontal and vertical axes
in figure 12 span three orders of magnitude of time and volume flux, respectively. The
difference between Q7 and Qy in figure 12 corresponds to the bottom influx Q; at any
given time. The inset in figure 12 shows the variation of the volume outflux Q, with
time, measured for a bubble of radius R = 0.175 mm in water. The volume outflux Q,
is not entirely negligible. However, since it is practically constant in time and since Qr
is constant, Or — Q, is also a constant so that the volume expansion of the cavity at the
free surface (Q,) will not change the functional behaviour of Q7 with time. Therefore, Q,
is not considered further in our analysis. As expected, all the volume fluxes increase with
increase in bubble size.

Each data set of Q7 shows an approximately constant value with time, indicated by a
horizontal dashed line, and then suddenly drops off when ¢ > #,.. This sudden change
in Q7 is indicative of an unaccounted volume outflux, due to the creation of the jet
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Figure 12. The rate of filling of the cavity from the tangential direction, Qg (hollow symbols), and the total
filling rate Qr (solid symbols) as functions of time, for bubbles of different Bo and Oh. ¢, R = 2.15mm
(Bo = 0.63, Oh = 0.00255); [, R = 1.89 mm (Bo = 0.49, Oh = 0.0027); O, R = 1.47 mm (Bo = 0.3, Oh =
0.0031); <, R = 0.47 mm (Bo = 0.03, Oh = 0.0055); A, R = 0.175 mm (Bo = 0.0042, Oh = 0.0099) (all data
in water). >, R = 1.04 mm (Bo = 0.17, Oh = 0.0139) in GW48. The volume outflux, Q,, measured for R =
0.175 mm in water, is shown in the inset.

inside of the cavity, coinciding with the conical cavity shape. Recently, Gordillo &
Blanco-Rodriguez (2023) numerically estimated the radial flow rate per unit length of the
cavity and observed that this liquid flow rate remains approximately constant for a very
short time duration immediately after t = 7., due to liquid inertia and mass conservation
during the short duration after jet initiation. Even though we measure the rates of changes
of the cavity boundary volumes, which cannot be directly connected to the flow rates of
the liquid outside the cavity, the approximately constant slope of Q7 vs ¢ after jet initiation
could be related to such a constant radial liquid flow rate; these need to be investigated in
future.

The side volume flux Q;, which is initially a small fraction of Q7, increases with time
and represents nearly the total volume flux when the cavity becomes a cone. We now
obtain a scaling for this Qy as follows. The characteristic area of the side flux is 2nRZ (1),
where 7/ (¢) is the height above the kink up to the free-surface level (see figure 11b), with
the velocity being the tangential velocity of the kink U; (§ 3.1). Although the kink moves
with a velocity Uy, the upper interior region of the concave boundary lags behind the kink
(see A in figure 2¢), as the velocity of the interior fluid and the velocity of the interface
need not be the same, an aspect clarified in §§ 1 and 3. Such a velocity difference inside
the side boundary implies the existence of a shear region, which needs to be accounted
for in the side volume flux. Hence, we include a viscous correction term of the form Oh¢
to estimate the side flux as Q; ~ 2nRU,0hZ (t) ~ 21tRU,Oh%(R — R cos ¢), which then
yields

Os
nR2U,Oh?

where ap and a; are constants to be determined from the experiments. In (4.1) ¢ = wt + ¢o
is the phase angle of the moving kink (see figure 11b), where w is the circular frequency
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Figure 13. Variation of the dimensionless total volume influx Qr/2nRZ.U. and the dimensionless volume
influx in the (bottom) normal direction Qp/27Z.RU, as a function of the dimensionless time #/f,.. The inset
figure shows the volume influx along the tangential direction Qy, non-dimensionalised with wR>U,0h~%12,
plotted against the dimensionless time ¢/tp.. — (black), Qr/2nRZ.U. = 1; — (red), Qp(t)/27Z.RU, =
0.5cos2(0.427t/tpe); — (blue), Qs(r)/TR2U;0h~%12 = 0.13 4 0.15sin?(0.57¢/1.). Symbols with dots
represent the volume influx in the (bottom) normal direction Q. The rest of the symbols are the same as
in figure 12.

and ¢ ~ 0 (see figure 2d) is the phase angle when the cavity opens. In the inset of
figure 13 the dimensionless side volume flux Q/mR>U;0h~%12 is plotted against the
dimensionless time ¢/1,.. Equation (4.1) collapses the data, with the final expression based
on the data fit being

Os(1)
nR2 UIOh—O”

The first term on the right-hand side of (4.2), the y-intercept in the inset of figure 13, is
interpreted as the initial side flux. The usage of a y-intercept was necessary because of the
lack of experimental data around the initial time ¢t = 0.

