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Dust-free region over horizontal hot surfaces
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We study the formation of dust-free regions above hot horizontal surfaces of uniform
temperature and propose relations for its height in the limit of small particle inertia
and gravitational effects. By including particle inertia, thermophoretic, gravitational and
viscous effects, we conduct Lagrangian simulations of particle dynamics in a natural
convection boundary layer over a horizontal surface. Trajectory analysis of the particles
inside the boundary layer on the surface reveals the existence of two separatrices
originating from a saddle point, which form the boundary of the dust-free region. These
separatrices for low gravitational effects follow the boundary layer thickness, but are of
much lower height and also depend on the dimensionless thermophoretic number (Th) and
Prandtl number (Pr). We obtain a relation for the dimensionless height of the dust-free
region (ηdf ) as a function of Pr and Th, for low dimensionless gravitational number (Gn);
the numerical solution of this equation gives us the dust-free region height for any Th and
Pr. We then obtain scaling laws for ηdf using the boundary layer equations corresponding
to the Pr � 1 and Pr � 1 cases; these scaling laws are shown to be valid respectively for
Pr > 1 and Pr < 1, except in the large η limit for Pr > 1, where η is the boundary layer
similarity variable. We then obtain an empirical relation in this large η limit using the
numerical solutions of the boundary layer equations for the intermediate Pr case to obtain
scaling laws for dust-free region height for the whole range of Pr � 1 to Pr � 1.

Key words: Bénard convection, particle/fluid flow, buoyant boundary layers

1. Introduction

In Rayleigh–Bénard convection (RBC) of smoke laden air (Puthenveettil et al. 2011;
Gunasegarane & Puthenveettil 2014), as shown in figure 1(a), dark plumes are seen when
a horizontal laser sheet is passed through a plane parallel and close to the bottom hot
plate. A side view of one such dark line in the top view, observed with a vertical laser
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(b)(a)

Figure 1. Images of dust-free regions over horizontal hot surfaces in natural convection: (a) top view of
dust-free plumes seen as dark lines in visualisations with a horizontal laser sheet close to the hot plate
(Gunasegarane & Puthenveettil 2014); (b) an image that was captured for the present work, showing the side
view of two dust-free regions inside the boundary layer turning into a plume.

sheet (see figure 1b), shows boundary layer like, particle-free regions that appear dark,
which later turn upwards to give rise to the dark plumes in the top view. The presence
of such ‘dust-free’ regions, even though helpful in visualisations, prevents tracer-based
measurements of the near-wall phenomena in turbulent convection; a critical requirement
for clarifying the phenomenology of turbulent convection. In addition to the fundamental
importance of understanding these phenomena, formation and scaling of such dust-free
regions near horizontal hot surfaces is important in several industrial applications, like
electronic manufacturing (Stratmann et al. 1988; Besling, Van der Put & Schoonman
1995), heat transfer by nanofluids (Putra, Roetzel & Das 2003), soot removal in combustion
(Eisner & Rosner 1985), aerosol deposition in nuclear reactors (Fernandes & Loyalka
1996), dust samplers (Wen & Wexler 2007) and preventing dust deposition on solar
photovoltaic cells (Gupta et al. 2019; Oh, Figgis & Rashkeev 2020). Many natural
phenomena of importance like settling and re-suspension of atmospheric dust particles
(Nicholson 1988), as well as crystal settling in magma chambers (Martin & Nokes 1988),
also depend on an understanding of this phenomenon which occurs near hot surfaces. In
this paper, using Lagrangian simulations of a particle-laden natural convection boundary
layer on a horizontal hot surface, we show that the particle migration from the hot surface
due to the temperature gradient could be one of the possible reasons for the occurrence
of such ‘dust-free’ regions near horizontal hot surfaces. We then obtain the scaling for the
extent of such dust-free regions above horizontal hot surfaces as a function of the relevant
dimensionless numbers.

Migration of small particles away from hot surfaces, known as thermophoresis, is a
phenomenon known for over a century (Tyndall 1870; Aitken 1884); see Talbot et al. (1980)
for a review. Such a migration, due to the collision between higher kinetic energy gas
molecules from the hotter side of the fluid and the particle surfaces, which could give
rise to dust-free regions near hot surfaces, has also been known for a long time (Cawood
1936). Extensive studies on particle interaction with shear dominant, forced convection
boundary layers have been conducted, often with the intention of obtaining the particle
deposition rate for cold surfaces (Homsy, Geyling & Walker 1981; Batchelor & Shen 1985;
Gokoglu & Rosner 1986). The extent of the dust-free region over the hot surfaces in such
flows were obtained by Goren (1977) by numerically solving the particle concentration
equations along with the similarity equations of forced convection boundary layers. They
found that for a given thermophoretic coefficient, wall temperature Tw and Prandtl number
Pr, the bounding curve of the dust-free space scaled in the same way as the boundary
layer thickness; the dependence of the dust-free region on these three parameters was
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Dust-free region over horizontal hot surfaces

however left undetermined. Measurements of the dust-free region in forced convection
by Talbot et al. (1980) also showed that the dust-free region thickness δdf is parallel to
the boundary layer thickness δ, but smaller. Hereinafter, the subscript df indicates the
dust-free region. However, in contrast to the observations of Goren (1977), they found δdf
to be independent of Tw and the free stream velocity U∞. Recently, Oh et al. (2020), in a
similar analysis as that of Talbot et al. (1980) but including gravitational effects, showed
that the particle trajectory deviates from the fluid trajectory and can form dust-free regions
over hot surfaces in forced convection, when the temperature differences are sufficient.
Clearly, no conclusive scaling of the dust-free region height is yet available even in shear
dominant, forced convection boundary layers.

When buoyancy becomes dominant in these boundary layers, the dynamics become
more involved since the temperature difference drives the flow as well as the
thermophoresis; such studies have been limited. Most studies on such natural convection
boundary layers limit their analysis to vertical surfaces alone (Zernik 1957; Epstein,
Hauser & Henry 1985; Nazaroff & Cass 1987), where the thermophoretic and the
gravitational forces are perpendicular to each other, and the gravitational settling does
not directly affect the dust-free region. For such natural convection boundary layers over
vertical surfaces, using the fluid flow field given by an earlier similarity solution, by
balancing the thermophoretic force with the Stokes drag, Zernik (1957) proposed that the
dimensionless dust-free region scaled as ηdf = f (T ′), where ηdf is the value of η, the
similarity variable for the flow, at the dust-free region edge and f (T ′) is a function of the
dimensionless temperature difference T ′ = 2Tw/�Tw, with �Tw = Tw − T∞, where T∞
is the ambient temperature. Zernik’s (1957) result, however, does not quantify the effects of
the ratio of the fluid and the particle thermal conductivities kf /kp and the Knudsen number
Kn = λ/a, where λ is the mean free path of the gas and a is the particle radius; kf /kp
and Kn do affect ηdf through their influence on the thermophoretic force. Additionally,
Zernik’s (1957) result also does not include the effects of Prandtl number Pr = ν/α, the
ratio of kinematic viscosity of the fluid to its thermal diffusivity.

When such buoyancy dominant boundary layers occur on horizontal surfaces, as in RBC
and the other applications mentioned above, the presence or absence of such particle-free
regions and the scaling of such regions depend on complex interactions among the
gravitational settling, the thermophoretic force exerted by the temperature gradient in the
boundary layer, the inertia and the viscous drag exerted by the boundary layer, and for
larger and denser particles, on the inertia of the particles. Studies on the interaction of
such natural convection boundary layers on horizontal surfaces with particles are rare, in
spite of their common occurrence and importance in many industrial applications. In the
only available study, assuming similarity, Guha & Samanta (2014) solved the boundary
layer particle concentration equation along with the natural convection boundary layer
equations for a horizontal plate in an Eulerian framework, and showed that when Brownian
effects are negligible, in the absence of gravitational settling, at a specific temperature
difference, a particle-free region is formed close to the hot surface at a constant value of
the similarity variable η. However, the study neglected particle inertia, which has been
shown to create deviations in particle trajectories from the flow streamlines (Maxey &
Corrsin 1986). Further, the assumption of thermophoretic diffusion coefficients and the
unrealistic particle concentration boundary condition at the wall, makes their simulations
approximate; Guha & Samanta (2014) also did not provide a scaling for the particle-free
region.

It is hence clear that scaling of the extent of particle-free regions near horizontal
surfaces, where buoyancy is predominant so that natural convection boundary layers form,
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is poorly understood; such a situation occurs in many applications of importance. In the
present work, we study the interaction of spherical point particles with a two-dimensional
natural convection boundary layer that forms on a horizontal hot surface. We use a
Lagrangian approach of solving the Maxey & Riley (1983) equation for small volume
fraction of particles, when Brownian motion is negligible, for the flow field given by
the similarity solutions of Rotem & Claassen (1969). Since the similarity solutions of
Rotem & Claassen (1969) approximate the flow in the local boundary layers on either
side of the line plumes on the hot plate in RBC at intermediate Rayleigh numbers (Ra)
(Theerthan & Arakeri 1998; Puthenveettil & Arakeri 2005), the present study is expected
to model the formation of dust-free regions in the natural convection boundary layer over
a hot horizontal plate and in the local boundary layers on the hot plate in RBC, both at
intermediate Ra. By including inertia of the particles and the gravitational forces on them,
we obtain realistic particle trajectories from these simulations. The particle trajectories
show the formation of particle-free regions close to the hot surface for finite values of the
thermophoretic number,

Th = CTCB�Tw
√

Pr
〈T〉 , (1.1)

where CB is a particle slip correction factor and CT is the thermophoretic coefficient in
(2.2), which is a function of kf /kp and Kn, as given by Talbot et al. (1980). We show that
the longitudinal extent of the dust-free region reduces with increasing ratio of gravitational
settling velocity (ug) to the characteristic boundary layer velocity (Uw); we define this ratio
as the gravitational number Gn in (2.13) and (2.15). With increase in Gn, at any given Th,
particles settle beyond decreasing distances. For small values of Gn, when gravitational
settling is negligible, by obtaining an expression for a separatrix, which we observe to
occur always at the dust-free region boundary, we obtain a scaling for the dust-free region
height. The obtained scaling of the dust-free region height shows that the dust-free region
boundary is parallel to the boundary layer edge, but smaller in height. The ratio of the
dust-free region height to the boundary layer height is shown to be a function of Th and
Pr; we obtain these functions for small, intermediate and large Pr.

The paper is organised as follows. We formulate the dimensionless particle motion
equation in § 2.1, where the relevant dimensionless numbers that determine the particle
motion are obtained; the limiting case of the equation for small Stokes number (Ŝt) is
discussed in § 2.2. The natural convection boundary layer flow and the temperature fields
given by Rotem & Claassen (1969) are briefly discussed in § 2.3, with the numerical
method of solution of the particle motion equation discussed in § 2.4. Section 3.1 discusses
the particle trajectories and the variation of the extents of the dust-free regions for various
finite Th and Gn, along with the formation of the separatrix at the boundary of the dust-free
region. An expression for the separatrix, as well as the scaling for the dust-free region
height in the small and the large η limits, are obtained for Gn � Th and Ŝt � 1 in § 3.3. In
§ 4, explicit scaling laws for small Pr, large Pr and intermediate values of Pr are proposed
for the dust-free region height when Gn = 0, before concluding in § 5.

2. Formulation

2.1. Particle motion equation
We formulate the governing equation for the particle motion in natural convection over
hot surfaces by adding thermophoretic force to the Maxey & Riley (1983) equation;
the corresponding formulation for forced convection was done by Talbot et al. (1980).
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Dust-free region over horizontal hot surfaces

For high density, micron sized aerosol particles, as the Basset–Boussinesq history force is
much smaller compared with the viscous drag term in the dimensionless Maxey & Riley
(1983) equation, we neglect this history force (Bergougnoux et al. 2014). Since the particle
sizes that we consider are small, Faxen’s correction, (−a2/6)∇2u, to the viscous drag can
also be neglected (Maxey & Riley 1983) in comparison to the terms that are linear in fluid
and particle velocities. The governing equation then reduces to

ρp
dv

dt
= ρf

Du
Dt

− 9
2
μ

a2
1

CB
(v − u)− ρf

2

(
dv

dt
− Du

Dt

)
− 9ρf ν

2

a2 CT
∇T
〈Tp〉 + (ρp − ρf )g, (2.1)

where the term on the left-hand side is the particle inertia with d/dt = ∂/∂t + v · ∇ being
the material derivative along the particle trajectory and v the particle velocity vector. In the
first term on the right in (2.1), D/Dt = ∂/∂t + u · ∇ is the material derivative along the
fluid trajectory, with u being the fluid velocity vector. The second term on the right-hand
side of (2.1) is the viscous drag where CB is any appropriate slip correction factor, such as
Basset or Cunningham slip correction factors, to accommodate non-continuum effects,
and μ is the dynamic viscosity of the fluid. The third term on the right-hand side of
(2.1) is the added mass, where ρf is the fluid density. The next term on the right is the
thermophoretic force term, where T is the fluid temperature field and 〈Tp〉 the undisturbed
fluid temperature at the particle centre if the particle was not present at that point. The
thermophoretic coefficient in this term is

CT = Cs(kf /kp + CtKn)
(1 + 3CmKn)(1 + 2kf /kp + 2CtKn)

, (2.2)

with the coefficients Cm = 1.14, Cs = 1.17 and Ct = 2.18 (Talbot et al. 1980); kf and kp
being the fluid and particle thermal conductivities. An alternative expression for CT in
terms of Kn and kf /kp, given by Beresnev & Chernyak (1995), which was shown to be
more accurate in the transition regime of Knudsen numbers by Guha & Samanta (2014),
could also be used instead of (2.2). The last term in (2.1) is the buoyancy acting on the
particle, where g is the acceleration vector due to gravity and ρp the particle density.

We normalise (2.1) with the characteristic scales near the hot plate in RBC (Theerthan
& Arakeri 1998; Puthenveettil & Arakeri 2005), namely, the near-wall length scale

Zw =
(

να

gβ�Tw

)1/3

, (2.3)

where β is the thermal expansivity of the fluid, the near-wall velocity scale

Uw =
√
να

Zw
(2.4)

and the near-wall time scale
tw = Zw/Uw. (2.5)

The dimensionless governing equation for particle motion then becomes

dv∗

dt∗
= 3ε

2 + ε

Du∗

Dt∗
− 1

Ŝt
(v∗ − u∗)− 1

Ŝt
Th∇∗θ − 1

Ŝt
Gnĵ, (2.6)
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where all the starred variables denote the dimensionless variables corresponding to the
dimensional variables in (2.1), ε = ρf /ρp and the dimensionless temperature,

θ = T − T∞
�Tw

. (2.7)

Equation (2.6) shows that the following dimensionless numbers determine the particle
dynamics. The modified Stokes number, Ŝt in (2.6) is

Ŝt = CB(2 + ε)St
2

, (2.8)

where the Stokes number

St = 2
9
ρpa2/μ

tw
= 2

9
1

ε
√

Pr
Ra2/3

p , (2.9)

by using (2.5), (2.3) and (2.4). Here, the particle Rayleigh number,

Rap =
(

gβ�Twa3

να

)1/3

, (2.10)

is the ratio of the time scales of thermal transport by diffusion (a2/
√
να) to the thermal

transport by convection (
√
να/gβ�Twa), both evaluated at the particle length scale. The

thermophoretic number,

Th = 1
Re

CTCB�Tw

〈T〉 , (2.11)

in (2.6) represents the dimensionless strength of the thermophoretic effects on the particle,
where the Reynolds number

Re = 1
2

UwZw

ν
= 1

2
√

Pr
, (2.12)

by using (2.3) and (2.4). In (2.6),

Gn = CB(1 − ε)St
Fr2 = 2(1 − ε)Ŝt

(2 + ε)Fr2 (2.13)

is the gravitational number, where the Froude number

Fr = Uw√
gZw

. (2.14)

By using (2.8), (2.9) and (2.14) in (2.13),

Gn =
CB

4
3
πa3(ρp − ρf )g

6πμa
1

Uw
= ug

Uw
= u∗

g, (2.15)

where u∗
g is the dimensionless gravitational settling velocity and ug the gravitational

settling velocity. Typical values of these dimensionless numbers for olive oil droplets in
air are tabulated in table 1 for different diameters of droplets. We note that Ŝt � 1 for the
common droplet sizes in aerosols. We have ignored the role of particle interactions and
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Dust-free region over horizontal hot surfaces

Droplet Dia (μm) Ŝt Th Gn Rap

0.1 2 × 10−9 2 × 10−2 1 × 10−7 1 × 10−13

1 7 × 10−8 4 × 10−3 4 × 10−6 1 × 10−10

5 2 × 10−6 1 × 10−3 1 × 10−4 1.25 × 10−8

Table 1. Values of the various dimensionless numbers for olive oil droplets in air at Pr = 0.7 for
�Tw ≈ 10 K and 〈T〉 ≈ 300 K.

inertial lift forces in the present formulation, effects that could lead to the modification
of particle trajectories. Both hydrodynamic and non-hydrodynamic interactions between
aerosol particles can play a significant role in the trajectories of aerosol particles, which
subsequently influences phenomena like coagulation and deposition (see Patra, Koch &
Roy 2022 and references therein). In the present study, we are interested in the highly dilute
limit; thus, the role of interactions is neglected. A particle has a non-zero slip with respect
to the local fluid velocity; for small St, the deviation is due to the thermophoretic velocity
(to be discussed in detail in the next section). Since a particle has a non-zero slip velocity
in a local shear flow, it could experience an inertial lift force as was derived in the case
of a simple shear flow by Saffman (1965) (see Candelier, Mehlig & Magnaudet 2019 for
more extensions to more general linear flows). The relative magnitude of the Saffman lift
force would depend on the particle Reynolds number defined based on the local shear rate,
Reγ . In the present problem, Reγ = Ra2

p/
√

Pr. From the listed values of Rap in table 1,
we see Reγ � 1 and thus, the effect of inertial lift is negligible in the present study. This
assumption is further corroborated by Yang et al. (2022) where they found the effect of
Saffman lift negligible in the study of particle dynamics in Rayleigh–Bénard convection.

2.2. Limiting cases
When Ŝt � 1, the first term on the right-hand side of (2.6) can be neglected since 1/Ŝt
appears on all the other terms on the right-hand side of (2.6). Then, since v∗ = dx∗/dt∗,
for Ŝt � 1, (2.6) reduces to

Ŝt
d2 x∗

dt∗2 = −
(

dx∗

dt∗
− u∗

)
− Th∇∗θ − Ŝt

Gn
Ŝt

ĵ. (2.16)

In (2.16), Ŝt can approach zero only if St is approaching zero, as shown by (2.8). Hence,
when Ŝt → 0, since both Ŝt and Gn have a similar dependence on St, as evident from
(2.8) and (2.13), Gn/Ŝt can still remain finite depending on the values that ε and Fr2 take.
So when Ŝt → 0 (or St = 0), the first and the last terms in (2.16) are negligible whereas
the second and the third terms remain finite. Further, the term −Th∇∗θ in (2.16) can be
re-written by using (2.12), (2.11) and (2.7) as

− Th∇∗θ = −CTCB�Tw

Re〈T〉 ∇∗θ = −2νCTCB∇T
〈T〉

1
Uw

= ut

Uw
= u∗

t , (2.17)

where ut is the thermophoretic velocity and u∗
t its dimensionless form. Hence, when Ŝt →

0, (2.16) reduces to

v∗ = u∗ − Th∇∗θ = u∗ + u∗
t , (2.18)
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the zeroth-order equation for the particle velocity. Equation (2.18) implies that when
Ŝt → 0, the particle velocity in fluid flows with finite temperature gradients, like thermal
boundary layers and plumes, is a vector sum of the fluid velocity and the thermophoretic
velocity. Note that this result holds even when ε → 1 for neutrally buoyant particles,
usually employed in particle image velocimetry (PIV) studies. Therefore, even when
St = 0, neutrally buoyant particles with ε = 1 do not follow the fluid trajectory in regions
where u∗

t is significant. Hence, PIV measurements inside regions like thermal boundary
layers and plumes may not be reliable if u∗

t values there are not negligible. It is obvious
from (2.16) that particles follow the fluid trajectory when Gn � 1, Th � 1 and Ŝt = 0,
since v∗ = u∗ in such a case. In all other cases, the particles would deviate from fluid
trajectories under the influence of thermophoretic and gravitational forces, even when
St = 0.

Since the fluid velocity field and the temperature field that we consider are steady, it
can be noted from (2.18) that the particle velocity field also approaches a steady state as
Ŝt → 0. This is because in such a case, when Ŝt → 0, the response time required for the
particles to reach the velocity of the flow field becomes infinitely small due to the low
inertia and hence, the time evolution of the particles in the unsteady state can be neglected
in such a case. Then, the initial injection velocities of particles into the flow field become
irrelevant in such cases.

2.3. Fluid flow field
We assume that the particles do not modify the flow around them, which is valid for the
case of a dilute mixture of small particles, when mass loading of the particle phase is low
(Guha 2008). It is shown in Appendix A that those conditions are valid in the present
study. This assumption allows us to substitute an existing solution of natural convection
boundary layers for u∗(x, y) and θ(x, y) in (2.16) to study the evolution of particles in
that flow field. The natural convection boundary layer flow above a horizontal surface has
been obtained by Rotem & Claassen (1969), Pera & Gebhart (1973) and Samanta & Guha
(2012); we here use the similarity solutions proposed by Rotem & Claassen (1969).