We now consider the scaling of the bottom flux. The characteristic area below the kink
is 2mRz(t), where z() is the vertical distance between the kink and the cavity bottom (see
figure 11b). The velocity of shrinking in the equatorial plane follows the capillary velocity
(see (3.17)). Hence, the normal influx below the kink is Qp ~ 2nRz(1)U, ~ 27RU.(Z; —
R(1 — cos¢)). Taking 2R/Z. =~ 1 for small Bo (Puthenveettil et al. 2018) results in the
simplified relation

0.5mt
— 0.12 + 0.15 sin? ( t T ) . (4.2)
bc

Op
2nRZ. U,

where ay is a numerical prefactor. Figure 13 shows that (4.3) collapses the Q) data
at various Bo and Oh, with the best fit relation for the non-dimensional bottom flux,
Op()/27RZ.U,, shown in figure 13 being

f 0.427
W0 _ 50082 ). (4.4)
27RZ,. U, the

~ apcos’(¢/2), (4.3)
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The phase angle of Qy in (4.2), mtt, is slightly larger than that of Q) in (4.4), 0.847z, an
artefact of the side flux area being at the top of the bottom flux area.

We now assume that the retracting rim solely creates a wave-like propagating
disturbance without causing any effective mass transfer down the cavity. Then, the total
cavity filling rate Qr ~ (Qp + Qs)lr—0 ~ 27nRZ.U,. This means that the initial side flux
in (4.2) is then due to the normal shrinking. Figure 13 shows that Q7 /2nRZ .U, collapses
the data reasonably well. From the plot, the equation of best fit is

or@ !

~ 1, (4.5)
2nRZ .U,

validating our assumptions to arrive at the above relation.

Equation (4.5) shows that the total volume flux is entirely due to the normal
shrinkage velocity of the cavity. When Bo < 0.1, the normalised cavity depth Z./R — 2
(Puthenveettil et al. 2018), and is independent of Bo. Then, Or =~ 4A7tR? U,, so that gravity
effects in Q7 becomes negligible. Gravity effects become significant in Q7 through the Bo
dependency of Z., given by (C1), in the moderate to large bubble size range (Bo > 0.1). As
we show in Appendix A, towards ¢ = 1., when the cavity becomes conical, if we assume
that the total mass flux pQr, where Qr is given by (4.5), initiates a jet by momentum
exchange, we then retrieve the observed jet velocity scaling.

5. Conclusions

The disintegration of the thin film at the top of the floating bubble, and the rim retraction
that follows, leads to the formation of a kink (intersection of the concave with the convex
cavity boundary) that propagates as a capillary wave with a velocity U, tangentially along
the cavity boundary. Precursory capillary waves move ahead of this kink. Simultaneously,
the cavity shrinks with a normal velocity U, due to the sudden reduction of the gas
pressure after the film rupture. The tangential motion of the kink, combined with the
overall inward shrinkage of the cavity due to reduction in gas pressure is a unique feature
of surface bubble cavity collapse, not encountered in open cavity collapse problems as
treated by Zeff et al. (2000), Bergmann et al. (2006), Bartolo et al. (2006), Duclaux et al.
(2007), Das & Hopfinger (2008), Benusiglio, Quéré & Clanet (2014), Thoroddsen et al.
(2018), Yang, Tian & Thoroddsen (2020) and Krishnan, Bharadwaj & Vasan (2022).

An increase in fluid viscosity increases the tangential kink velocity because of the
progressive damping of the precursory capillary waves, with complete damping occurring
when Oh = 0.02. Using an energy model of the main wave upstream of the kink, we show
that U, ~ 4.5U . Wk (3.14), where U, is the capillary velocity, Wg = (1 — Jone)~1/2
(3.15) is the wave resistance factor, with .2 (Bo) = m — R,/R (3.8) being the correction for
the path length of the travel of the kink, Oh the Ohnesorge number, Bo the Bond number
and R, the rim radius.