Rotem & Claassen (1969) gave the dimensionless stream function,

ψ∗(η) = x∗
rc

3/5F(η), (2.19)

and the dimensionless temperature difference,

H(η) = θ = T − T∞
�Tw

, (2.20)

as functions of the similarity variable

η = ŷx∗
rc

−2/5
. (2.21)

Here, the dimensionless x coordinate,

x∗
rc = x/L, (2.22)

where L is the length of the plate. The stretched y coordinate,

ŷ = y∗
rcGr1/5

L = y
L

Gr1/5
L , (2.23)

where the Grashoff number

GrL = gβ�TwL3

ν2 = RaL

Pr
, (2.24)
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Dust-free region over horizontal hot surfaces

where RaL = (−gβ�TL3)/να is the Rayleigh number based on L, so that, using (2.21),
(2.22), (2.23) and (2.24),

η = y
L

( x
L

)−2/5
(

RaL

Pr

)1/5

= y
(x2Z3

w)
1/5

1
Pr
. (2.25)

From Rotem & Claassen’s (1969) stretched horizontal and vertical velocity components,
given in (D3) and (D4), we obtain the dimensionless velocity components for the present
study as

u∗
x = ∂ψ∗

∂ ŷ
= Pr1/10x∗1/5F′(η) (2.26)

and

u∗
y = − ∂ψ∗

∂xrc∗ = 1
5

Pr3/10x∗−2/5
(2ηF′(η)− 3F(η)), (2.27)

by using (D1), (B1), (B2), (2.3) and (2.4).
Values of F(η) from (2.19) and H(η) from (2.20) for various Pr are given by Rotem &

Claassen (1969) by numerical solution of the natural convection boundary layer equations
(2.28). The values of η, and hence the values of the velocity components (2.26), (2.27) and
the temperatures (2.20) at any location inside the boundary layer are then determined by
the values of RaL and Pr through (2.25). Here, F(η) and H(η) are obtained by numerically
solving the following boundary layer equations of Rotem & Claassen (1969),

5F′′′ + 3FF′′ − F′2 = 2G − 2ηG′, (2.28a)

H = G′ (2.28b)

and
H′′ + 3

5 PrFH′ = 0, (2.28c)

where ′ indicates derivative with respect to η. Additionally,

G(η) =
(

p − p∞
ρ∞ν2 L2 + gy∗

rcL3

ν2

)
Gr−4/5x∗

rc
−2/5 (2.29)

is the dimensionless pressure function, where p is the local fluid pressure, p∞ the pressure
of the ambient fluid far away from the plate and ρ∞ the corresponding density. The
boundary conditions for solving (2.28) include

F = F′ = 0, H = G′ = 1 at η = 0 (2.30a)

and
F′ = H = G = 0 when η → ∞. (2.30b)

2.4. Numerical method
Numerical solutions of (2.16) were obtained for 5000 particles, initially placed randomly
in the domain with zero initial velocity at Ŝt = 10−5 for different combinations of Gn and
Th. The horizontal domain started at x = 0.01Zw (or x∗ = 0.01) to exclude the origin of the
boundary layer, which is a singular point. The domain extended horizontally up to 50Zw,
approximately the average length of a growing boundary layer before it turns into a plume
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(η

), 
H

(η
)

F(η) = 0.18 (1 – exp(–0.53η1.38))1.45

(1 + e(η–0.5)/0.79)

η

H(η) = 1.52

Figure 2. Comparison of the curve fits obtained for F(η) and H(η) to the data points obtained from Rotem
& Claassen (1969) for Pr = 0.7. Data points from Rotem & Claassen (1969) for: �, F(η); and red �, H(η).
Curve fits for: black – – –, F(η); and blue – – –, H(η).

(Theerthan & Arakeri 1998). In the vertical direction, since the boundary layer thickness
δ ∼ Zw, the domain extended from y = 0 to y = 40Zw to ensure that both the thermal and
the velocity boundary layers were well within the domain.

To maintain a constant number of particles in the domain, whenever a particle exited,
another particle was introduced through the top of the domain at a random x position
with zero velocity. As discussed in § 2.2, the initial velocities of the particles become
insignificant when Ŝt � 1, as they reach the surrounding fluid velocity in a negligible
amount of time. Therefore, the initial velocities at the start of the computation and the
injection velocities of particles through the top boundary were set to zero for convenience.

Equation (2.16) was numerically solved using the fifth-order Runge–Kutta method
with adaptive step size selection, implemented via the ODE45 tool in MATLAB�.
The particles evolved in the steady flow field described by (2.26), (2.27) and (2.20).
To solve (2.16) for particle positions, u∗

x in (2.26), u∗
y in (2.27) and θ in (2.20) were

obtained by interpolating the solutions of the boundary layer equations (2.28). For efficient
implementation of interpolation, (2.16) was integrated using a curve-fitted form of F(η)
and H(η), which were used to obtain u∗

x in (2.26), u∗
y in (2.27) and θ in (2.20). The fits for

F(η) and H(η) are shown in figure 2.
The ODE45 algorithm automatically selects smaller time steps where the solutions

change abruptly, ensuring the accuracy of the solution based on the specified
tolerance. The current simulations were conducted with a relative tolerance of 10−6.
Solving the trajectory of a particle from one end of the domain to the other
took approximately 5 minutes. Since each particle trajectory could be independently
solved using multiple threads in parallel, the computational time was drastically
reduced.

The curve fits in figure 2 for Pr = 0.7 were used only to obtain the particle dynamics
discussed in § 3. The scaling laws in the subsequent sections were derived using
F(η) and H(η) obtained from numerical solutions of the boundary layer equations
in (2.28).

1001 A45-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.786


Dust-free region over horizontal hot surfaces

10 20 30

y∗

40 50

10

5

0

20

30

40

15

25

35

(a)

10 20 30 40 50

10

5

0

20

30

40

15

25

35

(b)

10 20 30

x∗

y∗

40 50

10

5

0

20

30

40

15

25

35

(c)

10 20 30

x∗
40 50

10

5

0

20

30

40

15

25

35

(d )

Figure 3. For Gn = 0 and Th = 1: (a) instantaneous particle positions and fluid streamlines; (b) fluid
streamlines and particle trajectories. (c,d) The same for Gn = 0.14 and Th = 1; blue ——, fluid stream lines;
blue – – – –, velocity boundary layer edge; – – – –, particle trajectories; Please refer to the particle motion videos
corresponding to panel (a) at Gn = 0 and to panel (c) at Gn = 0.14, provided in the supplementary movies, to
see the evolution of particle positions.

3. Particle dynamics

3.1. Flow streamlines and particle trajectories
We analysed the dynamics of particles inside the boundary layer at Ŝt = 10−5 for
different combinations of Gn and Th. Figure 3(a) shows the particle positions and
fluid’s streamlines, while figure 3(b) shows the particle trajectories and fluid streamlines
corresponding to Gn = 0 and Th = 1 at t∗ = 45. Figure 3(c,d) shows the same at
Gn = 0.14 and Th = 1 at t∗ = 60. The corresponding motion of particles can be clearly
viewed in the supplementary movies for the cases with and without gravity. The particle
trajectories in figure 3(b,d) and the motion of the particles in the two videos corresponding
to them show that the particles at the top of the domain are initially dragged down
by the entrainment fluid flow into the boundary layer. For the low-gravitational-force
situations, as in figure 3(a), once the particles enter the boundary layer, they mostly take
a right turn before finally exiting the domain through the right end. For cases when Gn
is non-negligible compared with Th, as in figure 3(c), many of the particles settle on the
plate, as they move to the right; the location of settling depends on the relative strength of
the gravitational force that the particles experience.
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In figure 3(a,c), we see a dust-free region within the boundary layer, which forms under
the influence of thermophoretic force. Both the figures show the final steady-state situation,
after the initial transient development of the dust-free region is completed, which takes a
dimensionless time of approximately t∗ ∼ 50. In figure 3(a), for the Gn = 0 case, we see
a dust-free region that keeps growing in height as we move along the positive x direction;
there is no settling of particles on the hot surface. For this case, the height of the dust-free
region at any given x depends on the particular value of Th. In contrast, the height of the
dust-free region in figure 3(c), after an initial increase, keeps decreasing as x increases.
In the finite Gn case, the dust-free region ends at a finite distance from the origin of the
boundary layer, beyond which the particles start to settle under the influence of gravity; the
length of this dust-free region in figure 3(c) is approximately x∗ = 45. We observed that
if Gn is increased, the particles start to settle at a shorter x∗ making the dust-free region
smaller in size and height; increasing Th was seen to have an opposite effect. In both the
figures, particles that reach a region close to the leading edge of the boundary layer turn
towards the left and exit the domain through the left end of the domain.

Since the particle flow divides into left and right near the leading edge, there exists
a saddle point close to the leading edge in the flow field, characterised by zero particle
velocity and intersecting particle trajectories.

We obtained such a saddle point in the flow field by solving (2.16) numerically and
obtaining the co-ordinates where the particle velocity goes to zero; the intersecting particle
trajectories were then obtained by solving (2.16) either backwards in time or forwards
in time starting from any point infinitesimally close to the saddle point. Figure 4 shows
the obtained particle trajectories close to the saddle point for the case in figure 3(a),
where the dashed lines show the trajectories of the particles and the solid lines showing
the separatrices that pass through the saddle point. At the saddle point, four particle
trajectories, two of which end there starting from the top and the bottom of the domain,
and two leaving the saddle point towards the left and right so as to exit the domain can
be observed in figure 4; we call these trajectories separatrices. For the Gn = 0 case shown
in figure 4, the separatrix leaving to the right grows in height and forms the boundary of
the dust-free region. For the corresponding Gn = 0.14 case, as we show later in figure 5,
the height of the separatrix leaving to the right would diminish as x increases and the
separatrix would eventually touch the plate surface at a finite distance from the origin,
making the dust-free region finite in size. For such cases, all trajectories of the particles
meet the plate at finite distances from the origin.

The separatrices then divide the flow into four sub regions, labelled as I to IV in figure 4,
which are characterised by a different behaviour of particles. In region I, the particles
coming down from the top take a right turn and move in the positive x direction. In region
II, particles coming down take a left turn and move in the negative x direction. In regions
III and IV, the particles close to the plate are lifted off due to the upward component of
the thermophoretic force and then take a left or a right turn, respectively. As is clear from
the trajectories shown in figure 4, all the particles in regions III and IV either exit from the
domain through the right/left or settle on the plate; there is no supply of particles to these
regions from the regions I and II on the top. The regions III and IV will hence evolve with
time into a dust-free region, with the separatrix AOB as its top boundary; the separatrix
AOB is hence the steady-state boundary of the dust-free region close to the hot surface.

3.2. Particle velocity for small and finite Ŝt
For finite but small Ŝt, for which case the present simulations are conducted, the above
flow pattern with saddle point and separatrices can be better understood based on the
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Figure 4. Particle trajectories close to the saddle point for the case shown in figure 3(a) with Gn = 0 and
Th = 1. The solid lines show the four separatrices with arrows showing the direction of the particle motion on
the separatrix. The dashed lines show the trajectories of the other particles in the flow field. Particle positions
in the domain at a later instant after the dust-free region has formed are shown with black dots.

101

100

100 101

y∗

x∗

Figure 5. Separatrices for varying ratios of Gn to Th for Th = 1 and Th = 10 for Ŝt = 10−5. The blue set
of curves corresponds to Th = 1 and the black set of curves corresponds to Th = 10. ——, Gn/Th = 0;
– – – –, Gn/Th = 0.001; · · · · · · , Gn/Th = 0.1; and -·-·-·-, Gn/Th = 0.14. The red dashed lines correspond to
y∗ ∼ x∗2/5, the scaling of natural convection boundary layer thickness.

simplification of (2.16). For Ŝt � 1, but not equal to zero, (2.18) can be modified as

v∗ = u∗ + u∗
t + Ŝta∗, (3.1)
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where a∗ is an inertial correction that needs to be evaluated. Substituting (3.1) in (2.6),
neglecting all terms of order higher than Ŝt and then using (2.15), we obtain the inertia
corrected particle velocity as

v∗ = u∗ + u∗
t + u∗

g − Ŝt
(

2(1 − ε)

2 + ε
u∗ · ∇u∗ + u∗ · ∇u∗

t + u∗
t · ∇u∗ + u∗

t · ∇u∗
t

)
.

(3.2)
Equation (3.2) is a modification of the slow manifold (Sapsis & Haller 2008) of Maxey &
Riley (1983) equations with thermophoretic effects. When Ŝt � 1, the last term in (3.2)
is negligible while the third term on the right-hand side of (3.2) may still be significant.
Hence, for Ŝt → 0 but finite, (3.2) simplifies to

v∗ = u∗ + u∗
t + u∗

g, (3.3)

implying that the particle velocity will be a superposition of the fluid velocity, the
thermophoretic velocity (2.17) and the Stokes settling velocity (2.15).

The presence of a saddle point and separatrices in the flow field can now be better
understood in terms of (3.3). Since u∗

t acts opposite to the direction of the temperature
gradient, the horizontal and the vertical components of u∗

t , namely u∗
tx and u∗

ty , expressions
for which are derived in Appendix B, will be in the negative x direction and in the positive
y direction, respectively. Since the entraining fluid coming down towards the plate takes
a turn in the positive x direction inside the boundary layer, the horizontal component u∗

x
of the fluid velocity in the boundary layer will be in the positive x direction; u∗

y will be in
the negative y direction. Here, u∗

g has only a vertical component in the negative y direction
in the case of a horizontal plate. The saddle point is the point where u∗

ty balances u∗
y and

u∗
g, as well as where u∗

tx balances u∗
x . Then, in regions I and IV, u∗

x is more than u∗
tx , and

similarly, in regions II and III, u∗
tx is more than u∗

x . The thermophoretic velocity u∗
t hence

balances the components of u∗ and u∗
g to create a saddle point, with the four separatrices

in the flow field separating regions where the different forces dominate.
Figure 5 shows the plots of separatrices for four different values of Gn/Th at Th = 1

and Th = 10. As expected, for both values of Th, the areas under the separatrix, which are
the dust-free regions, reduce as Gn increases and the gravitational force becomes more
dominant. The dust-free region shrinks to a small patch close to the origin of the boundary
layer when Gn is of the same order as Th. Figure 5 shows that when Gn = 0 or when
Gn � Th, the height of the dust-free region, at distances away from the saddle point, scales
as y∗ ∼ x∗2/5, shown as the red dashed line, in the same manner as the natural convection
boundary layer thickness. However, as is obvious from figure 3(a), the thickness of the
dust-free region is much lower than the boundary layer thickness. Further, the thickness of
the dust-free region is also a function of Th, as shown in figure 5, unlike the boundary
layer thickness. As we saw earlier, since the separatrix AOB is the boundary of the
dust-free region, an expression obtained for the separatrix would also be an equation for the
dust-free region that would expectedly capture the dependence of the dust-free region on
the fluid and the flow properties. We now obtain such an expression for the separatrix when
the Stokes settling velocity u∗

g � u∗
t , the thermophoretic velocity, which occurs when

Gn � Th.
The present novel method of finding the dust-free region boundary, by finding the

equation for the separatrix, was chosen as earlier proposed conditions to obtain dust-free
regions failed in the present situation. Stratmann et al. (1988) used the locus of all points
having zero vertical velocity as the dust-free region boundary; however, such a curve
was observed to be a constant η curve, different from the dust-free region curve, in the
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Dust-free region over horizontal hot surfaces

present case. The locus of the maximum negative values of the divergence of the particle
velocity field (3.3) was also considered as a criterion to identify the boundary of the
dust-free region. This criterion was considered since the particles move out of the dust-free
region to the boundary of the dust-free region, and due to its similarity with the recently
proposed condition by Shevkar et al. (2022) to identify plumes, which are converging flow
regions. However, the locus of all such points was found to be another constant η line,
which did not coincide with the dust-free region boundary.

3.3. Scaling of the dust-free region height when Gn � Th and Ŝt � 1
As we saw in § 3.2, when Gn � Th, the dust-free region height has a similar dependence
on x∗ as the boundary layer thickness, but which, in contrast to the boundary layer
thickness, depends on Th. For such cases, an instance of which is shown in figure 4, we
now find an expression for the separatrix AOB; this gives the scaling of the dust-free region
height for Gn � Th. For Ŝt � 1, by taking the ratio of y and x components of (3.3), we
obtain a differential equation for the general trajectory of a particle as

dy∗

dx∗ = v∗
y

v∗
x

=
u∗

y + u∗
ty + u∗

g

u∗
x + u∗

tx
. (3.4)

From (2.15) and (2.17), u∗
g in (3.4) can be neglected in comparison to u∗

ty since Gn � Th,
to obtain

dy∗

dx∗ ≈
u∗

y + u∗
ty

u∗
x + u∗

tx
. (3.5)

As we saw in § 3, u∗
tx is expected to be smaller than u∗

x in regions I and IV, and hence, also
along the separatrix OB. The expressions for u∗

x and u∗
tx given by (2.26) and (B7) further

show that for a given Th on constant η line, like the separatrix, u∗
tx/u

∗
x ∼ x∗−6/5. Hence, for

a given Th far away from O, since the separatrix follows an η = constant variation along
OB in figure 4, u∗

tx can be neglected in comparison to u∗
x ; (3.5) then reduces to

dy∗

dx∗ = v∗
y

v∗
x

=
u∗

y + u∗
ty

u∗
x

. (3.6)

Substituting (2.26), (2.27) and (B8) for u∗
x , u∗

y and u∗
ty in (3.6) results in

dy∗

dx∗ = (−3F(η)+ 2ηF′(η)− 5ThH′(η)Pr−1/2)Pr1/5

5F′(η)x∗3/5 . (3.7)

We now integrate (3.7) with respect to x∗ for η = constant, a property of the separatrix
for Gn � Th (see figure 5), to obtain the equation for the separatrix at any Th, when
Gn � Th and Ŝt � 1, as

y∗ = (−3F(η)+ 2ηF′(η)− 5Pr−1/2ThH′(η))x∗2/5Pr1/5

2F′(η)
. (3.8)

Substituting η = x∗−2/5y∗Pr−1/5 from (B2), (3.8) simplifies to

F(η) = −5

3
√

Pr
ThH′(η), (3.9)
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Figure 6. Comparison of separatrices from the numerical solution of (2.16) with the solution of (3.11) for
Ŝt = 10−5, Gn = 0 and Pr = 0.7, for different Th. Numerical solution of (2.16) for: -·-·-, Th = 1; ——,
Th = 10; – – –, Th = 100. The solution of (3.11) for: –�–, Th = 1; –�–, Th = 10; –�–, Th = 100.

an equation for the separatrix at any Th and Pr when Gn � Th and Ŝt � 1. Using the
expression for Re from (2.12) in (2.11), and defining a modified thermophoretic number,

Thm = Th√
Pr

= 2CTCB�Tw

〈T〉 , (3.10)

as a Pr independent dimensionless number for the thermophoretic force, (3.9) can be
rewritten as

F(η) = −5
3 ThmH′(η). (3.11)

Since F(η) and H′(η) are functions of Pr, the solution of (3.11) will be a function of
Thm and Pr. Using the values of F(η) and H′(η) obtained from the numerical solution of
(2.28a) to (2.28c) for any Pr, in (3.11), for any given value of Thm, we get the value of η
which specifies the separatrix OB in figure 4, at distances far from the saddle point O. We
will hereinafter refer to these values as ηdf , the subscript df indicating that these curves
specify the boundary of the dust-free region. Figure 6 shows the separatrices obtained
from the numerical solution of (2.16) for Th = 1, Th = 10 and Th = 100 at Pr = 0.7,
Gn = 0 and Ŝt = 10−5, along with the ηdf values predicted by (3.11) for the same values
of Th and Pr. It is clear from the figure that the curves of separatrices predicted by (3.11)
approximate the dust-free region fairly well in the entire domain, and more accurately, in
the regions away from the saddle point. The plots of ηdf versus Thm for Pr ranging from
0.1 to 10, obtained from the solution of (3.11), are shown in figure 7. It is observed from
the figure that for smaller ηdf (ηdf ≤ 1), ηdf increases as Pr increases while for larger ηdf
(ηdf ≥ 3), ηdf decreases as Pr increases. Figure 7 also shows that ηdf has different scaling
dependences on Thm for small and large ηdf ; we now obtain these scaling laws for small
and large η, with the Pr dependence obtained later in § 4.

3.3.1. Limit η → 0
We obtain the dependence of ηdf on Thm for smaller values of ηdf by using approximations
of F′(η) and H(η) in (3.11) as η → 0. A local analysis of (2.28a) to (2.28c) around η = 0,
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Figure 7. Variation of dimensionless dust-free region height ηdf with the modified thermophoretic number
(3.10) for various Pr: red ◦, Pr = 0.1; ∗, Pr = 0.3; orange �, Pr = 0.5; �, Pr = 0.7; green star, Pr = 1;
red �, Pr = 3; +, Pr = 7; blue �, Pr = 5; brown �, Pr = 10; – – –, ηdf ∼ √

Thm; · · · · · · · · · , ηdf ∼ ln(Thm).
The inset shows the curves −(5/3)ThmH′(η) for; blue – – –, Thm = 1; green – – –, Thm = 5; magenta – – –,
Thm = 10; and ——, F(η) for Pr = 0.7.

given in Appendix C.1, shows that F′(η) and H(η) are linear functions in η as η → 0 (see
(C8)). We hence approximate F′(η) = 2M(Pr)η and H(η) = 1 − N(Pr)η so that

F(η) = M(Pr)η2 (3.12a)

and
H′(η) = −N(Pr), (3.12b)

where M(Pr) and N(Pr) are some positive real functions of Pr. Using (3.12a) and (3.12b)
in (3.11), we obtain

ηdf = Q(Pr)
√

Thm, (3.13)

where using (2.22), (2.23) and (2.3) in (2.21),

ηdf = ydf

(Z3
wx2Pr)1/5

(3.14)

is the dimensionless dust-free region height, with ydf being the dimensional dust-free
region height and

Q(Pr) =
√

5
3

N(Pr)
M(Pr)

(3.15)

is a function of N(Pr) and M(Pr). Since both N(Pr) and M(Pr) are positive real functions,
Q(Pr) is always positive for a hot plate, because of which, for all Pr, ηdf always increase
as

√
Thm for small η, as shown in figure 7.
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3.3.2. Limit η → ∞
The dependence of ηdf on Thm for large values of ηdf is obtained as follows. As η → ∞,
the boundary condition (2.30b) implies that

F(η) = C1(Pr), (3.16a)

where C1(Pr) is a positive real function of Pr. Using (3.16a) in (2.28c) and then integrating
gives

H′(η) = C2(Pr) e−3C1(Pr)Prη/5, (3.16b)
where C2(Pr) is a negative real function of Pr. Using (3.16a) and (3.16b) in (3.11) gives

ηdf = R(Pr)+ S(Pr) ln(Thm), (3.17)

where

R(Pr) = −5
3PrC1(Pr)

ln
(−3C1(Pr)

5C2(Pr)

)
and S(Pr) = 5

3
1

C1(Pr)Pr
(3.18a,b)

are functions of Pr. Since S(Pr) is a positive real function in Pr, we see that ηdf increases
as ln(Thm) for all Pr at large η as shown in figure 7; a higher ηdf always corresponds to
a higher value of Thm for a given Pr. This dependence could also be explained from a
graphical depiction of (3.11). The inset of figure 7 shows a plot of −(5/3)ThmH′(η), the
right-hand side of (3.11), versus η for Pr = 0.7 along with the plot for F(η), the left-hand
side of (3.11), versus η for the same Pr. The curves for −(5/3)ThmH′(η) corresponding to
Thm = 1, Thm = 5 and Thm = 10 cross the curve for F(η) at higher values of η, as Thm is
increased from 1 to 10. In (3.13) and (3.17), the Pr dependence of ηdf is not fully specified;
we now obtain the complete expressions for ηdf in terms of Pr and Thm for different ranges
of Pr.