The sudden release of compressed gas from the bubble cavity, immediately after the thin
film rupture, causes an overall inward shrinking of the cavity. It produces a normal velocity
component of the kink. In the horizontal equatorial plane, the normal velocity scales with
U, (3.17), devoid of viscous and gravity effects. In contrast, the bottom part of the cavity
shrinks vertically upwards with a velocity U.(Z./R)WgZ —1 (3.19). The viscous effect
on the vertical shrinkage at the bottom, g, is due to the deformations by the precursory
capillary waves on the cavity. The gravity effect on this shrinkage originates from the
initial static geometry of the cavity, indicated by the aspect ratio of the cavity Z./R, and
the path correction .Z.
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The total time of cavity collapse is shown to scale as . ~ 0.137..Z (3.10) with the
gravity dependency being due to the Bo-dependency of the kink trajectory .Z. This leads
to the understanding that the damping of the precursory capillary waves follows a modified
relation A/R ~ Oh'/?.£1/? (3.12), indicating that the damping slightly decreases with an
increase in Bond number.

The mass flux of cavity filling, pQ7, consists of a sum of the side flux pQs and
the normal bottom flux pQp. We show that Qr ~ 2nRZ.U. (4.5), which, through its
dependence on the aspect ratio of the cavity Z./R, is a function of Bo. The entire
magnitude of pQr originates from the normal shrinkage of the cavity, confirming that
the kink movement, initiated by the rim retraction, is a wave propagation with no effective
mass transfer. Indeed, the tangential velocity U;, which is constant with respect to time
for a given bubble, corresponds closely to the phase velocity of a capillary wave of
wavelength A, i.e. U; ~ ¢, (3.16), where ¢, = (27:)'/2«/0/,0/1. With the experimental
value of 4/R ~ 0.36, we get ¢, ~ 4.2U,, which is close to U; (3.14), neglecting the weak
dependency on viscosity and gravity. The role of outflux Q, in the cavity collapse has
not been analysed in this paper. This outflux becomes relevant in deciding the far field
conditions at the free surface, and hence, can potentially influence the flow field around
the cavity interface.

At the bottom of the cavity, there is an exchange of momentum, via pressure build-up,
between the mass flux pQr of the cavity and the initial mass flux of the jet, pnrsz i
where 7}, is the base radius of the cavity and U; the jet velocity (see Appendix A). This
exchange gives a jet Weber number scaling of (U;/ Uo)? ~ (Z:R/rp*)?, the same scaling
relation as proposed by Krishnan et al. (2017).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.26.
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Appendix A. Momentum balance at the cavity bottom

Deike et al. (2018) and Duchemin et al. (2002) observed in their numerical simulations,
two successive velocity (or pressure) peaks at the cavity bottom, with the second peak
being the highest. Considering the initial peak to be due to the capillary waves, and the
second one to be due to the kink, the momentum of the precursor waves is then not
significant, compared with that of the kink, an aspect clarified by Gafidn Calvo (2018).
However, the volume flux (or mass flux) is associated with the capillary velocity U, due to
the normal shrinking of the cavity (see (4.5)), while U; is only a propagation velocity,
carrying little mass. The rate of change of momentum of the liquid of the collapsing
cavity is then d(mU,)/dt, where m is the associated liquid mass. Differentiation gives
mU. + mU., where m is the mass flux of the cavity collapse. Since U, is a constant with
respect to time, we get

d%(mUc) = mU,. (A1)
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The momentum flux in (Al) will appear as a force during the axisymmetric
flow-convergence at the cavity bottom. The corresponding pressure build-up is

p =~ mU./27ry?, (A2)

where 2772 is the characteristic area at the base of the cavity of bottom radius r, (see
figure 2d). The radius r, is a characteristic value, which is an upper limit of the cavity
bottom radius, which decreases with time during the flow convergence. The reader is
referred to Eggers et al. (2007), Eggers & Fontelos (2015) and to the recent work of
Gafidn Calvo & Loépez-Herrera (2021) for detailed discussions on the dynamics of the
local cylindrical collapse within the length scale 7, at the cavity bottom. By substituting
the total mass influx m = pQ7 from (4.5) in (A2), we get an estimate of the pressure at the
bottom of the cavity at flow convergence as

N Z) U2<R ? A3)
P—(Epc I’_b> (

Equation (A3) shows that the pressure build-up at the bottom of the cavity, has primarily
a capillary—inertial scaling, of the form pU.2. As the aspect ratio of the cavity Z./R is a
function of Bo, as given by (C1) (Puthenveettil et al. 2018), p also depends on Bo. Similarly,
the effect of precursory capillary waves on p is accounted for by the term (R/r,)? in (A3).
As we discuss later, a reduced area of impact, due to lower 7, in the absence of capillary
waves, increases the impact pressure.