4. Scaling laws for dust-free region heights

The velocity function F′ and the temperature function H in the boundary layer equations
(2.28) uncouple for Pr → 0 and Pr → ∞. This, however, occurs since (2.28a–c) are not
valid for these asymptotic Pr cases. When Pr � 1, the thermal boundary layer thickness
is much smaller than the velocity boundary layer thickness; the opposite occurs when
Pr � 1. Rotem & Claassen (1969) treats these two asymptotic Pr cases as two separate
boundary layer problems. They solve a set of inner boundary layer equations for the thin
boundary layer inside, and a set of outer boundary layer equations for the larger boundary
layer region outside; we follow the same approach to obtain scaling laws for ηdf for Pr � 1
and Pr � 1. Hereinafter, we use the subscripts 1 and 2 to denote the inner and outer
boundary layer parameters, and a single tilde and a double tilde to denote the Pr � 1
and the Pr � 1 cases, respectively. A brief explanation of the stretched variables used by
Rotem & Claassen (1969) in these regimes of Pr is provided in Appendix D.

4.1. Scaling for Pr � 1

4.1.1. Scaling for small η
Rotem & Claassen (1969) provides the inner boundary layer equations for the case of
Pr � 1 as follows:

5F̃′′′
1 = 2G̃1 − 2η̃G̃′

1, H̃1 = G̃′
1, H̃′′

1 + 3
5 F̃1H̃′

1 = 0, (4.1a–c)

where F̃1, G̃1 and H̃1 are the dimensionless velocity, pressure and temperature functions
obtained by using appropriate transformations as in (D6) and (D7). The boundary
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Dust-free region over horizontal hot surfaces

conditions include

F̃1 = F̃′
1 = 0; H̃1 = G̃′

1 = 1 at η̃1 = 0 (4.2a)

and
F̃′′

1 = 0; H̃1 = G̃1 = 0 when η̃1 → ∞, (4.2b)

where η̃1 is the similarity variable defined for Pr � 1 in (D6). Since there is no Pr
appearing in (4.1), F̃1 and H̃1 will only depend of η̃1 and not on Pr.

A local analysis of (4.1) near η̃1 = 0, given in Appendix C.2, shows that F̃′
1(η̃1) and

H̃1(η̃1) are linear when η̃1 → 0. In such a case,

F̃1(η̃1) = C1η̃
2
1, (4.3)

where C1 = F̃′′
1(η̃1 = 0)/2 = 0.49 and

H̃′
1(η̃1) = C2, (4.4)

where C2 = H̃′
1(0) = −0.46. It is to be noted that F̃1(η̃1) in (4.3) and H̃′

1(η̃1) in (4.4) are
independent of Pr, since the boundary layer equations (4.1) do not have Pr in them. So C1
and C2 are just constants and not functions of Pr. From (D9), (D3) and (D5b), we have

F′(η) = Pr−3/5F̃′
1(η̃1). (4.5)

Similarly, from (D5a), (D6c) and (2.21), we obtain

η = Pr−1/5η̃1. (4.6)

Using (4.6) in (4.5) and integrating, since F̃1(0) and F(0) are equal to zero gives us

F(η) = Pr−4/5F̃1(η̃1). (4.7)

Differentiating (D6b) and using (4.6), we get

H′(η) = Pr1/5H̃′
1(η̃1). (4.8)

Even though both F̃1(η̃1) and H̃′
1(η̃1) are independent of Pr (see (4.3) and (4.4)), the

transformation back to the original boundary layer variables F(η) and H′(η) in (4.7) and
(4.8) brings back the Pr dependence of the velocity and the temperature fields. Using (4.7)
and (4.8) to convert (4.3) and (4.4) to be in terms of η, then substituting in (3.11) and using
(4.6), we get

ηdf = 1.25
√

ThmPr3/10. (4.9)

Equation (4.9) is the theoretically obtained scaling relation for ηdf in the small η limit
for Pr � 1. A comparison of (3.13) with (4.9) makes it clear that the unspecified Pr
dependence in (3.13) is

Q(Pr) = 1.25Pr3/10. (4.10)

In figure 8, we compare (4.9) with ηdf obtained from (3.11) for Pr = 2, Pr = 10 and Pr =
100; where F(η) and H′(η) corresponding to Pr = 2, Pr = 10 and Pr = 100 used in (3.11)
were obtained by numerically solving (2.28). Since (4.9) is valid for Pr � 1, we expect
the data of Pr = 100 to approach (4.9) in the small η limit, while the data of Pr = 2
to deviate. Surprisingly, in figure 8, the data of Pr = 2, Pr = 10 and Pr = 100 collapse
onto (4.9) suggesting that (4.9) is valid not just for Pr � 1, but also for any Pr > 1, for
small η.
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Figure 8. Scaling of the dimensionless dust-free region height ηdf for Pr � 1 in the small and the large η
limits. Numerical solution of (3.11) for: blue ◦, Pr = 2; green �, Pr = 10; and red �, Pr = 100. The scaling
relations ———, (4.9) and – – – –, (4.13). The inset shows the variation of F̃(η̃) with η̃ for Pr � 1, obtained
by solving the inner boundary layer equations (4.1).

4.1.2. Scaling for large η
For Pr � 1, the thermal boundary layer is an inner boundary layer; there is negligible
temperature gradient above it in the velocity boundary layer. Since thermophoresis and the
resultant formation of the dust-free region are due to temperature gradients, for Pr � 1,
we expect the dust-free region to not extend beyond this inner thermal boundary layer. The
scaling of the dust-free region height in the large η limit has to be then obtained from an
analysis of the top regions of the inner thermal boundary layer. We hence look at the inner
boundary layer equations (4.1), with the corresponding boundary conditions (4.2) to find
the large η scaling of ηdf at Pr � 1.

From the η̃1 → ∞ boundary condition for the velocity function in (4.2b), we find that
F̃1 should be varying linearly as

F̃1(η̃1) = −C3 + C4η̃1. (4.11)

This linear variation of F̃1 for large η̃1 can be seen in the inset of figure 8, which shows the
variation of F̃1(η̃1)with η̃1 obtained by solving (4.1). We obtain C3 = 1.04 and C4 = 1.15
from the y intercept and the slope of the linear portion of this plot. Substituting (4.11) in
(4.1c) and integrating gives us H̃′

1(η̃1) at large η̃1 as

H̃′(η̃) = C5 e−3C4(η̃−C3/C4)
2/10. (4.12)

A curve fit to the values of H̃′(η̃) for Pr � 1, obtained by numerically solving (4.1),
showed that C5 = −0.38. Converting (4.11) and (4.12) into F(η) and H′(η) by using (4.7)
and (4.8), and then substituting in (3.11) and using (4.6), we get

ηdf Pr1/5 = 0.90 +
√

1.45W0(0.21(ThmPr)2), (4.13)

where W0(x) is the Lambert W function, which is the inverse function of y ey = x.
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Dust-free region over horizontal hot surfaces

Equation (4.13) is the expression for ηdf in the large η limit for Pr � 1. In figure 8, we
compare (4.13) with ηdf obtained from (3.11) for Pr = 2, Pr = 10 and Pr = 100, where
the F(η) and the H′(η) corresponding to Pr = 2, Pr = 10 and Pr = 100 used in (3.11)
were obtained by numerically solving (2.28). As expected, the data of Pr = 100 are very
close to the curve of (4.13), which was derived for the limit of Pr � 1, while the data of
Pr = 2 deviate from (4.13). Thus, (4.13) seems to hold as an analytic expression for the
dust-free region height for Pr ≥ 100 for large ηdf values corresponding to higher Thm. We
now examine the scaling laws for the large and the small η cases for low Pr.

4.2. Scaling for Pr � 1

4.2.1. Scaling for large η
For Pr � 1, Rotem & Claassen (1969) gives the outer boundary layer equations in terms
of the dimensionless velocity ˜̃F2 in (D12a), pressure ˜̃G2 in (D13) and temperature function
˜̃H2 in (D12b) in the outer boundary layer as

3 ˜̃F2
˜̃

F′′
2 − (

˜̃
F′

2)
2 = 2 ˜̃G2 − 2 ˜̃η2

˜̃
G′

2,
˜̃H2 = ˜̃

G′
2,

˜̃
H′′

2 + 3
5

˜̃F2
˜̃

H′
2 = 0, (4.14a–c)

with the boundary conditions

˜̃F2 = 0, ˜̃H2 = ˜̃
G′

2 = 1 at ˜̃η2 = 0 (4.15a)

and
˜̃

F′
2 = 0, ˜̃H2 = ˜̃G2 = 0 when ˜̃η2 → ∞. (4.15b)

The subscript 2 in the above equations is for the outer boundary layer.
From (D15), (D3) and (D11c), we have

F′(η) = Pr−1/5 ˜̃
F′

2(
˜̃η2). (4.16)

Similarly, we have

η = Pr−2/5 ˜̃η2 (4.17)

from (D11a), (D11b), (D12c) and (2.21). Using (4.17) in (4.16), integrating, and since F(0)
and ˜̃F2(0) are equal to zero from (2.30a) and (4.15a), respectively, we get

F(η) = Pr−3/5 ˜̃F2( ˜̃η2). (4.18)

Differentiating (D12b) and using (2.20) and (4.17), we get

H′(η) = Pr2/5 ˜̃
H′

2(
˜̃η2). (4.19)

From the boundary condition for velocity function in (4.15b) for ˜̃η2 → ∞, we see that

˜̃F2( ˜̃η2) = C6, (4.20)

where the constant C6 = 1.78 is obtained from the numerical solution of (4.14). Using
(4.20) in (4.1c) and integrating gives

˜̃
H′

2(
˜̃η2) = C7 e−3C6 ˜̃η2/5, (4.21)

where C7 = −1.97, as obtained by numerically solving (4.14) for ˜̃H′
2(

˜̃η2).
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Figure 9. Scaling of the dimensionless dust-free region height (ηdf ) at Pr � 1 in the large and the small η
limits. (a) Large η limit. Numerical solutions at green ◦, Pr = 0.1 and magenta �, Pr = 1; – – – –, scaling
relation (4.22). (b) Small η limit. Numerical solutions at green ◦, Pr = 0.1 and magenta �, Pr = 1; – – – –,

scaling relation (4.29). The inset shows the variation of ˜̃H′
2(

˜̃η) with ˜̃η for Pr � 1, obtained by solving the outer
boundary layer equations (4.14).

Using (4.17), (4.18) and (4.19) to convert (4.20) and (4.21) to be in terms of η, and
then substituting in (3.11), we get the dimensionless dust-free region height at large η for
Pr � 1 as

ηdf = 0.93Pr−2/5 ln(1.84ThmPr). (4.22)

In figure 9(a), we compare (4.22) with the ηdf obtained from (3.11) by using the
numerical solution of (2.28) for Pr = 0.1 and Pr = 1. Since (4.22) was obtained from the
equations of Rotem & Claassen (1969) for Pr � 1 in (4.14), as expected, the numerical
solution for Pr = 0.1 agrees with the scaling relation (4.22) for large η. However,
surprisingly, the data for Pr = 1 also match with (4.22) for large η, suggesting that (4.22)
is valid even for Pr ≤ 1. Thus, (4.22) gives the scaling for the dimensionless dust-free
region height for Pr ≤ 1 for large Thm.

4.2.2. Scaling for small η
Rotem & Claassen (1969) provides the inner boundary layer equations for Pr � 1 as

5
˜̃

F′′′
1 + 3 ˜̃F1

˜̃
F′′

1 − ˜̃
F′

1
2 = −1, ˜̃H1 = 1, (4.23a,b)

subjected to the boundary conditions,

˜̃F1 = ˜̃
F′

1 = 0 at ˜̃η1 = 0 (4.24a)

and
˜̃

F′
1 = 1 when ˜̃η1 → ∞. (4.24b)

Subscript 1 in the above equations denote the inner boundary layer. However, (4.23b)

implies that the temperature gradient inside the inner velocity boundary layer, ˜̃H′
1 = 0;

this is quite unphysical since the maximum temperature gradient in natural convection
flows occurs at the wall. So we assume that the temperature gradient in the outer velocity
boundary layer, which approaches a constant value at lower ˜̃η2, is maintained throughout
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Dust-free region over horizontal hot surfaces

the inner thermal boundary layer. By numerically solving the set of outer boundary layer
equations (4.14), we get

˜̃
H′

2(
˜̃η2) = C8 = −0.57, (4.25)

as ˜̃η2 → 0, shown as the y-intercept in the inset of figure 9(b). From a local analysis of

(4.23) near ˜̃η1 = 0, given in Appendix C.3, we see that ˜̃F1 can be approximated to

˜̃F1( ˜̃η1) = C9 ˜̃η1
2. (4.26)

As given by Rotem & Claassen (1969),

F(η) = Pr−1/10

√
˜̃

F′
2(0)

˜̃F1( ˜̃η1) (4.27)

and

η = Pr1/10 ˜̃η1√ ˜̃F′
2(0)

. (4.28)

Using (4.27) to convert (4.26) into F(η), (4.19) to convert (4.25) into H′(η), substituting
these in (3.11), and using (4.28), we get

ηdf = 1.75Pr7/20Th1/2
m (4.29)

as the scaling law to predict ηdf for Pr � 1 in the small η limit. Here, the pre-factor 1.75
is chosen to match (4.29) with the data from the solution of (3.11) for Pr < 1, plotted in
figure 9(b). Figure 9(b) shows the comparison of (4.29) with the dust-free region height
obtained from the numerical solutions of (3.11) for Pr = 0.1 and Pr = 1. We again note
from the figure that (4.29) is valid for any Pr ≤ 1, even though it was derived for Pr � 1.

4.2.3. Large η scaling for intermediate Pr (1 < Pr < 10)
We saw in §§ 4.1.1 and 4.2.2 that the scaling laws for the dust-free region heights obtained
in the small η limit for Pr � 1 in (4.9) and for Pr � 1 in (4.29) are valid for any Pr > 1
and Pr < 1. Similarly, the scaling law for the large η limit for Pr � 1 in (4.22) was shown
to be valid for any Pr < 1. However, the scaling law in the large η limit for Pr � 1 in
(4.13) deviates from the simulation data for Pr = 2 (see figure 8). Then in the intermediate
range of Pr values which are not much larger than one, for large Thm that push the ηdf to
large η limits, the prediction of ηdf becomes difficult with the results presented so far. To
overcome this limitation, we now obtain an expression, by trial and error using numerical
solutions of F(η) and H′(η) obtained from (2.28), which collapse the ηdf data from the
solutions of (3.11) for 1 < Pr < 10. A logarithmic function,

ηdf Pr0.39 = 0.68 ln(41.2ThmPr1.5), (4.30)

and the corresponding data from the solution of (3.11) are compared in figure 10 for the
large η limit for 2 < Pr < 10; the data of simulations collapse on to (4.30) fairly well for
this range of intermediate Pr.
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Figure 10. Comparison of the scaling of the dimensionless dust-free region height for 1 < Pr < 10 with ηdf
obtained from the numerical solution; blue �, Pr = 2; red ◦, Pr = 5; green ∗, Pr = 7; magenta �, Pr = 10;
– – – –, (4.30).

5. Conclusions

The primary contribution of the present work includes the identification of a saddle
point and a separatrix for particle flows inside natural convection boundary layers over
horizontal surfaces and the scaling of the dust-free region boundary in such flows for the
whole range of Prandtl numbers, Pr � 1 to Pr � 1. The saddle point and the separatrix
were identified by studying the particle trajectories obtained by simulating the motion
of low-Stokes-number (Ŝt (2.8)) particles in the flow field of laminar natural convection
boundary layer given by Rotem & Claassen (1969), by including thermophoretic force,
particle inertia, viscous drag and gravitational force. The saddle point and the four
separatrices that originate from it were shown to divide the flow field of particles into four
regions. The regions below the two separatrices leaving the saddle point always turned into
a dust-free zone. For a given fluid and flow conditions, the size of this zone was shown to
depend on the gravitational number, Gn in (2.13), and the thermophoretic number, Th in
(2.11), when Ŝt � 1 and Brownian effects were not significant. The size of the dust-free
zone was shown to decrease with an increase in Gn and diminish to zero when Gn � Thm.

For small particle sizes and appreciable temperature differences across the boundary
layer, so that Ŝt � 1 and Gn � Th, the boundary of the dust-free region was shown to be
parallel to the boundary layer edge, but smaller in height and dependent on the values
of Th and Pr. For such commonly occurring conditions, since the separatrix formed
the boundary of the dust-free region, by considering the dominant velocity components
on the separatrix, we obtained a differential equation (3.7) for the particle trajectory on
these separatrices, and from which, an equation (3.11) for the dimensionless boundary
layer y-coordinate (ηdf ) associated with the separatrix. This equation showed that on
the separatrix, which is the boundary of the dust-free region, the dimensionless stream
function F(η) in (2.19) is proportional to the dimensionless derivative (∂/∂η) of the
dimensionless temperature function H(η) in (2.20); the proportionality coefficient being
−(5/3)(Th/

√
Pr). The numerical solution of this equation was shown to predict the

dust-free regions very well at all locations of the boundary layer, except for a slight
deviation close to the leading edge. However, (3.11) was not an equation that gave an
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explicit scaling relation for the dimensionless dust-free region boundary ηdf ; further,
the solution of it required the similarity solutions of the boundary layer equations,
corresponding to each Pr.

Using the limiting forms of F(η) and H(η) for η � 1, which implied small Th, in (3.11)
for the dimensionless dust-free region height, ηdf = ydf /[Pr(x2Z3

w)
1/5], where Zw(2.3) is

the near wall length scale in turbulent convection, we then obtained the scaling of dust-free
region heights. In both the Pr cases, ηdf scaled as

√
Thm, with the Pr dependence being

Pr3/10 for Pr � 1 and Pr7/20 for Pr � 1 (see (4.9) and (4.29)). For the large η cases, ηdf
had a more complex dependence for large and small Pr; ηdf showed a dependence on the
square root of the Lambert function of Th2Pr (see (4.13)) for Pr � 1 and a dependence
on the logarithm of Th

√
Pr for Pr � 1 (see (4.22)). All of these scalings matched well

with the numerical solution of (3.11) even for the corresponding Pr ≤ 1 and Pr ≥ 1 cases,
except for the Pr � 1, η � 1 scaling in (4.13), which matched with (3.11) only for Pr ≥
100. A scaling for ηdf in the practically relevant regime of 1 < Pr < 10 for η � 1 is then
empirically obtained as ηdf ∼ Pr−0.39 ln(ThmPr) (see (4.30)) so as to obtain the scaling of
the dust-free region in the whole range of Pr � 1 to Pr � 1.

The present study neglected Brownian effects, which become important with the
decrease in the size of the particles. Brownian effects on the particles depend just on the
absolute value of the temperature, whereas thermophoretic effects depend on the gradient
of temperature across particles, which keeps increasing as we move towards the origin
of the boundary layer. So, even in the presence of Brownian effects, we still expect the
presence of a similar dust-free region above a hot horizontal plate. As the Brownian effects
increase, one may expect the height of the dust-free region to decrease, finally making it
bounded, as we had observed in the gravitational case. A further increase in Brownian
effects may reduce the dust-free region size close to zero and confine it around the leading
edge of the boundary layer. These effects, and the similarities that the dust-free region
may show in such cases to the case when gravitational effects are increased, need to be
investigated.

As we saw earlier, since at intermediate Ra the local boundary layers on either side of the
plumes in Rayleigh–Bénard convection could be modelled as a laminar natural convection
boundary layer (Theerthan & Arakeri 1998; Puthenveettil 2004; Puthenveettil & Arakeri
2005) the dust-free region heights predicted by the present study could be expected to
occur near the hot plate in Rayleigh–Bénard convection at intermediate Ra. The upper limit
for Ra is discussed in Appendix E in detail for Pr = 0.7 and aspect ratio of 1. However,
when Ra is higher, these local boundary layers are sheared by the large-scale flow in the
bulk, changing their nature to mixed convection boundary layers (Shevkar, Mohanan &
Puthenveettil 2023). Hence, the results of the present study may not be valid for high-Ra
Rayleigh–Bénard convection, even though the local boundary layers remain.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.786.
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Appendix A. Dilute mixture assumption

The present study is done for Ŝt = 10−5 with the number of particles N = 5000 in a
domain of H = 40Zw and L = 50Zw. The area fraction that N particles of radius a occupy
is then

φ = Nπa2

40Zw50Zw
. (A1)

Since

Zw = 21/3H

Ra1/3
H

, (A2)

where

RaH = gβ�TH3

να
(A3)

is the Rayleigh number, (A1) can be written as

φ = Nπ

25/3 × 103

( a
H

)2
Ra2/3

H . (A4)

Using the expression for (2.8), (2.9) and (A2), for Ŝt = 10−5,

a
H

=
(

24/3 × 402 × 10−5 × 9
CB

ε

2 + ε

)1/2 Pr1/4

Ra2/3
H

. (A5)

Substituting (A5) in (A4), we obtain

φ = N × 3.6 × 10−4

CB

ε

2 + ε

√
Pr

Ra2/3
H

. (A6)

The dilute mixture assumption is valid for φ � 1. Using the values of N = 5000, Pr = 0.7
and CB � 1 for particles in air, with ε/(2 + ε) → 1/2 when ε → 0 for particles in air, we
obtain

φ = 0.75

Ra2/3
H

. (A7)

For the usual range of RaH > 106, for which boundary layers form on the hot plate, φ <
7.5 × 10−5 � 1; the influence of particles on the flow field can then be ignored.