The pressure impulse of the impact I = ftff p dt, where the subscripts i and f denote the
initial and the final values of time ¢, is estimated to be

I ~ pAt, (A4)

where At = 1y — 1; is the characteristic time scale of the impact. The natural choice of this
time scale of impact, since the flow convergence is capillary driven, is

At >~ rp/U,. (AS)
The vertical jet velocity is
Uij=-V{d/p), (A6)

since the gradient of pressure impulse drives the jet in the axial direction. Substituting
(A3) and (AS) in (A4) and the resulting expression for / in (A6), we obtain

RZ.U.
b '

Uj:V< (A7)

Approximating the gradient operator V as 1/r, gives the jet Weber number We; as

Wor — (2) N (5) (5) (A8)
/ U. R )

with the ratio R/r, depending on the presence, or absence, of the precursor capillary
waves. The presence of precursory capillary waves in low O#h results in a larger cavity
base radius r;, (see figure 3i), in comparison with that at larger Oh (see figure 4i).

Figure 14 shows the measurements of rj, non-dimensionalised with R, and corrected
using an Oh factor to account for the precursory capillary waves effect, plotted as a
function of Bo. The figure shows that the data falls on to a horizontal line, indicating a
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Figure 14. Variation of the dimensionless bottom radius (r,/R) of the cavity, with an Oh correction, with the
Bond number Bo. A, water; <, ethanol; A, GW48 (30°C); [J, GW55; —, r, = 0.075 R Ok~ 915,

linear dependence of r;, with the bubble radius R, and that the vertical offsets between the
data sets due to precursory capillary waves are reduced by using an Oh~%1 factor. The
best fit power law relation, shown as the solid line in the figure, is

r, ~ 0.1ROh™ 015, (A9)

which is valid for 0.002 < Oh < 0.035 and 1073 < Bo < 1. Substituting (A9) in (AS),
yields

Wej ~ (Z./R)*Oh°", (A10)

which is the same scaling as that proposed by Krishnan et al. (2017), with a small variation
in the exponent of Oh.

Appendix B. Sudden rise in normal velocity U,

The rise in normal velocity at the bottom of the cavity, observed in low-viscosity fluids
in figure 8, is due to the convergence of precursory capillary waves at the bottom of the
cavity, and the subsequent momentum exchange at the interface. These higher velocities
can be obtained as in the case of an analogous problem of waves on the surface of a
drop impacting a solid surface, studied by Renardy et al. (2003). During wave focusing
at the bottom of the cavity, the local cylindrical radius of the cavity r > A, where A is the
wavelength. The inward pull due to the unbalanced surface tension along the azimuthal
direction is F, = 2mdo. The rate of change of momentum of the interface dP/dr =
o ,0/13 Vp/te1, where the time scale over which the momentum changes #.; = /pA3/0, and
V}, is the normal velocity at the bottom of the cavity. Equating dP/dt with F, results in
an approximate estimate of the higher values of the normal velocity at the bottom of the
cavity as V >~ 2./0/pA. Substituting A ~ 0.4R (Krishnan et al. (2017)) in V}, an order of
magnitude higher value of velocity, in comparison with (3.19), is obtained.
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Appendix C. Solution for Z,.(Bo) by Puthenveettil ef al. (2018)

The closed form solution for the dimensionless cavity depth, when Bo < 1, is expressed
as

Z:(Bo) _ X§(F +2/Bo)
R 16 + 8xEv/Bo + £2(4 + Bo(x2? + 4.F) + Bo2.Z2)’

(CDhH

where x = Ko((R;/R)Bo'/*)/Ki((R;/R)Bo'/?), & = (1 — (¥ — A —(1/3)))'/* and
F =1+ (4 — A — (1/3))'/2. Here, R,/R is the dimensionless rim radius given by
(3.9), Kp is the modified Bessel function of the second kind of order zero, K; is the
first derivative of K with respect to its argument, & = 2(1/Bo + 1/Bo?), and % =
(—4/(3B0o?) + 8/Bo® + 4/Bo*)!/2.
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