Appendix B. Dimensionless stream function and thermophoretic velocity

In this section, we derive expressions for the dimensionless stream function used to obtain
u∗

x and u∗
y in (2.26) and (2.27) and the dimensionless thermophoretic velocity components,

u∗
tx and u∗

ty , used in (3.5).
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Dust-free region over horizontal hot surfaces

B.1. Dimensionless stream function
Using (2.3) and (2.24), we get

Gr =
(

L
Zw

)3 1
Pr
. (B1)

Substituting (B1) and (2.3) in (2.21), we get

η = Pr−1/5x∗−2/5y∗. (B2)

The dimensionless stream function, ψ∗ in (2.19), can now be expressed in terms of x∗ by
using (2.3), (2.22) and (B1) as

ψ∗ = Pr−1/5Gr−1/5x∗3/5F(η). (B3)

The dimensionless fluid velocity components u∗
x = ∂ψ∗/∂ ŷ in (2.26) and u∗

y =
−∂ψ∗/∂xrc

∗ in (2.27) can now be obtained from (B3). Since F′(η) is always positive
(see figure 2), it is clear from (2.26) that the horizontal component of fluid velocity, u∗

x
is always positive. Equations (2.26) and (2.27) imply that along any constant η lines, u∗

x
monotonically increases with increase in x∗, while the magnitude of vertical velocity, u∗

y ,
decreases with increase in x∗.

B.2. Dimensionless thermophoretic velocity components
Using (2.12) in (2.17), we can re-write the dimensionless thermophoretic velocity as

u∗
t = −2

√
PrCTCB

�Tw

〈T〉 ∇∗θ. (B4)

Comparing (2.17) and (B4), the thermophoretic number can be written as

Th = 2
√

PrCTCB
�Tw

〈T〉 . (B5)

Using

∇∗θ(η) = θ ′(η)∇∗η, (B6)

(B2), (B5) and (2.20) in (B4), the horizontal component of thermophoretic velocity
becomes

u∗
tx = 2

5 x∗−1
ηThH′(η). (B7)

Similarly, the vertical component of the thermophoretic velocity can be written as

u∗
ty = −ThPr−1/5x∗−2/5H′(η). (B8)

Note that u∗
tx is always negative and u∗

ty is always positive as H′ is always negative (see
figure 2). It is also evident from (B7) and (B8) that the magnitudes of u∗

tx and u∗
ty decrease

as x∗ increases along any constant η lines.
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Appendix C. Limiting behaviours of dimensionless stream, temperature and
pressure functions for η → 0

C.1. For 0.1 ≤ Pr ≤ 10, behaviour of F(η), G(η) and H(η) near η = 0
For small values of η, a first-order approximation to F(η) (see figure 2) can be made as

F(η) ≈ Aηα, (C1)

where the coefficient A and the exponent α are real numbers. The higher order terms in
η can be neglected as η → 0. This approximation ensures that both F(η) and F′(η) go to
zero (see boundary conditions in (2.30a)) as η → 0 when α is greater than one. Similarly,
a first-order approximation of the decreasing function H(η) (see figure 2) can be made as

H(η) ≈ 1 − Bηβ, (C2)

where the coefficient B and the exponent β are real numbers. This approximation ensures
that H(η) → 1 as η → 0, which is a boundary condition requirement in (2.30a), when β
is a positive real number. Using (C2) in (2.28b), we get the first-order approximation for
G(η) at small values of η as

G(η) ≈ η − Bηβ+1

β + 1
+ C, (C3)

where C is a real constant which is independent of η.
We now use (C1), (C2) and (C3) in the boundary layer equations (2.28) to obtain the

values of α and β. Using (C1), (C2) in (2.28c) and dividing by −βBηβ−2, we get

(β − 1)+ 3
5 PrAηα+1 = 0. (C4)

Since α is a real number greater than one, the second term on the left-hand side of (C4)
goes to zero as η → 0. In this limit, (β − 1) has to be then zero, i.e.

β = 1. (C5)

Using (C3), (C1) and (C5) in (2.28a) and dividing by ηα−3, we obtain

5Aα(α − 1)(α − 2)+ A2α(2α − 3)ηα+1 − 3Bη5−α − 2Cη3−α = 0. (C6)

The second term on the left-hand side goes to zero as η → 0 since α > 1 and is real. In
this limit, α has to be then less than 3 for the third and fourth term in (C6) to tend to zero.
To balance the equation when η → 0, the first term has to be zero. This implies that since
A /= 0 and α > 1, α − 2 = 0, i.e.

α = 2. (C7)

Using (C5) and (C7), we can re-write (C1), (C2) and (C3) for η → 0 as

F(η) ≈ Aη2, H(η) ≈ 1 − Bη, and G(η) ≈ C + η − B
2
η2. (C8a–c)

So we see that for small values of η, F(η) is a quadratic function, H(η) is a linear function
and G(η) is a quadratic polynomial in η.
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Dust-free region over horizontal hot surfaces

C.2. For Pr � 1, the behaviour of F̃1(η̃1), G̃1(η̃1) and H̃1(η̃1) near η̃1 = 0

A similar first-order approximation as in (C1) and (C2) can be made for F̃1(η̃1) and H̃1(η̃1)

in terms of η̃1 as

F̃1(η̃1) ≈ Ãη̃α̃1 , H̃1(η̃1) ≈ 1 − B̃η̃β̃1 , (C9a,b)

when η̃1 → 0. For F̃′
1(η̃1) to approach zero and H̃1(η̃1) to approach one when η̃1 → 0 as

per § 4.2a, α̃ has to be greater than one and β̃ has to be positive. Using (C9) in (4.1c) gives

(β̃ − 1)+ 3
5 Ãη̃α̃+1

1 = 0. (C10)

Since α̃ > 1, for η̃1 → 0, the above equation can only be satisfied if

β̃ = 1. (C11)

Using (C9) in (4.1b) to find G̃ provides a similar expression as (C3),

G̃1(η̃1) ≈ η̃1 − B̃η̃β̃+1

β̃ + 1
+ C̃, (C12)

where C̃ is the constant of integration. Using the above results in (4.1a) gives

5α̃(α̃ − 1)(α̃ − 2)Ã − 2B̃β̃

β̃ + 1
η̃5−α̃

1 − 2C̃η̃3−α̃
1 = 0, (C13)

where all the terms except the first term goes to zero when α̃ < 3 for η̃1 → 0. Since α̃ > 1,
(C13) can be satisfied only if

α̃ = 2. (C14)

So it is found that F̃1 is quadratic and H̃1 is linear near η̃1 equals zero.

C.3. For Pr � 1, the behaviour of ˜̃F1( ˜̃η1),
˜̃G1( ˜̃η1) and ˜̃H1( ˜̃η1) near ˜̃η1 = 0

An exactly similar approximation as in (C1) and (C9a) is used for ˜̃F1( ˜̃η1) in (4.23a) to get

5 ˜̃α( ˜̃α − 1)( ˜̃α − 2) ˜̃A − ˜̃A2 ˜̃α(2 ˜̃α − 3) ˜̃η ˜̃α+1
1 + ˜̃η3−˜̃α

1 = 0. (C15)

For ˜̃F′
1 to tend to zero, as ˜̃η1 → 0, ˜̃α has to be greater than one. So the second and third

terms in (C15) tend to zero for ˜̃α < 3 for small ˜̃η1. So (C15) can be satisfied only if

˜̃α = 2, (C16)

implying that ˜̃F1 is quadratic near ˜̃η1 equals zero.
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Appendix D. Rotem & Claassen’s (1969) boundary layer parameters

D.1. Intermediate range of Pr (O(0.1) ≤ Pr ≤ O(10))
For O(0.1) ≤ Pr ≤ O(10), (2.28a–c) give the relevant boundary layer equations. The
stretched variables used to obtain (2.28) are

ŷ = y∗
rcGr1/5, û = u∗

rcGr−2/5 and v̂ = v∗
rcGr−1/5, (D1a–c)

where u∗
rc = u/(ν/L) and v∗

rc = v/(ν/L). The similarity transformations used are given by
(2.19), (2.20) and (2.21). Velocity components and stream function are related in the usual
way as

û = ∂ψ∗

∂ ŷ
and v̂ = −∂ψ

∗

∂x∗
rc
. (D2a,b)

Using (D2a), (2.19) and (2.21), we get

û = x∗
rc

1/5F′(η), (D3)

while using (D2b), (2.19) and (2.21), we get

v̂ = −3
5 x∗

rc
−2/5F(η)+ 2

5 x∗
rc

−4/5ŷF′(η). (D4)

D.2. Large Pr (Pr � 1)
The stretched variables used to obtain the inner boundary layer equations (4.1) for Pr � 1
are

ỹ = ŷPr1/5, ũ = ûPr3/5 and ṽ = v̂Pr4/5. (D5a–c)

The similarity transformations used are

ψ̃ = x∗
rc

3/5F̃1(η̃1), θ = H̃1(η̃1), and η̃1 = ỹx∗
rc

−2/5
. (D6a–c)

The pressure function is defined as

G̃1(η̃1) =
(

p − p∞
ρ∞ν2 L2 + gỹL3

ν2

)
Gr−4/5Pr1/5x∗

rc
−2/5

. (D7)

From the stream function, we can get the velocity components in the usual way as

ũ = ∂ψ̃

∂ ỹ
and ṽ = − ∂ψ̃

∂x∗
rc
. (D8a,b)

Using (D8), and the definition of stream function and the similarity variable respectively
in (D6a) and (D6c), we can write

ũ = x∗
rc

1/5F̃′
1(η̃1) (D9)

and
ṽ = −3

5 x∗
rc

−2/5F̃1(η̃1)+ 2
5 x∗

rc
−4/5ỹF̃′

1(η̃1). (D10)
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Dust-free region over horizontal hot surfaces

D.3. Small Pr (Pr � 1)
The outer boundary layer equations (4.14) for Pr � 1 are obtained by using the stretched
variables,

˜̃x = x∗
rcPr2/3, ˜̃y = ŷPr2/3, ˜̃u = ûPr1/3, and ˜̃v = v̂Pr1/3, (D11a–d)

and the similarity transformations,

˜̃
ψ = ˜̃x3/5 ˜̃F2( ˜̃η2), θ = ˜̃H2( ˜̃η2), and ˜̃η2 = ˜̃y ˜̃x−2/5. (D12a–c)

The pressure function used is

˜̃G2( ˜̃η2) =
(

p − p∞
ρ∞ν2 L2 + g ˜̃yL3

ν2

)
Gr−4/5Pr2/3 ˜̃x−2/5

. (D13)

Velocity components are obtained from the stream function as

˜̃u = ∂
˜̃
ψ

∂ ˜̃y
and ˜̃v = −∂

˜̃
ψ

∂ ˜̃x
. (D14a,b)

Using (D12a) and (D12c) in (D14), we can write

˜̃u = ˜̃x1/5 ˜̃F′
1(

˜̃η1) (D15)

and

˜̃v = 3
5
˜̃x−2/5 ˜̃F( ˜̃η)+ 2

5
˜̃x−4/5 ˜̃y ˜̃

F′( ˜̃η). (D16)

D.4. Conversion of variables from Rotem & Claassen (1969) to Pera & Gebhart (1973)
A conversion to Pera & Gebhart’s (1973) variables is possible from Rotem & Claassen’s
(1969) and is provided in this section. Dimensional velocity components and temperature
are calculated using both Rotem & Claassen’s (1969) variables and Pera & Gebhart’s
(1973) variables, and then equated to obtain the following relationships among them:

ηpg = 5−1/5η, (D17)

θ(ηpg) = H(η), θ ′(ηpg) = 51/5H′(η), (D18a,b)

f (ηpg) = 5−4/5F(η) and f ′(ηpg) = 5−3/5F′(η), (D19a,b)

where ηpg = ( y/x)(Grx/5)1/5 is the similarity variable used by Pera and Gebhart, and
f (ηpg) and θ(ηpg) are the corresponding velocity and temperature functions.

Appendix E. Upper limit of Ra for the present analysis

We now estimate the upper limit of the present analysis by estimating the Ra at which the
local boundary layers would be affected by the external shear due to the global boundary
layer, so as to change their nature from a laminar natural convection boundary layer to a
mixed convection boundary layer.
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Equation (4.10) of Shevkar et al. (2023) gives the characteristic velocity (Uc) inside the
local boundary layers that are subjected to shear by the global boundary layers. These are
given as a perturbation series in Péclet number (Peλ) based on Uc and the no-shear plume
spacing λ0 as

Peλ = Peλ0 + εPeλ1 + εPeλ2 + O(ε3), (E1)

where
ε = Reλ/Raλ (E2)

is a small parameter with Reλ = VFλ0/ν and Raλ = gβ�Twλ
3
0/να being the Reynolds

and Rayleigh numbers based on λ0, with VF being the large-scale flow velocity and �Tw
the temperature drop across the local boundary layer. There is no effect of shear on the
local boundary layers when

εPeλ1 < Peλ0 (E3)

in (E1).
As given by Shevkar et al. (2023),

Peλ0 =
(

C2

8E

)2/5

Ra2/5
λ (E4)

and

Peλ1 = ARaλ
5EPrn , (E5)

where E = f (Pr) = 5 for Pr = 0.7, n = 0.5, C2 = 0.72, A = u|z=δ/VF, the dimensionless
velocity at the edge of the local boundary layer. The Reλ in (E2) can be rewritten as

Reλ = Re(λ/Zw)(Zw/H), (E6)

with

λ/Zw = Ra1/3
λ = C1Prn1, (E7)

Zw/H = (2/Ra)1/3 (E8)

and
Re = VFH/ν = 1.169Ra4/9Pr−2/3Γ −0.57, (E9)

where Γ is the aspect ratio of the convection cell (Shevkar et al. 2023), C1 = 47.5, n1 =
0.1 and Zw = (να/gβ�Tw)

1/3 the near-wall length scale in convection (Puthenveettil et al.
2011). Substituting (E7), (E8) and (E9) in (E6), and the resulting Reλ in (E2), with Raλ
from (E7), we obtain

ε = 21/31.169
C2

1Pr2/3+2n1Γ 0.57
Ra1/9. (E10)

Substituting (E4), (E5) and (E10) in (E3), we obtain the Rayleigh number below which
shear does not affect the local boundary layers as

Ra1/9 <

(
C1C2

2E3

8

)1/5
5

21/31.169
Γ 0.57

A
Prn1/5+n+2/3. (E11)

Since the thickness of the local boundary layers are an order smaller than the thickness
of the global boundary layer, A � 0.1. Then for Pr = 0.7, at Γ = 1, the local boundary
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Dust-free region over horizontal hot surfaces

layers are not affected by the shear due to the global boundary layer at

Ra < 1.45 × 1015. (E12)

Since the present study is limited to the case were the local boundary layers retain their
natural convection boundary layer nature, (E12) gives the upper limit of the present study.

Appendix F. Validity of Oberbeck–Boussinesq (OB) approximation in the present
study

The violation of OB approximation due to temperature variations occurs (Barletta 2022)
when

β�T > 1. (F1)

The smaller the value of β�T , the better the approximation. For the case of air that we
consider in the present study, since β � 1/Tref , (F1) gives a value of

�T > Tref (F2)

for the violation of OB approximation. For the usually encountered bulk temperature
of Tref � 25 ◦C, (F2) then means that �T > 25 ◦C, for the violation of the OB
approximation. This is of similar order to the value of �T > 28.6 ◦C obtained by Gray
& Giorgini (1976) for air at 15 ◦C using a more rigorous analysis. The present study is
limited to the case where the temperature difference across the boundary layer thickness
is �Tw < 10 ◦C. Hence, the OB approximation is far from violated in the present study.

Alternatively, the OB approximation also gets violated when the length scales involved
become large, so that the Gebhart number

Ge = gβL/Cp > 1 (F3)

for small fixed temperature differences (Barletta 2022). For a bulk temperature of 25 ◦C
for air, (F3) gives L > 3.06 × 104 m for the OB approximation to be violated. The length
scales of boundary layers in the present case are of the order of mm. Hence, the OB
approximation is far from violated in the present study under this consideration too.

Appendix G. Validity of the present study to turbulent RBC

The present study finds the scaling of dust-free region heights in laminar natural
convection boundary layers over horizontal surfaces, and proposes that the same scaling
of dust-free region heights could be expected in turbulent RBC. However, there are
strong fluctuations near the plate in turbulent RBC, of the order of the mean quantities
themselves, which makes the validity of the present analysis to turbulent RBC somewhat
unclear. We now clarify this apparent contradiction below.

In turbulent RBC, it is well known that a shear boundary layer is created by the
large-scale flow, which we call as the global boundary layer since it spans the length of the
convection cell. This global boundary layer has been the concern of most of the scaling
theories of RBC so far, with many assumptions about their nature, ranging from laminar
zero pressure gradient shear boundary layer (Grossman & Lohse 2000) to turbulent shear
boundary layer (Siggia 1994). However, the dominant coherent structures on the hot and
cold plate in RBC are line plumes. These plumes are the long-time outcomes of instability
of boundary layers at their bases. It then follows that, in addition to the global boundary
layer, there have to be boundary layers in between these plumes, which we refer to as local
boundary layers. Figure 11 shows the global and the local boundary layers.
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Figure 11. (a) Schematic of the large-scale flow, the global boundary layer and the plumes on the plates
along with the local boundary layers in between them. (b) Side view of the vertical section in A–A in a plane
perpendicular to the plane in panel (a), showing the local plumes driving the large scale flow (Puthenveettil
et al. 2011). (c) Zoomed view of the local boundary layers and plumes in the region shown with the dashed
ellipse in panel (b). B denotes local boundary layer and P the plume. The lines show the edges of the local
velocity boundary layer and the velocity boundary layer of the plume, while the shaded regions show the local
thermal boundary layer and the thermal boundary layer of the plume. (d) Zoomed view of the dashed ellipse
in panel (c) showing the details of one plume and two local boundary layers at its base (Theerthan & Arakeri
1998).

As shown by Shevkar et al. (2023), the ratio of the thickness of the local to the global
boundary layer δl/δg ∼ Ra−1/9; then for the range of the present study, 1 × 106 ≤ Ra ≤
1 × 1015, 0.2 ≤ δl/δg ≤ 0.02. The length of the local boundary layers are decided by
their instability, which decide when they turn upwards to form plumes. As given by
Puthenveettil et al. (2011), the length of the local boundary layers,

λ = C1Prn1Zw, (G1)

where Zw (2.3) is the near-plate length scale in turbulent convection, C1 = 47.5 and n1 =
0.1. As shown in figure 11, the length of the global boundary layer Lg ∼ L. Then, for aspect
ratio Γ = 1,

λ

Lg
= 21/3C1Prn1

Ra1/3 (G2)

for 1 × 106 ≤ Ra ≤ 1 × 1015, 0.58 ≤ λ/Lg ≤ 5.8 × 10−4. The local boundary layers are
then an order smaller in thickness (δl � δg) and length (λ� Lg) than the global boundary
layers and are hence embedded within the global boundary layers.

The global boundary layers are most likely turbulent, even at moderate Ra, since the bulk
flows that cause them are turbulent in turbulent RBC. In contrast, the thin local boundary
layers, which are embedded within these global boundary layers, are most likely laminar.
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This is so since plumes are outcomes of the spatial instability of these local boundary
layers at their bases, then, the local boundary layers themselves, since they exist before
their spatial instability has developed, have to be laminar. This hypothesis – of two local
laminar natural convection boundary layers, giving rise to plumes, being the dominant
coherent structure on the plates in turbulent RBC – has since been proved in the following
multiple studies. The predictions based on the above hypothesis of (i) the mean plume
spacings (Theerthan & Arakeri 1998; Puthenveettil 2004; Puthenveettil & Arakeri 2005),
(ii) the total length of plumes (Puthenveettil et al. 2011), (iii) the mean merging velocity
of plumes (Gunasegarane & Puthenveettil 2014), (iv) the mean time for the appearance
of plumes at a vacant spot (Gunasegarane & Puthenveettil 2014), (v) the mean plume
spacing in the presence of shear (Shevkar et al. 2019) and (vi) the scaling of the peaks of
the horizontal velocity distributions (Shevkar et al. 2023), all done at large Ra too, have
been shown to match with measurements from experimental and computational studies of
turbulent RBC.

It is also known that there is no contradiction in the presence of fluctuations near the
plate and within the global boundary layers, with the above assumption of laminar nature
of local boundary layers. This is so since these fluctuations close to the plate are partly
caused by the motion of these laminar local boundary layers and the plumes themselves,
so that a local measurement at a fixed point would measure properties from local boundary
layers, plumes and the turbulent bulk at different times, each of these having different
values, the time series then appearing as a fluctuating signal. This phenomenology has
substantial proof since the vertical profiles of vertical velocity fluctuations, temperature
fluctuations and mean temperature in turbulent RBC have all been predicted well by
Theerthan & Arakeri (1998) using a model that assumes that the flow near the plate is
made up of a uniform array of pairs of local laminar boundary layers, each pair giving rise
to a laminar line plume, so that the plumes are equally spaced, equal to the mean plume
spacing observed in experiments.

The majority of the temperature drop near the plate occurs across these local boundary
layers, and hence, the formation of the dust-free region, driven by the temperature
difference induced thermophoresis, will occur within the local boundary layers, which, as
we saw earlier, is anyway within the global boundary layer. The local boundary layer and
not the global boundary layer is hence the relevant flow and temperature field that needs
to be studied to analyse the formation of a dust-free region near horizontal hot surfaces
in turbulent RBC. The flow field used in the present study could then be considered
to be that within the local boundary layers in turbulent RBC, which could be very well
assumed to be laminar natural convection boundary layers due to the reasons mentioned
above. In the present study, as seen in figure 6, the dimensionless height of the dust-free
regions (ηdf ), except for large values of Thm (Thm > 104) and low values of Prandtl number
(Pr < 0.3), is around 10 for Pr = 0.3 and around 5 for Pr = 10 at Thm = 104; the heights
being less at lower Thm. The corresponding dimensionless heights of natural convection
boundary layers for 0.1 < Pr < 10, as given by Rotem & Claassen (1969) are 15 < η < 6.
As expected, then ηdf /η < 1 for Thm < 104 and Pr > 0.3, the dust-free region heights
are much smaller than the corresponding local boundary layer thicknesses. The above
assumption of laminar natural convection nature of the local boundary layers turbulent
RBC is likely to be violated at large Ra where the shear due to the global boundary layer
changes the nature of these local boundary layers to that of a mixed convection boundary
layer; the limit for such a change is given in Appendix E.
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